summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/lib/aarch64/processor.c
blob: 698e34f392419f868036ecc63e2213e51054018e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
// SPDX-License-Identifier: GPL-2.0
/*
 * AArch64 code
 *
 * Copyright (C) 2018, Red Hat, Inc.
 */

#include <linux/compiler.h>
#include <assert.h>

#include "guest_modes.h"
#include "kvm_util.h"
#include "processor.h"
#include "ucall_common.h"

#include <linux/bitfield.h>
#include <linux/sizes.h>

#define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN	0xac0000

static vm_vaddr_t exception_handlers;

static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
{
	return (v + vm->page_size) & ~(vm->page_size - 1);
}

static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
	unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
	uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;

	return (gva >> shift) & mask;
}

static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
	unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;

	TEST_ASSERT(vm->pgtable_levels == 4,
		"Mode %d does not have 4 page table levels", vm->mode);

	return (gva >> shift) & mask;
}

static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
	unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;

	TEST_ASSERT(vm->pgtable_levels >= 3,
		"Mode %d does not have >= 3 page table levels", vm->mode);

	return (gva >> shift) & mask;
}

static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
	return (gva >> vm->page_shift) & mask;
}

static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
{
	return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
	    (vm->pa_bits > 48 || vm->va_bits > 48);
}

static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
{
	uint64_t pte;

	if (use_lpa2_pte_format(vm)) {
		pte = pa & GENMASK(49, vm->page_shift);
		pte |= FIELD_GET(GENMASK(51, 50), pa) << 8;
		attrs &= ~GENMASK(9, 8);
	} else {
		pte = pa & GENMASK(47, vm->page_shift);
		if (vm->page_shift == 16)
			pte |= FIELD_GET(GENMASK(51, 48), pa) << 12;
	}
	pte |= attrs;

	return pte;
}

static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
{
	uint64_t pa;

	if (use_lpa2_pte_format(vm)) {
		pa = pte & GENMASK(49, vm->page_shift);
		pa |= FIELD_GET(GENMASK(9, 8), pte) << 50;
	} else {
		pa = pte & GENMASK(47, vm->page_shift);
		if (vm->page_shift == 16)
			pa |= FIELD_GET(GENMASK(15, 12), pte) << 48;
	}

	return pa;
}

static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
{
	unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
	return 1 << (vm->va_bits - shift);
}

static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
{
	return 1 << (vm->page_shift - 3);
}

void virt_arch_pgd_alloc(struct kvm_vm *vm)
{
	size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;

	if (vm->pgd_created)
		return;

	vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
				     KVM_GUEST_PAGE_TABLE_MIN_PADDR,
				     vm->memslots[MEM_REGION_PT]);
	vm->pgd_created = true;
}

static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
			 uint64_t flags)
{
	uint8_t attr_idx = flags & 7;
	uint64_t *ptep;

	TEST_ASSERT((vaddr % vm->page_size) == 0,
		"Virtual address not on page boundary,\n"
		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
		(vaddr >> vm->page_shift)),
		"Invalid virtual address, vaddr: 0x%lx", vaddr);
	TEST_ASSERT((paddr % vm->page_size) == 0,
		"Physical address not on page boundary,\n"
		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
		"Physical address beyond beyond maximum supported,\n"
		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		paddr, vm->max_gfn, vm->page_size);

	ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
	if (!*ptep)
		*ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);

	switch (vm->pgtable_levels) {
	case 4:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
		if (!*ptep)
			*ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);
		/* fall through */
	case 3:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
		if (!*ptep)
			*ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);
		/* fall through */
	case 2:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
		break;
	default:
		TEST_FAIL("Page table levels must be 2, 3, or 4");
	}

	*ptep = addr_pte(vm, paddr, (attr_idx << 2) | (1 << 10) | 3);  /* AF */
}

void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
	uint64_t attr_idx = MT_NORMAL;

	_virt_pg_map(vm, vaddr, paddr, attr_idx);
}

uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
{
	uint64_t *ptep;

	if (!vm->pgd_created)
		goto unmapped_gva;

	ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
	if (!ptep)
		goto unmapped_gva;

	switch (vm->pgtable_levels) {
	case 4:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
		if (!ptep)
			goto unmapped_gva;
		/* fall through */
	case 3:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
		if (!ptep)
			goto unmapped_gva;
		/* fall through */
	case 2:
		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
		if (!ptep)
			goto unmapped_gva;
		break;
	default:
		TEST_FAIL("Page table levels must be 2, 3, or 4");
	}

	return ptep;

unmapped_gva:
	TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
	exit(EXIT_FAILURE);
}

vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
	uint64_t *ptep = virt_get_pte_hva(vm, gva);

	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
}

static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
{
#ifdef DEBUG
	static const char * const type[] = { "", "pud", "pmd", "pte" };
	uint64_t pte, *ptep;

	if (level == 4)
		return;

	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
		ptep = addr_gpa2hva(vm, pte);
		if (!*ptep)
			continue;
		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
	}
#endif
}

void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
	int level = 4 - (vm->pgtable_levels - 1);
	uint64_t pgd, *ptep;

	if (!vm->pgd_created)
		return;

	for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
		ptep = addr_gpa2hva(vm, pgd);
		if (!*ptep)
			continue;
		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
	}
}

void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
{
	struct kvm_vcpu_init default_init = { .target = -1, };
	struct kvm_vm *vm = vcpu->vm;
	uint64_t sctlr_el1, tcr_el1, ttbr0_el1;

	if (!init)
		init = &default_init;

	if (init->target == -1) {
		struct kvm_vcpu_init preferred;
		vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
		init->target = preferred.target;
	}

	vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);

	/*
	 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
	 * registers, which the variable argument list macros do.
	 */
	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20);

	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), &sctlr_el1);
	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), &tcr_el1);

	/* Configure base granule size */
	switch (vm->mode) {
	case VM_MODE_PXXV48_4K:
		TEST_FAIL("AArch64 does not support 4K sized pages "
			  "with ANY-bit physical address ranges");
	case VM_MODE_P52V48_64K:
	case VM_MODE_P48V48_64K:
	case VM_MODE_P40V48_64K:
	case VM_MODE_P36V48_64K:
		tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
		break;
	case VM_MODE_P52V48_16K:
	case VM_MODE_P48V48_16K:
	case VM_MODE_P40V48_16K:
	case VM_MODE_P36V48_16K:
	case VM_MODE_P36V47_16K:
		tcr_el1 |= 2ul << 14; /* TG0 = 16KB */
		break;
	case VM_MODE_P52V48_4K:
	case VM_MODE_P48V48_4K:
	case VM_MODE_P40V48_4K:
	case VM_MODE_P36V48_4K:
		tcr_el1 |= 0ul << 14; /* TG0 = 4KB */
		break;
	default:
		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
	}

	ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);

	/* Configure output size */
	switch (vm->mode) {
	case VM_MODE_P52V48_4K:
	case VM_MODE_P52V48_16K:
	case VM_MODE_P52V48_64K:
		tcr_el1 |= 6ul << 32; /* IPS = 52 bits */
		ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
		break;
	case VM_MODE_P48V48_4K:
	case VM_MODE_P48V48_16K:
	case VM_MODE_P48V48_64K:
		tcr_el1 |= 5ul << 32; /* IPS = 48 bits */
		break;
	case VM_MODE_P40V48_4K:
	case VM_MODE_P40V48_16K:
	case VM_MODE_P40V48_64K:
		tcr_el1 |= 2ul << 32; /* IPS = 40 bits */
		break;
	case VM_MODE_P36V48_4K:
	case VM_MODE_P36V48_16K:
	case VM_MODE_P36V48_64K:
	case VM_MODE_P36V47_16K:
		tcr_el1 |= 1ul << 32; /* IPS = 36 bits */
		break;
	default:
		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
	}

	sctlr_el1 |= (1 << 0) | (1 << 2) | (1 << 12) /* M | C | I */;
	/* TCR_EL1 |= IRGN0:WBWA | ORGN0:WBWA | SH0:Inner-Shareable */;
	tcr_el1 |= (1 << 8) | (1 << 10) | (3 << 12);
	tcr_el1 |= (64 - vm->va_bits) /* T0SZ */;
	if (use_lpa2_pte_format(vm))
		tcr_el1 |= (1ul << 59) /* DS */;

	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1);
	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1);
	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), ttbr0_el1);
	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
}

void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
{
	uint64_t pstate, pc;

	vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate), &pstate);
	vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);

	fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
		indent, "", pstate, pc);
}

void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
{
	vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
}

static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
					   struct kvm_vcpu_init *init)
{
	size_t stack_size;
	uint64_t stack_vaddr;
	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);

	stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
					     vm->page_size;
	stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
				       DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
				       MEM_REGION_DATA);

	aarch64_vcpu_setup(vcpu, init);

	vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size);
	return vcpu;
}

struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
				  struct kvm_vcpu_init *init, void *guest_code)
{
	struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);

	vcpu_arch_set_entry_point(vcpu, guest_code);

	return vcpu;
}

struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
{
	return __aarch64_vcpu_add(vm, vcpu_id, NULL);
}

void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
{
	va_list ap;
	int i;

	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
		    "  num: %u", num);

	va_start(ap, num);

	for (i = 0; i < num; i++) {
		vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
			     va_arg(ap, uint64_t));
	}

	va_end(ap);
}

void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
{
	ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
	while (1)
		;
}

void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
{
	struct ucall uc;

	if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
		return;

	if (uc.args[2]) /* valid_ec */ {
		assert(VECTOR_IS_SYNC(uc.args[0]));
		TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
			  uc.args[0], uc.args[1]);
	} else {
		assert(!VECTOR_IS_SYNC(uc.args[0]));
		TEST_FAIL("Unexpected exception (vector:0x%lx)",
			  uc.args[0]);
	}
}

struct handlers {
	handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
};

void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
{
	extern char vectors;

	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors);
}

void route_exception(struct ex_regs *regs, int vector)
{
	struct handlers *handlers = (struct handlers *)exception_handlers;
	bool valid_ec;
	int ec = 0;

	switch (vector) {
	case VECTOR_SYNC_CURRENT:
	case VECTOR_SYNC_LOWER_64:
		ec = ESR_ELx_EC(read_sysreg(esr_el1));
		valid_ec = true;
		break;
	case VECTOR_IRQ_CURRENT:
	case VECTOR_IRQ_LOWER_64:
	case VECTOR_FIQ_CURRENT:
	case VECTOR_FIQ_LOWER_64:
	case VECTOR_ERROR_CURRENT:
	case VECTOR_ERROR_LOWER_64:
		ec = 0;
		valid_ec = false;
		break;
	default:
		valid_ec = false;
		goto unexpected_exception;
	}

	if (handlers && handlers->exception_handlers[vector][ec])
		return handlers->exception_handlers[vector][ec](regs);

unexpected_exception:
	kvm_exit_unexpected_exception(vector, ec, valid_ec);
}

void vm_init_descriptor_tables(struct kvm_vm *vm)
{
	vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
					vm->page_size, MEM_REGION_DATA);

	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
}

void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
			 void (*handler)(struct ex_regs *))
{
	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);

	assert(VECTOR_IS_SYNC(vector));
	assert(vector < VECTOR_NUM);
	assert(ec <= ESR_ELx_EC_MAX);
	handlers->exception_handlers[vector][ec] = handler;
}

void vm_install_exception_handler(struct kvm_vm *vm, int vector,
			 void (*handler)(struct ex_regs *))
{
	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);

	assert(!VECTOR_IS_SYNC(vector));
	assert(vector < VECTOR_NUM);
	handlers->exception_handlers[vector][0] = handler;
}

uint32_t guest_get_vcpuid(void)
{
	return read_sysreg(tpidr_el1);
}

static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
				uint32_t not_sup_val, uint32_t ipa52_min_val)
{
	if (gran == not_sup_val)
		return 0;
	else if (gran >= ipa52_min_val && vm_ipa >= 52)
		return 52;
	else
		return min(vm_ipa, 48U);
}

void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
					uint32_t *ipa16k, uint32_t *ipa64k)
{
	struct kvm_vcpu_init preferred_init;
	int kvm_fd, vm_fd, vcpu_fd, err;
	uint64_t val;
	uint32_t gran;
	struct kvm_one_reg reg = {
		.id	= KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
		.addr	= (uint64_t)&val,
	};

	kvm_fd = open_kvm_dev_path_or_exit();
	vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
	TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));

	vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
	TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));

	err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
	err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));

	err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));

	gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN4), val);
	*ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
					ID_AA64MMFR0_EL1_TGRAN4_52_BIT);

	gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN64), val);
	*ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
					ID_AA64MMFR0_EL1_TGRAN64_IMP);

	gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN16), val);
	*ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
					ID_AA64MMFR0_EL1_TGRAN16_52_BIT);

	close(vcpu_fd);
	close(vm_fd);
	close(kvm_fd);
}

#define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5,	\
		     arg6, res)							\
	asm volatile("mov   w0, %w[function_id]\n"				\
		     "mov   x1, %[arg0]\n"					\
		     "mov   x2, %[arg1]\n"					\
		     "mov   x3, %[arg2]\n"					\
		     "mov   x4, %[arg3]\n"					\
		     "mov   x5, %[arg4]\n"					\
		     "mov   x6, %[arg5]\n"					\
		     "mov   x7, %[arg6]\n"					\
		     #insn  "#0\n"						\
		     "mov   %[res0], x0\n"					\
		     "mov   %[res1], x1\n"					\
		     "mov   %[res2], x2\n"					\
		     "mov   %[res3], x3\n"					\
		     : [res0] "=r"(res->a0), [res1] "=r"(res->a1),		\
		       [res2] "=r"(res->a2), [res3] "=r"(res->a3)		\
		     : [function_id] "r"(function_id), [arg0] "r"(arg0),	\
		       [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3),	\
		       [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6)	\
		     : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")


void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
	       uint64_t arg6, struct arm_smccc_res *res)
{
	__smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
		     arg6, res);
}

void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
	       uint64_t arg6, struct arm_smccc_res *res)
{
	__smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
		     arg6, res);
}

void kvm_selftest_arch_init(void)
{
	/*
	 * arm64 doesn't have a true default mode, so start by computing the
	 * available IPA space and page sizes early.
	 */
	guest_modes_append_default();
}

void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
{
	/*
	 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
	 * is [0, 2^(64 - TCR_EL1.T0SZ)).
	 */
	sparsebit_set_num(vm->vpages_valid, 0,
			  (1ULL << vm->va_bits) >> vm->page_shift);
}

/* Helper to call wfi instruction. */
void wfi(void)
{
	asm volatile("wfi");
}