diff options
author | Kumar Kartikeya Dwivedi <memxor@gmail.com> | 2022-07-21 15:42:36 +0200 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2022-07-21 21:03:09 -0700 |
commit | 56e948ffc098a780fefb6c1784a3a2c7b81100a1 (patch) | |
tree | 3afb22b921df8b7e08b6b034bb51de4dda8c65e7 /include/linux/btf.h | |
parent | a4703e3184320d6e15e2bc81d2ccf1c8c883f9d1 (diff) |
bpf: Add support for forcing kfunc args to be trusted
Teach the verifier to detect a new KF_TRUSTED_ARGS kfunc flag, which
means each pointer argument must be trusted, which we define as a
pointer that is referenced (has non-zero ref_obj_id) and also needs to
have its offset unchanged, similar to how release functions expect their
argument. This allows a kfunc to receive pointer arguments unchanged
from the result of the acquire kfunc.
This is required to ensure that kfunc that operate on some object only
work on acquired pointers and not normal PTR_TO_BTF_ID with same type
which can be obtained by pointer walking. The restrictions applied to
release arguments also apply to trusted arguments. This implies that
strict type matching (not deducing type by recursively following members
at offset) and OBJ_RELEASE offset checks (ensuring they are zero) are
used for trusted pointer arguments.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/linux/btf.h')
-rw-r--r-- | include/linux/btf.h | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/include/linux/btf.h b/include/linux/btf.h index 6dfc6eaf7f8c..cdb376d53238 100644 --- a/include/linux/btf.h +++ b/include/linux/btf.h @@ -17,6 +17,38 @@ #define KF_RELEASE (1 << 1) /* kfunc is a release function */ #define KF_RET_NULL (1 << 2) /* kfunc returns a pointer that may be NULL */ #define KF_KPTR_GET (1 << 3) /* kfunc returns reference to a kptr */ +/* Trusted arguments are those which are meant to be referenced arguments with + * unchanged offset. It is used to enforce that pointers obtained from acquire + * kfuncs remain unmodified when being passed to helpers taking trusted args. + * + * Consider + * struct foo { + * int data; + * struct foo *next; + * }; + * + * struct bar { + * int data; + * struct foo f; + * }; + * + * struct foo *f = alloc_foo(); // Acquire kfunc + * struct bar *b = alloc_bar(); // Acquire kfunc + * + * If a kfunc set_foo_data() wants to operate only on the allocated object, it + * will set the KF_TRUSTED_ARGS flag, which will prevent unsafe usage like: + * + * set_foo_data(f, 42); // Allowed + * set_foo_data(f->next, 42); // Rejected, non-referenced pointer + * set_foo_data(&f->next, 42);// Rejected, referenced, but wrong type + * set_foo_data(&b->f, 42); // Rejected, referenced, but bad offset + * + * In the final case, usually for the purposes of type matching, it is deduced + * by looking at the type of the member at the offset, but due to the + * requirement of trusted argument, this deduction will be strict and not done + * for this case. + */ +#define KF_TRUSTED_ARGS (1 << 4) /* kfunc only takes trusted pointer arguments */ struct btf; struct btf_member; |