summaryrefslogtreecommitdiff
path: root/drivers/md/bcache/btree.h
diff options
context:
space:
mode:
authorKent Overstreet <koverstreet@google.com>2013-04-25 13:58:35 -0700
committerKent Overstreet <koverstreet@google.com>2013-06-26 17:09:14 -0700
commit5794351146199b9ac67a5ab1beab82be8bfd7b5d (patch)
treeefefb88301131757fd32b700ce897943597578da /drivers/md/bcache/btree.h
parent119ba0f82839cd80eaef3e6991988f1403965d5b (diff)
bcache: Refactor btree io
The most significant change is that btree reads are now done synchronously, instead of asynchronously and doing the post read stuff from a workqueue. This was originally done because we can't block on IO under generic_make_request(). But - we already have a mechanism to punt cache lookups to workqueue if needed, so if we just use that we don't have to deal with the complexity of doing things asynchronously. The main benefit is this makes the locking situation saner; we can hold our write lock on the btree node until we're finished reading it, and we don't need that btree_node_read_done() flag anymore. Also, for writes, btree_write() was broken out into btree_node_write() and btree_leaf_dirty() - the old code with the boolean argument was dumb and confusing. The prio_blocked mechanism was improved a bit too, now the only counter is in struct btree_write, we don't mess with transfering a count from struct btree anymore. This required changing garbage collection to block prios at the start and unblock when it finishes, which is cleaner than what it was doing anyways (the old code had mostly the same effect, but was doing it in a convoluted way) And the btree iter btree_node_read_done() uses was converted to a real mempool. Signed-off-by: Kent Overstreet <koverstreet@google.com>
Diffstat (limited to 'drivers/md/bcache/btree.h')
-rw-r--r--drivers/md/bcache/btree.h19
1 files changed, 5 insertions, 14 deletions
diff --git a/drivers/md/bcache/btree.h b/drivers/md/bcache/btree.h
index af4a7092a28c..809bd77847a2 100644
--- a/drivers/md/bcache/btree.h
+++ b/drivers/md/bcache/btree.h
@@ -102,7 +102,6 @@
#include "debug.h"
struct btree_write {
- struct closure *owner;
atomic_t *journal;
/* If btree_split() frees a btree node, it writes a new pointer to that
@@ -142,16 +141,12 @@ struct btree {
*/
struct bset_tree sets[MAX_BSETS];
- /* Used to refcount bio splits, also protects b->bio */
+ /* For outstanding btree writes, used as a lock - protects write_idx */
struct closure_with_waitlist io;
- /* Gets transferred to w->prio_blocked - see the comment there */
- int prio_blocked;
-
struct list_head list;
struct delayed_work work;
- uint64_t io_start_time;
struct btree_write writes[2];
struct bio *bio;
};
@@ -164,13 +159,11 @@ static inline void set_btree_node_ ## flag(struct btree *b) \
{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \
enum btree_flags {
- BTREE_NODE_read_done,
BTREE_NODE_io_error,
BTREE_NODE_dirty,
BTREE_NODE_write_idx,
};
-BTREE_FLAG(read_done);
BTREE_FLAG(io_error);
BTREE_FLAG(dirty);
BTREE_FLAG(write_idx);
@@ -293,9 +286,7 @@ static inline void rw_unlock(bool w, struct btree *b)
#ifdef CONFIG_BCACHE_EDEBUG
unsigned i;
- if (w &&
- b->key.ptr[0] &&
- btree_node_read_done(b))
+ if (w && b->key.ptr[0])
for (i = 0; i <= b->nsets; i++)
bch_check_key_order(b, b->sets[i].data);
#endif
@@ -370,9 +361,9 @@ static inline bool should_split(struct btree *b)
> btree_blocks(b));
}
-void bch_btree_read_done(struct closure *);
-void bch_btree_read(struct btree *);
-void bch_btree_write(struct btree *b, bool now, struct btree_op *op);
+void bch_btree_node_read(struct btree *);
+void bch_btree_node_read_done(struct btree *);
+void bch_btree_node_write(struct btree *, struct closure *);
void bch_cannibalize_unlock(struct cache_set *, struct closure *);
void bch_btree_set_root(struct btree *);