1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
|
// SPDX-License-Identifier: GPL-2.0-or-later
/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2004 Erez Zadok
* Copyright (C) 2001-2004 Stony Brook University
* Copyright (C) 2004-2007 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompson <mcthomps@us.ibm.com>
*/
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include <linux/kernel.h>
#include "ecryptfs_kernel.h"
#define DECRYPT 0
#define ENCRYPT 1
/**
* ecryptfs_from_hex
* @dst: Buffer to take the bytes from src hex; must be at least of
* size (src_size / 2)
* @src: Buffer to be converted from a hex string representation to raw value
* @dst_size: size of dst buffer, or number of hex characters pairs to convert
*/
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
int x;
char tmp[3] = { 0, };
for (x = 0; x < dst_size; x++) {
tmp[0] = src[x * 2];
tmp[1] = src[x * 2 + 1];
dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
}
}
static int ecryptfs_hash_digest(struct crypto_shash *tfm,
char *src, int len, char *dst)
{
SHASH_DESC_ON_STACK(desc, tfm);
int err;
desc->tfm = tfm;
err = crypto_shash_digest(desc, src, len, dst);
shash_desc_zero(desc);
return err;
}
/**
* ecryptfs_calculate_md5 - calculates the md5 of @src
* @dst: Pointer to 16 bytes of allocated memory
* @crypt_stat: Pointer to crypt_stat struct for the current inode
* @src: Data to be md5'd
* @len: Length of @src
*
* Uses the allocated crypto context that crypt_stat references to
* generate the MD5 sum of the contents of src.
*/
static int ecryptfs_calculate_md5(char *dst,
struct ecryptfs_crypt_stat *crypt_stat,
char *src, int len)
{
struct crypto_shash *tfm;
int rc = 0;
tfm = crypt_stat->hash_tfm;
rc = ecryptfs_hash_digest(tfm, src, len, dst);
if (rc) {
printk(KERN_ERR
"%s: Error computing crypto hash; rc = [%d]\n",
__func__, rc);
goto out;
}
out:
return rc;
}
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
char *cipher_name,
char *chaining_modifier)
{
int cipher_name_len = strlen(cipher_name);
int chaining_modifier_len = strlen(chaining_modifier);
int algified_name_len;
int rc;
algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
if (!(*algified_name)) {
rc = -ENOMEM;
goto out;
}
snprintf((*algified_name), algified_name_len, "%s(%s)",
chaining_modifier, cipher_name);
rc = 0;
out:
return rc;
}
/**
* ecryptfs_derive_iv
* @iv: destination for the derived iv vale
* @crypt_stat: Pointer to crypt_stat struct for the current inode
* @offset: Offset of the extent whose IV we are to derive
*
* Generate the initialization vector from the given root IV and page
* offset.
*
* Returns zero on success; non-zero on error.
*/
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
loff_t offset)
{
int rc = 0;
char dst[MD5_DIGEST_SIZE];
char src[ECRYPTFS_MAX_IV_BYTES + 16];
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "root iv:\n");
ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
}
/* TODO: It is probably secure to just cast the least
* significant bits of the root IV into an unsigned long and
* add the offset to that rather than go through all this
* hashing business. -Halcrow */
memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
memset((src + crypt_stat->iv_bytes), 0, 16);
snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "source:\n");
ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
}
rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
(crypt_stat->iv_bytes + 16));
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
"MD5 while generating IV for a page\n");
goto out;
}
memcpy(iv, dst, crypt_stat->iv_bytes);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
}
out:
return rc;
}
/**
* ecryptfs_init_crypt_stat
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
*
* Initialize the crypt_stat structure.
*/
int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
struct crypto_shash *tfm;
int rc;
tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
if (IS_ERR(tfm)) {
rc = PTR_ERR(tfm);
ecryptfs_printk(KERN_ERR, "Error attempting to "
"allocate crypto context; rc = [%d]\n",
rc);
return rc;
}
memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
INIT_LIST_HEAD(&crypt_stat->keysig_list);
mutex_init(&crypt_stat->keysig_list_mutex);
mutex_init(&crypt_stat->cs_mutex);
mutex_init(&crypt_stat->cs_tfm_mutex);
crypt_stat->hash_tfm = tfm;
crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
return 0;
}
/**
* ecryptfs_destroy_crypt_stat
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
*
* Releases all memory associated with a crypt_stat struct.
*/
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
crypto_free_skcipher(crypt_stat->tfm);
crypto_free_shash(crypt_stat->hash_tfm);
list_for_each_entry_safe(key_sig, key_sig_tmp,
&crypt_stat->keysig_list, crypt_stat_list) {
list_del(&key_sig->crypt_stat_list);
kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
}
memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}
void ecryptfs_destroy_mount_crypt_stat(
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
return;
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
list_for_each_entry_safe(auth_tok, auth_tok_tmp,
&mount_crypt_stat->global_auth_tok_list,
mount_crypt_stat_list) {
list_del(&auth_tok->mount_crypt_stat_list);
if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
key_put(auth_tok->global_auth_tok_key);
kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
}
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}
/**
* virt_to_scatterlist
* @addr: Virtual address
* @size: Size of data; should be an even multiple of the block size
* @sg: Pointer to scatterlist array; set to NULL to obtain only
* the number of scatterlist structs required in array
* @sg_size: Max array size
*
* Fills in a scatterlist array with page references for a passed
* virtual address.
*
* Returns the number of scatterlist structs in array used
*/
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
int sg_size)
{
int i = 0;
struct page *pg;
int offset;
int remainder_of_page;
sg_init_table(sg, sg_size);
while (size > 0 && i < sg_size) {
pg = virt_to_page(addr);
offset = offset_in_page(addr);
sg_set_page(&sg[i], pg, 0, offset);
remainder_of_page = PAGE_SIZE - offset;
if (size >= remainder_of_page) {
sg[i].length = remainder_of_page;
addr += remainder_of_page;
size -= remainder_of_page;
} else {
sg[i].length = size;
addr += size;
size = 0;
}
i++;
}
if (size > 0)
return -ENOMEM;
return i;
}
struct extent_crypt_result {
struct completion completion;
int rc;
};
static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
struct extent_crypt_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->rc = rc;
complete(&ecr->completion);
}
/**
* crypt_scatterlist
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
* @dst_sg: Destination of the data after performing the crypto operation
* @src_sg: Data to be encrypted or decrypted
* @size: Length of data
* @iv: IV to use
* @op: ENCRYPT or DECRYPT to indicate the desired operation
*
* Returns the number of bytes encrypted or decrypted; negative value on error
*/
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
struct scatterlist *dst_sg,
struct scatterlist *src_sg, int size,
unsigned char *iv, int op)
{
struct skcipher_request *req = NULL;
struct extent_crypt_result ecr;
int rc = 0;
BUG_ON(!crypt_stat || !crypt_stat->tfm
|| !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
crypt_stat->key_size);
ecryptfs_dump_hex(crypt_stat->key,
crypt_stat->key_size);
}
init_completion(&ecr.completion);
mutex_lock(&crypt_stat->cs_tfm_mutex);
req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
if (!req) {
mutex_unlock(&crypt_stat->cs_tfm_mutex);
rc = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
extent_crypt_complete, &ecr);
/* Consider doing this once, when the file is opened */
if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
crypt_stat->key_size);
if (rc) {
ecryptfs_printk(KERN_ERR,
"Error setting key; rc = [%d]\n",
rc);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
rc = -EINVAL;
goto out;
}
crypt_stat->flags |= ECRYPTFS_KEY_SET;
}
mutex_unlock(&crypt_stat->cs_tfm_mutex);
skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
if (rc == -EINPROGRESS || rc == -EBUSY) {
struct extent_crypt_result *ecr = req->base.data;
wait_for_completion(&ecr->completion);
rc = ecr->rc;
reinit_completion(&ecr->completion);
}
out:
skcipher_request_free(req);
return rc;
}
/**
* lower_offset_for_page
*
* Convert an eCryptfs page index into a lower byte offset
*/
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
struct page *page)
{
return ecryptfs_lower_header_size(crypt_stat) +
((loff_t)page->index << PAGE_SHIFT);
}
/**
* crypt_extent
* @crypt_stat: crypt_stat containing cryptographic context for the
* encryption operation
* @dst_page: The page to write the result into
* @src_page: The page to read from
* @extent_offset: Page extent offset for use in generating IV
* @op: ENCRYPT or DECRYPT to indicate the desired operation
*
* Encrypts or decrypts one extent of data.
*
* Return zero on success; non-zero otherwise
*/
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
struct page *dst_page,
struct page *src_page,
unsigned long extent_offset, int op)
{
pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
loff_t extent_base;
char extent_iv[ECRYPTFS_MAX_IV_BYTES];
struct scatterlist src_sg, dst_sg;
size_t extent_size = crypt_stat->extent_size;
int rc;
extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
(extent_base + extent_offset));
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
"extent [0x%.16llx]; rc = [%d]\n",
(unsigned long long)(extent_base + extent_offset), rc);
goto out;
}
sg_init_table(&src_sg, 1);
sg_init_table(&dst_sg, 1);
sg_set_page(&src_sg, src_page, extent_size,
extent_offset * extent_size);
sg_set_page(&dst_sg, dst_page, extent_size,
extent_offset * extent_size);
rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
extent_iv, op);
if (rc < 0) {
printk(KERN_ERR "%s: Error attempting to crypt page with "
"page_index = [%ld], extent_offset = [%ld]; "
"rc = [%d]\n", __func__, page_index, extent_offset, rc);
goto out;
}
rc = 0;
out:
return rc;
}
/**
* ecryptfs_encrypt_page
* @page: Page mapped from the eCryptfs inode for the file; contains
* decrypted content that needs to be encrypted (to a temporary
* page; not in place) and written out to the lower file
*
* Encrypt an eCryptfs page. This is done on a per-extent basis. Note
* that eCryptfs pages may straddle the lower pages -- for instance,
* if the file was created on a machine with an 8K page size
* (resulting in an 8K header), and then the file is copied onto a
* host with a 32K page size, then when reading page 0 of the eCryptfs
* file, 24K of page 0 of the lower file will be read and decrypted,
* and then 8K of page 1 of the lower file will be read and decrypted.
*
* Returns zero on success; negative on error
*/
int ecryptfs_encrypt_page(struct page *page)
{
struct inode *ecryptfs_inode;
struct ecryptfs_crypt_stat *crypt_stat;
char *enc_extent_virt;
struct page *enc_extent_page = NULL;
loff_t extent_offset;
loff_t lower_offset;
int rc = 0;
ecryptfs_inode = page->mapping->host;
crypt_stat =
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
enc_extent_page = alloc_page(GFP_USER);
if (!enc_extent_page) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Error allocating memory for "
"encrypted extent\n");
goto out;
}
for (extent_offset = 0;
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
extent_offset++) {
rc = crypt_extent(crypt_stat, enc_extent_page, page,
extent_offset, ENCRYPT);
if (rc) {
printk(KERN_ERR "%s: Error encrypting extent; "
"rc = [%d]\n", __func__, rc);
goto out;
}
}
lower_offset = lower_offset_for_page(crypt_stat, page);
enc_extent_virt = kmap(enc_extent_page);
rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
PAGE_SIZE);
kunmap(enc_extent_page);
if (rc < 0) {
ecryptfs_printk(KERN_ERR,
"Error attempting to write lower page; rc = [%d]\n",
rc);
goto out;
}
rc = 0;
out:
if (enc_extent_page) {
__free_page(enc_extent_page);
}
return rc;
}
/**
* ecryptfs_decrypt_page
* @page: Page mapped from the eCryptfs inode for the file; data read
* and decrypted from the lower file will be written into this
* page
*
* Decrypt an eCryptfs page. This is done on a per-extent basis. Note
* that eCryptfs pages may straddle the lower pages -- for instance,
* if the file was created on a machine with an 8K page size
* (resulting in an 8K header), and then the file is copied onto a
* host with a 32K page size, then when reading page 0 of the eCryptfs
* file, 24K of page 0 of the lower file will be read and decrypted,
* and then 8K of page 1 of the lower file will be read and decrypted.
*
* Returns zero on success; negative on error
*/
int ecryptfs_decrypt_page(struct page *page)
{
struct inode *ecryptfs_inode;
struct ecryptfs_crypt_stat *crypt_stat;
char *page_virt;
unsigned long extent_offset;
loff_t lower_offset;
int rc = 0;
ecryptfs_inode = page->mapping->host;
crypt_stat =
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
lower_offset = lower_offset_for_page(crypt_stat, page);
page_virt = kmap(page);
rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
ecryptfs_inode);
kunmap(page);
if (rc < 0) {
ecryptfs_printk(KERN_ERR,
"Error attempting to read lower page; rc = [%d]\n",
rc);
goto out;
}
for (extent_offset = 0;
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
extent_offset++) {
rc = crypt_extent(crypt_stat, page, page,
extent_offset, DECRYPT);
if (rc) {
printk(KERN_ERR "%s: Error encrypting extent; "
"rc = [%d]\n", __func__, rc);
goto out;
}
}
out:
return rc;
}
#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
/**
* ecryptfs_init_crypt_ctx
* @crypt_stat: Uninitialized crypt stats structure
*
* Initialize the crypto context.
*
* TODO: Performance: Keep a cache of initialized cipher contexts;
* only init if needed
*/
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
char *full_alg_name;
int rc = -EINVAL;
ecryptfs_printk(KERN_DEBUG,
"Initializing cipher [%s]; strlen = [%d]; "
"key_size_bits = [%zd]\n",
crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
crypt_stat->key_size << 3);
mutex_lock(&crypt_stat->cs_tfm_mutex);
if (crypt_stat->tfm) {
rc = 0;
goto out_unlock;
}
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
crypt_stat->cipher, "cbc");
if (rc)
goto out_unlock;
crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
if (IS_ERR(crypt_stat->tfm)) {
rc = PTR_ERR(crypt_stat->tfm);
crypt_stat->tfm = NULL;
ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
"Error initializing cipher [%s]\n",
full_alg_name);
goto out_free;
}
crypto_skcipher_set_flags(crypt_stat->tfm,
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
rc = 0;
out_free:
kfree(full_alg_name);
out_unlock:
mutex_unlock(&crypt_stat->cs_tfm_mutex);
return rc;
}
static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
int extent_size_tmp;
crypt_stat->extent_mask = 0xFFFFFFFF;
crypt_stat->extent_shift = 0;
if (crypt_stat->extent_size == 0)
return;
extent_size_tmp = crypt_stat->extent_size;
while ((extent_size_tmp & 0x01) == 0) {
extent_size_tmp >>= 1;
crypt_stat->extent_mask <<= 1;
crypt_stat->extent_shift++;
}
}
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
/* Default values; may be overwritten as we are parsing the
* packets. */
crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
set_extent_mask_and_shift(crypt_stat);
crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
else {
if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
crypt_stat->metadata_size =
ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
else
crypt_stat->metadata_size = PAGE_SIZE;
}
}
/**
* ecryptfs_compute_root_iv
* @crypt_stats
*
* On error, sets the root IV to all 0's.
*/
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
int rc = 0;
char dst[MD5_DIGEST_SIZE];
BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
BUG_ON(crypt_stat->iv_bytes <= 0);
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
rc = -EINVAL;
ecryptfs_printk(KERN_WARNING, "Session key not valid; "
"cannot generate root IV\n");
goto out;
}
rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
crypt_stat->key_size);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
"MD5 while generating root IV\n");
goto out;
}
memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
if (rc) {
memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
}
return rc;
}
static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
get_random_bytes(crypt_stat->key, crypt_stat->key_size);
crypt_stat->flags |= ECRYPTFS_KEY_VALID;
ecryptfs_compute_root_iv(crypt_stat);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
ecryptfs_dump_hex(crypt_stat->key,
crypt_stat->key_size);
}
}
/**
* ecryptfs_copy_mount_wide_flags_to_inode_flags
* @crypt_stat: The inode's cryptographic context
* @mount_crypt_stat: The mount point's cryptographic context
*
* This function propagates the mount-wide flags to individual inode
* flags.
*/
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
struct ecryptfs_crypt_stat *crypt_stat,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
if (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
else if (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
}
}
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
struct ecryptfs_crypt_stat *crypt_stat,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
struct ecryptfs_global_auth_tok *global_auth_tok;
int rc = 0;
mutex_lock(&crypt_stat->keysig_list_mutex);
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
list_for_each_entry(global_auth_tok,
&mount_crypt_stat->global_auth_tok_list,
mount_crypt_stat_list) {
if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
continue;
rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
if (rc) {
printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
goto out;
}
}
out:
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
mutex_unlock(&crypt_stat->keysig_list_mutex);
return rc;
}
/**
* ecryptfs_set_default_crypt_stat_vals
* @crypt_stat: The inode's cryptographic context
* @mount_crypt_stat: The mount point's cryptographic context
*
* Default values in the event that policy does not override them.
*/
static void ecryptfs_set_default_crypt_stat_vals(
struct ecryptfs_crypt_stat *crypt_stat,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
ecryptfs_set_default_sizes(crypt_stat);
strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
crypt_stat->mount_crypt_stat = mount_crypt_stat;
}
/**
* ecryptfs_new_file_context
* @ecryptfs_inode: The eCryptfs inode
*
* If the crypto context for the file has not yet been established,
* this is where we do that. Establishing a new crypto context
* involves the following decisions:
* - What cipher to use?
* - What set of authentication tokens to use?
* Here we just worry about getting enough information into the
* authentication tokens so that we know that they are available.
* We associate the available authentication tokens with the new file
* via the set of signatures in the crypt_stat struct. Later, when
* the headers are actually written out, we may again defer to
* userspace to perform the encryption of the session key; for the
* foreseeable future, this will be the case with public key packets.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
{
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_inode->i_sb)->mount_crypt_stat;
int cipher_name_len;
int rc = 0;
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
mount_crypt_stat);
if (rc) {
printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
"to the inode key sigs; rc = [%d]\n", rc);
goto out;
}
cipher_name_len =
strlen(mount_crypt_stat->global_default_cipher_name);
memcpy(crypt_stat->cipher,
mount_crypt_stat->global_default_cipher_name,
cipher_name_len);
crypt_stat->cipher[cipher_name_len] = '\0';
crypt_stat->key_size =
mount_crypt_stat->global_default_cipher_key_size;
ecryptfs_generate_new_key(crypt_stat);
rc = ecryptfs_init_crypt_ctx(crypt_stat);
if (rc)
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
"context for cipher [%s]: rc = [%d]\n",
crypt_stat->cipher, rc);
out:
return rc;
}
/**
* ecryptfs_validate_marker - check for the ecryptfs marker
* @data: The data block in which to check
*
* Returns zero if marker found; -EINVAL if not found
*/
static int ecryptfs_validate_marker(char *data)
{
u32 m_1, m_2;
m_1 = get_unaligned_be32(data);
m_2 = get_unaligned_be32(data + 4);
if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
return 0;
ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
MAGIC_ECRYPTFS_MARKER);
ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
return -EINVAL;
}
struct ecryptfs_flag_map_elem {
u32 file_flag;
u32 local_flag;
};
/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
{0x00000001, ECRYPTFS_ENABLE_HMAC},
{0x00000002, ECRYPTFS_ENCRYPTED},
{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
};
/**
* ecryptfs_process_flags
* @crypt_stat: The cryptographic context
* @page_virt: Source data to be parsed
* @bytes_read: Updated with the number of bytes read
*
* Returns zero on success; non-zero if the flag set is invalid
*/
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
char *page_virt, int *bytes_read)
{
int rc = 0;
int i;
u32 flags;
flags = get_unaligned_be32(page_virt);
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
if (flags & ecryptfs_flag_map[i].file_flag) {
crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
} else
crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
/* Version is in top 8 bits of the 32-bit flag vector */
crypt_stat->file_version = ((flags >> 24) & 0xFF);
(*bytes_read) = 4;
return rc;
}
/**
* write_ecryptfs_marker
* @page_virt: The pointer to in a page to begin writing the marker
* @written: Number of bytes written
*
* Marker = 0x3c81b7f5
*/
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
u32 m_1, m_2;
get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
put_unaligned_be32(m_1, page_virt);
page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
put_unaligned_be32(m_2, page_virt);
(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}
void ecryptfs_write_crypt_stat_flags(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 flags = 0;
int i;
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
flags |= ecryptfs_flag_map[i].file_flag;
/* Version is in top 8 bits of the 32-bit flag vector */
flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
put_unaligned_be32(flags, page_virt);
(*written) = 4;
}
struct ecryptfs_cipher_code_str_map_elem {
char cipher_str[16];
u8 cipher_code;
};
/* Add support for additional ciphers by adding elements here. The
* cipher_code is whatever OpenPGP applications use to identify the
* ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
{"aes",RFC2440_CIPHER_AES_128 },
{"blowfish", RFC2440_CIPHER_BLOWFISH},
{"des3_ede", RFC2440_CIPHER_DES3_EDE},
{"cast5", RFC2440_CIPHER_CAST_5},
{"twofish", RFC2440_CIPHER_TWOFISH},
{"cast6", RFC2440_CIPHER_CAST_6},
{"aes", RFC2440_CIPHER_AES_192},
{"aes", RFC2440_CIPHER_AES_256}
};
/**
* ecryptfs_code_for_cipher_string
* @cipher_name: The string alias for the cipher
* @key_bytes: Length of key in bytes; used for AES code selection
*
* Returns zero on no match, or the cipher code on match
*/
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
{
int i;
u8 code = 0;
struct ecryptfs_cipher_code_str_map_elem *map =
ecryptfs_cipher_code_str_map;
if (strcmp(cipher_name, "aes") == 0) {
switch (key_bytes) {
case 16:
code = RFC2440_CIPHER_AES_128;
break;
case 24:
code = RFC2440_CIPHER_AES_192;
break;
case 32:
code = RFC2440_CIPHER_AES_256;
}
} else {
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (strcmp(cipher_name, map[i].cipher_str) == 0) {
code = map[i].cipher_code;
break;
}
}
return code;
}
/**
* ecryptfs_cipher_code_to_string
* @str: Destination to write out the cipher name
* @cipher_code: The code to convert to cipher name string
*
* Returns zero on success
*/
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
{
int rc = 0;
int i;
str[0] = '\0';
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
if (str[0] == '\0') {
ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
"[%d]\n", cipher_code);
rc = -EINVAL;
}
return rc;
}
int ecryptfs_read_and_validate_header_region(struct inode *inode)
{
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
int rc;
rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
inode);
if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
return rc >= 0 ? -EINVAL : rc;
rc = ecryptfs_validate_marker(marker);
if (!rc)
ecryptfs_i_size_init(file_size, inode);
return rc;
}
void
ecryptfs_write_header_metadata(char *virt,
struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 header_extent_size;
u16 num_header_extents_at_front;
header_extent_size = (u32)crypt_stat->extent_size;
num_header_extents_at_front =
(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
put_unaligned_be32(header_extent_size, virt);
virt += 4;
put_unaligned_be16(num_header_extents_at_front, virt);
(*written) = 6;
}
struct kmem_cache *ecryptfs_header_cache;
/**
* ecryptfs_write_headers_virt
* @page_virt: The virtual address to write the headers to
* @max: The size of memory allocated at page_virt
* @size: Set to the number of bytes written by this function
* @crypt_stat: The cryptographic context
* @ecryptfs_dentry: The eCryptfs dentry
*
* Format version: 1
*
* Header Extent:
* Octets 0-7: Unencrypted file size (big-endian)
* Octets 8-15: eCryptfs special marker
* Octets 16-19: Flags
* Octet 16: File format version number (between 0 and 255)
* Octets 17-18: Reserved
* Octet 19: Bit 1 (lsb): Reserved
* Bit 2: Encrypted?
* Bits 3-8: Reserved
* Octets 20-23: Header extent size (big-endian)
* Octets 24-25: Number of header extents at front of file
* (big-endian)
* Octet 26: Begin RFC 2440 authentication token packet set
* Data Extent 0:
* Lower data (CBC encrypted)
* Data Extent 1:
* Lower data (CBC encrypted)
* ...
*
* Returns zero on success
*/
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
size_t *size,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry)
{
int rc;
size_t written;
size_t offset;
offset = ECRYPTFS_FILE_SIZE_BYTES;
write_ecryptfs_marker((page_virt + offset), &written);
offset += written;
ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
&written);
offset += written;
ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
&written);
offset += written;
rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
ecryptfs_dentry, &written,
max - offset);
if (rc)
ecryptfs_printk(KERN_WARNING, "Error generating key packet "
"set; rc = [%d]\n", rc);
if (size) {
offset += written;
*size = offset;
}
return rc;
}
static int
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
char *virt, size_t virt_len)
{
int rc;
rc = ecryptfs_write_lower(ecryptfs_inode, virt,
0, virt_len);
if (rc < 0)
printk(KERN_ERR "%s: Error attempting to write header "
"information to lower file; rc = [%d]\n", __func__, rc);
else
rc = 0;
return rc;
}
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
struct inode *ecryptfs_inode,
char *page_virt, size_t size)
{
int rc;
rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
ECRYPTFS_XATTR_NAME, page_virt, size, 0);
return rc;
}
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
unsigned int order)
{
struct page *page;
page = alloc_pages(gfp_mask | __GFP_ZERO, order);
if (page)
return (unsigned long) page_address(page);
return 0;
}
/**
* ecryptfs_write_metadata
* @ecryptfs_dentry: The eCryptfs dentry, which should be negative
* @ecryptfs_inode: The newly created eCryptfs inode
*
* Write the file headers out. This will likely involve a userspace
* callout, in which the session key is encrypted with one or more
* public keys and/or the passphrase necessary to do the encryption is
* retrieved via a prompt. Exactly what happens at this point should
* be policy-dependent.
*
* Returns zero on success; non-zero on error
*/
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
struct inode *ecryptfs_inode)
{
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
unsigned int order;
char *virt;
size_t virt_len;
size_t size = 0;
int rc = 0;
if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
printk(KERN_ERR "Key is invalid; bailing out\n");
rc = -EINVAL;
goto out;
}
} else {
printk(KERN_WARNING "%s: Encrypted flag not set\n",
__func__);
rc = -EINVAL;
goto out;
}
virt_len = crypt_stat->metadata_size;
order = get_order(virt_len);
/* Released in this function */
virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
if (!virt) {
printk(KERN_ERR "%s: Out of memory\n", __func__);
rc = -ENOMEM;
goto out;
}
/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
ecryptfs_dentry);
if (unlikely(rc)) {
printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
__func__, rc);
goto out_free;
}
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
virt, size);
else
rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
virt_len);
if (rc) {
printk(KERN_ERR "%s: Error writing metadata out to lower file; "
"rc = [%d]\n", __func__, rc);
goto out_free;
}
out_free:
free_pages((unsigned long)virt, order);
out:
return rc;
}
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
char *virt, int *bytes_read,
int validate_header_size)
{
int rc = 0;
u32 header_extent_size;
u16 num_header_extents_at_front;
header_extent_size = get_unaligned_be32(virt);
virt += sizeof(__be32);
num_header_extents_at_front = get_unaligned_be16(virt);
crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
* (size_t)header_extent_size));
(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
&& (crypt_stat->metadata_size
< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
rc = -EINVAL;
printk(KERN_WARNING "Invalid header size: [%zd]\n",
crypt_stat->metadata_size);
}
return rc;
}
/**
* set_default_header_data
* @crypt_stat: The cryptographic context
*
* For version 0 file format; this function is only for backwards
* compatibility for files created with the prior versions of
* eCryptfs.
*/
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
}
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
struct ecryptfs_crypt_stat *crypt_stat;
u64 file_size;
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
mount_crypt_stat =
&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
file_size = i_size_read(ecryptfs_inode_to_lower(inode));
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
file_size += crypt_stat->metadata_size;
} else
file_size = get_unaligned_be64(page_virt);
i_size_write(inode, (loff_t)file_size);
crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}
/**
* ecryptfs_read_headers_virt
* @page_virt: The virtual address into which to read the headers
* @crypt_stat: The cryptographic context
* @ecryptfs_dentry: The eCryptfs dentry
* @validate_header_size: Whether to validate the header size while reading
*
* Read/parse the header data. The header format is detailed in the
* comment block for the ecryptfs_write_headers_virt() function.
*
* Returns zero on success
*/
static int ecryptfs_read_headers_virt(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry,
int validate_header_size)
{
int rc = 0;
int offset;
int bytes_read;
ecryptfs_set_default_sizes(crypt_stat);
crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
offset = ECRYPTFS_FILE_SIZE_BYTES;
rc = ecryptfs_validate_marker(page_virt + offset);
if (rc)
goto out;
if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
&bytes_read);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
goto out;
}
if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
"file version [%d] is supported by this "
"version of eCryptfs\n",
crypt_stat->file_version,
ECRYPTFS_SUPPORTED_FILE_VERSION);
rc = -EINVAL;
goto out;
}
offset += bytes_read;
if (crypt_stat->file_version >= 1) {
rc = parse_header_metadata(crypt_stat, (page_virt + offset),
&bytes_read, validate_header_size);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error reading header "
"metadata; rc = [%d]\n", rc);
}
offset += bytes_read;
} else
set_default_header_data(crypt_stat);
rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
ecryptfs_dentry);
out:
return rc;
}
/**
* ecryptfs_read_xattr_region
* @page_virt: The vitual address into which to read the xattr data
* @ecryptfs_inode: The eCryptfs inode
*
* Attempts to read the crypto metadata from the extended attribute
* region of the lower file.
*
* Returns zero on success; non-zero on error
*/
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
{
struct dentry *lower_dentry =
ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
ssize_t size;
int rc = 0;
size = ecryptfs_getxattr_lower(lower_dentry,
ecryptfs_inode_to_lower(ecryptfs_inode),
ECRYPTFS_XATTR_NAME,
page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
if (size < 0) {
if (unlikely(ecryptfs_verbosity > 0))
printk(KERN_INFO "Error attempting to read the [%s] "
"xattr from the lower file; return value = "
"[%zd]\n", ECRYPTFS_XATTR_NAME, size);
rc = -EINVAL;
goto out;
}
out:
return rc;
}
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
struct inode *inode)
{
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
int rc;
rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
ecryptfs_inode_to_lower(inode),
ECRYPTFS_XATTR_NAME, file_size,
ECRYPTFS_SIZE_AND_MARKER_BYTES);
if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
return rc >= 0 ? -EINVAL : rc;
rc = ecryptfs_validate_marker(marker);
if (!rc)
ecryptfs_i_size_init(file_size, inode);
return rc;
}
/**
* ecryptfs_read_metadata
*
* Common entry point for reading file metadata. From here, we could
* retrieve the header information from the header region of the file,
* the xattr region of the file, or some other repository that is
* stored separately from the file itself. The current implementation
* supports retrieving the metadata information from the file contents
* and from the xattr region.
*
* Returns zero if valid headers found and parsed; non-zero otherwise
*/
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
{
int rc;
char *page_virt;
struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
mount_crypt_stat);
/* Read the first page from the underlying file */
page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
if (!page_virt) {
rc = -ENOMEM;
goto out;
}
rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
ecryptfs_inode);
if (rc >= 0)
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry,
ECRYPTFS_VALIDATE_HEADER_SIZE);
if (rc) {
/* metadata is not in the file header, so try xattrs */
memset(page_virt, 0, PAGE_SIZE);
rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
if (rc) {
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
"file header region or xattr region, inode %lu\n",
ecryptfs_inode->i_ino);
rc = -EINVAL;
goto out;
}
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry,
ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
if (rc) {
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
"file xattr region either, inode %lu\n",
ecryptfs_inode->i_ino);
rc = -EINVAL;
}
if (crypt_stat->mount_crypt_stat->flags
& ECRYPTFS_XATTR_METADATA_ENABLED) {
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
} else {
printk(KERN_WARNING "Attempt to access file with "
"crypto metadata only in the extended attribute "
"region, but eCryptfs was mounted without "
"xattr support enabled. eCryptfs will not treat "
"this like an encrypted file, inode %lu\n",
ecryptfs_inode->i_ino);
rc = -EINVAL;
}
}
out:
if (page_virt) {
memset(page_virt, 0, PAGE_SIZE);
kmem_cache_free(ecryptfs_header_cache, page_virt);
}
return rc;
}
/**
* ecryptfs_encrypt_filename - encrypt filename
*
* CBC-encrypts the filename. We do not want to encrypt the same
* filename with the same key and IV, which may happen with hard
* links, so we prepend random bits to each filename.
*
* Returns zero on success; non-zero otherwise
*/
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
int rc = 0;
filename->encrypted_filename = NULL;
filename->encrypted_filename_size = 0;
if (mount_crypt_stat && (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
size_t packet_size;
size_t remaining_bytes;
rc = ecryptfs_write_tag_70_packet(
NULL, NULL,
&filename->encrypted_filename_size,
mount_crypt_stat, NULL,
filename->filename_size);
if (rc) {
printk(KERN_ERR "%s: Error attempting to get packet "
"size for tag 72; rc = [%d]\n", __func__,
rc);
filename->encrypted_filename_size = 0;
goto out;
}
filename->encrypted_filename =
kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
if (!filename->encrypted_filename) {
rc = -ENOMEM;
goto out;
}
remaining_bytes = filename->encrypted_filename_size;
rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
&remaining_bytes,
&packet_size,
mount_crypt_stat,
filename->filename,
filename->filename_size);
if (rc) {
printk(KERN_ERR "%s: Error attempting to generate "
"tag 70 packet; rc = [%d]\n", __func__,
rc);
kfree(filename->encrypted_filename);
filename->encrypted_filename = NULL;
filename->encrypted_filename_size = 0;
goto out;
}
filename->encrypted_filename_size = packet_size;
} else {
printk(KERN_ERR "%s: No support for requested filename "
"encryption method in this release\n", __func__);
rc = -EOPNOTSUPP;
goto out;
}
out:
return rc;
}
static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
const char *name, size_t name_size)
{
int rc = 0;
(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
if (!(*copied_name)) {
rc = -ENOMEM;
goto out;
}
memcpy((void *)(*copied_name), (void *)name, name_size);
(*copied_name)[(name_size)] = '\0'; /* Only for convenience
* in printing out the
* string in debug
* messages */
(*copied_name_size) = name_size;
out:
return rc;
}
/**
* ecryptfs_process_key_cipher - Perform key cipher initialization.
* @key_tfm: Crypto context for key material, set by this function
* @cipher_name: Name of the cipher
* @key_size: Size of the key in bytes
*
* Returns zero on success. Any crypto_tfm structs allocated here
* should be released by other functions, such as on a superblock put
* event, regardless of whether this function succeeds for fails.
*/
static int
ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
char *cipher_name, size_t *key_size)
{
char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
char *full_alg_name = NULL;
int rc;
*key_tfm = NULL;
if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
rc = -EINVAL;
printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
"allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
goto out;
}
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
"ecb");
if (rc)
goto out;
*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(*key_tfm)) {
rc = PTR_ERR(*key_tfm);
printk(KERN_ERR "Unable to allocate crypto cipher with name "
"[%s]; rc = [%d]\n", full_alg_name, rc);
goto out;
}
crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
if (*key_size == 0)
*key_size = crypto_skcipher_default_keysize(*key_tfm);
get_random_bytes(dummy_key, *key_size);
rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
if (rc) {
printk(KERN_ERR "Error attempting to set key of size [%zd] for "
"cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
rc);
rc = -EINVAL;
goto out;
}
out:
kfree(full_alg_name);
return rc;
}
struct kmem_cache *ecryptfs_key_tfm_cache;
static struct list_head key_tfm_list;
struct mutex key_tfm_list_mutex;
int __init ecryptfs_init_crypto(void)
{
mutex_init(&key_tfm_list_mutex);
INIT_LIST_HEAD(&key_tfm_list);
return 0;
}
/**
* ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
*
* Called only at module unload time
*/
int ecryptfs_destroy_crypto(void)
{
struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
mutex_lock(&key_tfm_list_mutex);
list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
key_tfm_list) {
list_del(&key_tfm->key_tfm_list);
crypto_free_skcipher(key_tfm->key_tfm);
kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
}
mutex_unlock(&key_tfm_list_mutex);
return 0;
}
int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
size_t key_size)
{
struct ecryptfs_key_tfm *tmp_tfm;
int rc = 0;
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
if (key_tfm)
(*key_tfm) = tmp_tfm;
if (!tmp_tfm) {
rc = -ENOMEM;
goto out;
}
mutex_init(&tmp_tfm->key_tfm_mutex);
strncpy(tmp_tfm->cipher_name, cipher_name,
ECRYPTFS_MAX_CIPHER_NAME_SIZE);
tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
tmp_tfm->key_size = key_size;
rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
tmp_tfm->cipher_name,
&tmp_tfm->key_size);
if (rc) {
printk(KERN_ERR "Error attempting to initialize key TFM "
"cipher with name = [%s]; rc = [%d]\n",
tmp_tfm->cipher_name, rc);
kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
if (key_tfm)
(*key_tfm) = NULL;
goto out;
}
list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
return rc;
}
/**
* ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
* @cipher_name: the name of the cipher to search for
* @key_tfm: set to corresponding tfm if found
*
* Searches for cached key_tfm matching @cipher_name
* Must be called with &key_tfm_list_mutex held
* Returns 1 if found, with @key_tfm set
* Returns 0 if not found, with @key_tfm set to NULL
*/
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
struct ecryptfs_key_tfm *tmp_key_tfm;
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
if (key_tfm)
(*key_tfm) = tmp_key_tfm;
return 1;
}
}
if (key_tfm)
(*key_tfm) = NULL;
return 0;
}
/**
* ecryptfs_get_tfm_and_mutex_for_cipher_name
*
* @tfm: set to cached tfm found, or new tfm created
* @tfm_mutex: set to mutex for cached tfm found, or new tfm created
* @cipher_name: the name of the cipher to search for and/or add
*
* Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
* Searches for cached item first, and creates new if not found.
* Returns 0 on success, non-zero if adding new cipher failed
*/
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
struct mutex **tfm_mutex,
char *cipher_name)
{
struct ecryptfs_key_tfm *key_tfm;
int rc = 0;
(*tfm) = NULL;
(*tfm_mutex) = NULL;
mutex_lock(&key_tfm_list_mutex);
if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
if (rc) {
printk(KERN_ERR "Error adding new key_tfm to list; "
"rc = [%d]\n", rc);
goto out;
}
}
(*tfm) = key_tfm->key_tfm;
(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
mutex_unlock(&key_tfm_list_mutex);
return rc;
}
/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
"EFGHIJKLMNOPQRST"
"UVWXYZabcdefghij"
"klmnopqrstuvwxyz");
/* We could either offset on every reverse map or just pad some 0x00's
* at the front here */
static const unsigned char filename_rev_map[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
};
/**
* ecryptfs_encode_for_filename
* @dst: Destination location for encoded filename
* @dst_size: Size of the encoded filename in bytes
* @src: Source location for the filename to encode
* @src_size: Size of the source in bytes
*/
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
unsigned char *src, size_t src_size)
{
size_t num_blocks;
size_t block_num = 0;
size_t dst_offset = 0;
unsigned char last_block[3];
if (src_size == 0) {
(*dst_size) = 0;
goto out;
}
num_blocks = (src_size / 3);
if ((src_size % 3) == 0) {
memcpy(last_block, (&src[src_size - 3]), 3);
} else {
num_blocks++;
last_block[2] = 0x00;
switch (src_size % 3) {
case 1:
last_block[0] = src[src_size - 1];
last_block[1] = 0x00;
break;
case 2:
last_block[0] = src[src_size - 2];
last_block[1] = src[src_size - 1];
}
}
(*dst_size) = (num_blocks * 4);
if (!dst)
goto out;
while (block_num < num_blocks) {
unsigned char *src_block;
unsigned char dst_block[4];
if (block_num == (num_blocks - 1))
src_block = last_block;
else
src_block = &src[block_num * 3];
dst_block[0] = ((src_block[0] >> 2) & 0x3F);
dst_block[1] = (((src_block[0] << 4) & 0x30)
| ((src_block[1] >> 4) & 0x0F));
dst_block[2] = (((src_block[1] << 2) & 0x3C)
| ((src_block[2] >> 6) & 0x03));
dst_block[3] = (src_block[2] & 0x3F);
dst[dst_offset++] = portable_filename_chars[dst_block[0]];
dst[dst_offset++] = portable_filename_chars[dst_block[1]];
dst[dst_offset++] = portable_filename_chars[dst_block[2]];
dst[dst_offset++] = portable_filename_chars[dst_block[3]];
block_num++;
}
out:
return;
}
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
/* Not exact; conservatively long. Every block of 4
* encoded characters decodes into a block of 3
* decoded characters. This segment of code provides
* the caller with the maximum amount of allocated
* space that @dst will need to point to in a
* subsequent call. */
return ((encoded_size + 1) * 3) / 4;
}
/**
* ecryptfs_decode_from_filename
* @dst: If NULL, this function only sets @dst_size and returns. If
* non-NULL, this function decodes the encoded octets in @src
* into the memory that @dst points to.
* @dst_size: Set to the size of the decoded string.
* @src: The encoded set of octets to decode.
* @src_size: The size of the encoded set of octets to decode.
*/
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
const unsigned char *src, size_t src_size)
{
u8 current_bit_offset = 0;
size_t src_byte_offset = 0;
size_t dst_byte_offset = 0;
if (!dst) {
(*dst_size) = ecryptfs_max_decoded_size(src_size);
goto out;
}
while (src_byte_offset < src_size) {
unsigned char src_byte =
filename_rev_map[(int)src[src_byte_offset]];
switch (current_bit_offset) {
case 0:
dst[dst_byte_offset] = (src_byte << 2);
current_bit_offset = 6;
break;
case 6:
dst[dst_byte_offset++] |= (src_byte >> 4);
dst[dst_byte_offset] = ((src_byte & 0xF)
<< 4);
current_bit_offset = 4;
break;
case 4:
dst[dst_byte_offset++] |= (src_byte >> 2);
dst[dst_byte_offset] = (src_byte << 6);
current_bit_offset = 2;
break;
case 2:
dst[dst_byte_offset++] |= (src_byte);
current_bit_offset = 0;
break;
}
src_byte_offset++;
}
(*dst_size) = dst_byte_offset;
out:
return;
}
/**
* ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
* @crypt_stat: The crypt_stat struct associated with the file anem to encode
* @name: The plaintext name
* @length: The length of the plaintext
* @encoded_name: The encypted name
*
* Encrypts and encodes a filename into something that constitutes a
* valid filename for a filesystem, with printable characters.
*
* We assume that we have a properly initialized crypto context,
* pointed to by crypt_stat->tfm.
*
* Returns zero on success; non-zero on otherwise
*/
int ecryptfs_encrypt_and_encode_filename(
char **encoded_name,
size_t *encoded_name_size,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
const char *name, size_t name_size)
{
size_t encoded_name_no_prefix_size;
int rc = 0;
(*encoded_name) = NULL;
(*encoded_name_size) = 0;
if (mount_crypt_stat && (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
struct ecryptfs_filename *filename;
filename = kzalloc(sizeof(*filename), GFP_KERNEL);
if (!filename) {
rc = -ENOMEM;
goto out;
}
filename->filename = (char *)name;
filename->filename_size = name_size;
rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
if (rc) {
printk(KERN_ERR "%s: Error attempting to encrypt "
"filename; rc = [%d]\n", __func__, rc);
kfree(filename);
goto out;
}
ecryptfs_encode_for_filename(
NULL, &encoded_name_no_prefix_size,
filename->encrypted_filename,
filename->encrypted_filename_size);
if (mount_crypt_stat
&& (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
(*encoded_name_size) =
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
+ encoded_name_no_prefix_size);
else
(*encoded_name_size) =
(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
+ encoded_name_no_prefix_size);
(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
if (!(*encoded_name)) {
rc = -ENOMEM;
kfree(filename->encrypted_filename);
kfree(filename);
goto out;
}
if (mount_crypt_stat
&& (mount_crypt_stat->flags
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
memcpy((*encoded_name),
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
ecryptfs_encode_for_filename(
((*encoded_name)
+ ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
&encoded_name_no_prefix_size,
filename->encrypted_filename,
filename->encrypted_filename_size);
(*encoded_name_size) =
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
+ encoded_name_no_prefix_size);
(*encoded_name)[(*encoded_name_size)] = '\0';
} else {
rc = -EOPNOTSUPP;
}
if (rc) {
printk(KERN_ERR "%s: Error attempting to encode "
"encrypted filename; rc = [%d]\n", __func__,
rc);
kfree((*encoded_name));
(*encoded_name) = NULL;
(*encoded_name_size) = 0;
}
kfree(filename->encrypted_filename);
kfree(filename);
} else {
rc = ecryptfs_copy_filename(encoded_name,
encoded_name_size,
name, name_size);
}
out:
return rc;
}
static bool is_dot_dotdot(const char *name, size_t name_size)
{
if (name_size == 1 && name[0] == '.')
return true;
else if (name_size == 2 && name[0] == '.' && name[1] == '.')
return true;
return false;
}
/**
* ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
* @plaintext_name: The plaintext name
* @plaintext_name_size: The plaintext name size
* @ecryptfs_dir_dentry: eCryptfs directory dentry
* @name: The filename in cipher text
* @name_size: The cipher text name size
*
* Decrypts and decodes the filename.
*
* Returns zero on error; non-zero otherwise
*/
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
size_t *plaintext_name_size,
struct super_block *sb,
const char *name, size_t name_size)
{
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
char *decoded_name;
size_t decoded_name_size;
size_t packet_size;
int rc = 0;
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
!(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
if (is_dot_dotdot(name, name_size)) {
rc = ecryptfs_copy_filename(plaintext_name,
plaintext_name_size,
name, name_size);
goto out;
}
if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
rc = -EINVAL;
goto out;
}
name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
ecryptfs_decode_from_filename(NULL, &decoded_name_size,
name, name_size);
decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
if (!decoded_name) {
rc = -ENOMEM;
goto out;
}
ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
name, name_size);
rc = ecryptfs_parse_tag_70_packet(plaintext_name,
plaintext_name_size,
&packet_size,
mount_crypt_stat,
decoded_name,
decoded_name_size);
if (rc) {
ecryptfs_printk(KERN_DEBUG,
"%s: Could not parse tag 70 packet from filename\n",
__func__);
goto out_free;
}
} else {
rc = ecryptfs_copy_filename(plaintext_name,
plaintext_name_size,
name, name_size);
goto out;
}
out_free:
kfree(decoded_name);
out:
return rc;
}
#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
struct crypto_skcipher *tfm;
struct mutex *tfm_mutex;
size_t cipher_blocksize;
int rc;
if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
(*namelen) = lower_namelen;
return 0;
}
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
mount_crypt_stat->global_default_fn_cipher_name);
if (unlikely(rc)) {
(*namelen) = 0;
return rc;
}
mutex_lock(tfm_mutex);
cipher_blocksize = crypto_skcipher_blocksize(tfm);
mutex_unlock(tfm_mutex);
/* Return an exact amount for the common cases */
if (lower_namelen == NAME_MAX
&& (cipher_blocksize == 8 || cipher_blocksize == 16)) {
(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
return 0;
}
/* Return a safe estimate for the uncommon cases */
(*namelen) = lower_namelen;
(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
/* Since this is the max decoded size, subtract 1 "decoded block" len */
(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
/* Worst case is that the filename is padded nearly a full block size */
(*namelen) -= cipher_blocksize - 1;
if ((*namelen) < 0)
(*namelen) = 0;
return 0;
}
|