summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath5k/phy.c
blob: 4825f9cb9cb8573aa4eb2305a24eba64180b0a1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
/*
 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/***********************\
* PHY related functions *
\***********************/

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/unaligned.h>

#include "ath5k.h"
#include "reg.h"
#include "rfbuffer.h"
#include "rfgain.h"
#include "../regd.h"


/**
 * DOC: PHY related functions
 *
 * Here we handle the low-level functions related to baseband
 * and analog frontend (RF) parts. This is by far the most complex
 * part of the hw code so make sure you know what you are doing.
 *
 * Here is a list of what this is all about:
 *
 * - Channel setting/switching
 *
 * - Automatic Gain Control (AGC) calibration
 *
 * - Noise Floor calibration
 *
 * - I/Q imbalance calibration (QAM correction)
 *
 * - Calibration due to thermal changes (gain_F)
 *
 * - Spur noise mitigation
 *
 * - RF/PHY initialization for the various operating modes and bwmodes
 *
 * - Antenna control
 *
 * - TX power control per channel/rate/packet type
 *
 * Also have in mind we never got documentation for most of these
 * functions, what we have comes mostly from Atheros's code, reverse
 * engineering and patent docs/presentations etc.
 */


/******************\
* Helper functions *
\******************/

/**
 * ath5k_hw_radio_revision() - Get the PHY Chip revision
 * @ah: The &struct ath5k_hw
 * @band: One of enum nl80211_band
 *
 * Returns the revision number of a 2GHz, 5GHz or single chip
 * radio.
 */
u16
ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
{
	unsigned int i;
	u32 srev;
	u16 ret;

	/*
	 * Set the radio chip access register
	 */
	switch (band) {
	case NL80211_BAND_2GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
		break;
	case NL80211_BAND_5GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
		break;
	default:
		return 0;
	}

	usleep_range(2000, 2500);

	/* ...wait until PHY is ready and read the selected radio revision */
	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));

	for (i = 0; i < 8; i++)
		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));

	if (ah->ah_version == AR5K_AR5210) {
		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
	} else {
		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
				((srev & 0x0f) << 4), 8);
	}

	/* Reset to the 5GHz mode */
	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));

	return ret;
}

/**
 * ath5k_channel_ok() - Check if a channel is supported by the hw
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * Note: We don't do any regulatory domain checks here, it's just
 * a sanity check.
 */
bool
ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
	u16 freq = channel->center_freq;

	/* Check if the channel is in our supported range */
	if (channel->band == NL80211_BAND_2GHZ) {
		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
			return true;
	} else if (channel->band == NL80211_BAND_5GHZ)
		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
			return true;

	return false;
}

/**
 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 */
bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	u8 refclk_freq;

	if ((ah->ah_radio == AR5K_RF5112) ||
	(ah->ah_radio == AR5K_RF5413) ||
	(ah->ah_radio == AR5K_RF2413) ||
	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
		refclk_freq = 40;
	else
		refclk_freq = 32;

	if ((channel->center_freq % refclk_freq != 0) &&
	((channel->center_freq % refclk_freq < 10) ||
	(channel->center_freq % refclk_freq > 22)))
		return true;
	else
		return false;
}

/**
 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 * @ah: The &struct ath5k_hw
 * @rf_regs: The struct ath5k_rf_reg
 * @val: New value
 * @reg_id: RF register ID
 * @set: Indicate we need to swap data
 *
 * This is an internal function used to modify RF Banks before
 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 * infos.
 */
static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
					u32 val, u8 reg_id, bool set)
{
	const struct ath5k_rf_reg *rfreg = NULL;
	u8 offset, bank, num_bits, col, position;
	u16 entry;
	u32 mask, data, last_bit, bits_shifted, first_bit;
	u32 *rfb;
	s32 bits_left;
	int i;

	data = 0;
	rfb = ah->ah_rf_banks;

	for (i = 0; i < ah->ah_rf_regs_count; i++) {
		if (rf_regs[i].index == reg_id) {
			rfreg = &rf_regs[i];
			break;
		}
	}

	if (rfb == NULL || rfreg == NULL) {
		ATH5K_PRINTF("Rf register not found!\n");
		/* should not happen */
		return 0;
	}

	bank = rfreg->bank;
	num_bits = rfreg->field.len;
	first_bit = rfreg->field.pos;
	col = rfreg->field.col;

	/* first_bit is an offset from bank's
	 * start. Since we have all banks on
	 * the same array, we use this offset
	 * to mark each bank's start */
	offset = ah->ah_offset[bank];

	/* Boundary check */
	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
		ATH5K_PRINTF("invalid values at offset %u\n", offset);
		return 0;
	}

	entry = ((first_bit - 1) / 8) + offset;
	position = (first_bit - 1) % 8;

	if (set)
		data = ath5k_hw_bitswap(val, num_bits);

	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
	     position = 0, entry++) {

		last_bit = (position + bits_left > 8) ? 8 :
					position + bits_left;

		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
								(col * 8);

		if (set) {
			rfb[entry] &= ~mask;
			rfb[entry] |= ((data << position) << (col * 8)) & mask;
			data >>= (8 - position);
		} else {
			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
				<< bits_shifted;
			bits_shifted += last_bit - position;
		}

		bits_left -= 8 - position;
	}

	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);

	return data;
}

/**
 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 * @ah: the &struct ath5k_hw
 * @channel: the currently set channel upon reset
 *
 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 *
 * Since delta slope is floating point we split it on its exponent and
 * mantissa and provide these values on hw.
 *
 * For more infos i think this patent is related
 * "http://www.freepatentsonline.com/7184495.html"
 */
static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	/* Get exponent and mantissa and set it */
	u32 coef_scaled, coef_exp, coef_man,
		ds_coef_exp, ds_coef_man, clock;

	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
		(channel->hw_value == AR5K_MODE_11B));

	/* Get coefficient
	 * ALGO: coef = (5 * clock / carrier_freq) / 2
	 * we scale coef by shifting clock value by 24 for
	 * better precision since we use integers */
	switch (ah->ah_bwmode) {
	case AR5K_BWMODE_40MHZ:
		clock = 40 * 2;
		break;
	case AR5K_BWMODE_10MHZ:
		clock = 40 / 2;
		break;
	case AR5K_BWMODE_5MHZ:
		clock = 40 / 4;
		break;
	default:
		clock = 40;
		break;
	}
	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;

	/* Get exponent
	 * ALGO: coef_exp = 14 - highest set bit position */
	coef_exp = ilog2(coef_scaled);

	/* Doesn't make sense if it's zero*/
	if (!coef_scaled || !coef_exp)
		return -EINVAL;

	/* Note: we've shifted coef_scaled by 24 */
	coef_exp = 14 - (coef_exp - 24);


	/* Get mantissa (significant digits)
	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
	coef_man = coef_scaled +
		(1 << (24 - coef_exp - 1));

	/* Calculate delta slope coefficient exponent
	 * and mantissa (remove scaling) and set them on hw */
	ds_coef_man = coef_man >> (24 - coef_exp);
	ds_coef_exp = coef_exp - 16;

	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);

	return 0;
}

/**
 * ath5k_hw_phy_disable() - Disable PHY
 * @ah: The &struct ath5k_hw
 */
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
	/*Just a try M.F.*/
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);

	return 0;
}

/**
 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 */
static void
ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
			struct ieee80211_channel *channel)
{
	/*
	 * On 5211+ read activation -> rx delay
	 * and use it (100ns steps).
	 */
	if (ah->ah_version != AR5K_AR5210) {
		u32 delay;
		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
			AR5K_PHY_RX_DELAY_M;
		delay = (channel->hw_value == AR5K_MODE_11B) ?
			((delay << 2) / 22) : (delay / 10);
		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
			delay = delay << 1;
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
			delay = delay << 2;
		/* XXX: /2 on turbo ? Let's be safe
		 * for now */
		usleep_range(100 + delay, 100 + (2 * delay));
	} else {
		usleep_range(1000, 1500);
	}
}


/**********************\
* RF Gain optimization *
\**********************/

/**
 * DOC: RF Gain optimization
 *
 * This code is used to optimize RF gain on different environments
 * (temperature mostly) based on feedback from a power detector.
 *
 * It's only used on RF5111 and RF5112, later RF chips seem to have
 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 * no gain optimization ladder-.
 *
 * For more infos check out this patent doc
 * "http://www.freepatentsonline.com/7400691.html"
 *
 * This paper describes power drops as seen on the receiver due to
 * probe packets
 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 * %20of%20Power%20Control.pdf"
 *
 * And this is the MadWiFi bug entry related to the above
 * "http://madwifi-project.org/ticket/1659"
 * with various measurements and diagrams
 */

/**
 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 * @ah: The &struct ath5k_hw
 */
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
	/* Initialize the gain optimization values */
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 35;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	case AR5K_RF5112:
		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 85;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 * @ah: The &struct ath5k_hw
 *
 * Schedules a gain probe check on the next transmitted packet.
 * That means our next packet is going to be sent with lower
 * tx power and a Peak to Average Power Detector (PAPD) will try
 * to measure the gain.
 *
 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 * just after we enable the probe so that we don't mess with
 * standard traffic.
 */
static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{

	/* Skip if gain calibration is inactive or
	 * we already handle a probe request */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
		return;

	/* Send the packet with 2dB below max power as
	 * patent doc suggest */
	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
			AR5K_PHY_PAPD_PROBE_TXPOWER) |
			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);

	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;

}

/**
 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 * @ah: The &struct ath5k_hw
 *
 * Calculate Gain_F measurement correction
 * based on the current step for RF5112 rev. 2
 */
static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
{
	u32 mix, step;
	const struct ath5k_gain_opt *go;
	const struct ath5k_gain_opt_step *g_step;
	const struct ath5k_rf_reg *rf_regs;

	/* Only RF5112 Rev. 2 supports it */
	if ((ah->ah_radio != AR5K_RF5112) ||
	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
		return 0;

	go = &rfgain_opt_5112;
	rf_regs = rf_regs_5112a;
	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);

	g_step = &go->go_step[ah->ah_gain.g_step_idx];

	if (ah->ah_rf_banks == NULL)
		return 0;

	ah->ah_gain.g_f_corr = 0;

	/* No VGA (Variable Gain Amplifier) override, skip */
	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
		return 0;

	/* Mix gain stepping */
	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);

	/* Mix gain override */
	mix = g_step->gos_param[0];

	switch (mix) {
	case 3:
		ah->ah_gain.g_f_corr = step * 2;
		break;
	case 2:
		ah->ah_gain.g_f_corr = (step - 5) * 2;
		break;
	case 1:
		ah->ah_gain.g_f_corr = step;
		break;
	default:
		ah->ah_gain.g_f_corr = 0;
		break;
	}

	return ah->ah_gain.g_f_corr;
}

/**
 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 * @ah: The &struct ath5k_hw
 *
 * Check if current gain_F measurement is in the range of our
 * power detector windows. If we get a measurement outside range
 * we know it's not accurate (detectors can't measure anything outside
 * their detection window) so we must ignore it.
 *
 * Returns true if readback was O.K. or false on failure
 */
static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
{
	const struct ath5k_rf_reg *rf_regs;
	u32 step, mix_ovr, level[4];

	if (ah->ah_rf_banks == NULL)
		return false;

	if (ah->ah_radio == AR5K_RF5111) {

		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);

		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
			false);

		level[0] = 0;
		level[1] = (step == 63) ? 50 : step + 4;
		level[2] = (step != 63) ? 64 : level[0];
		level[3] = level[2] + 50;

		ah->ah_gain.g_high = level[3] -
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
		ah->ah_gain.g_low = level[0] +
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
	} else {

		rf_regs = rf_regs_5112;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);

		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
			false);

		level[0] = level[2] = 0;

		if (mix_ovr == 1) {
			level[1] = level[3] = 83;
		} else {
			level[1] = level[3] = 107;
			ah->ah_gain.g_high = 55;
		}
	}

	return (ah->ah_gain.g_current >= level[0] &&
			ah->ah_gain.g_current <= level[1]) ||
		(ah->ah_gain.g_current >= level[2] &&
			ah->ah_gain.g_current <= level[3]);
}

/**
 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 * @ah: The &struct ath5k_hw
 *
 * Choose the right target gain based on current gain
 * and RF gain optimization ladder
 */
static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
	const struct ath5k_gain_opt *go;
	const struct ath5k_gain_opt_step *g_step;
	int ret = 0;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		go = &rfgain_opt_5112;
		break;
	default:
		return 0;
	}

	g_step = &go->go_step[ah->ah_gain.g_step_idx];

	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {

		/* Reached maximum */
		if (ah->ah_gain.g_step_idx == 0)
			return -1;

		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
				ah->ah_gain.g_step_idx > 0;
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
			    g_step->gos_gain);

		ret = 1;
		goto done;
	}

	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {

		/* Reached minimum */
		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
			return -2;

		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
			    g_step->gos_gain);

		ret = 2;
		goto done;
	}

done:
	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
		"ret %d, gain step %u, current gain %u, target gain %u\n",
		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
		ah->ah_gain.g_target);

	return ret;
}

/**
 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 * @ah: The &struct ath5k_hw
 *
 * Main callback for thermal RF gain calibration engine
 * Check for a new gain reading and schedule an adjustment
 * if needed.
 *
 * Returns one of enum ath5k_rfgain codes
 */
enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
	u32 data, type;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;

	if (ah->ah_rf_banks == NULL ||
	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
		return AR5K_RFGAIN_INACTIVE;

	/* No check requested, either engine is inactive
	 * or an adjustment is already requested */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
		goto done;

	/* Read the PAPD (Peak to Average Power Detector)
	 * register */
	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);

	/* No probe is scheduled, read gain_F measurement */
	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);

		/* If tx packet is CCK correct the gain_F measurement
		 * by cck ofdm gain delta */
		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
				ah->ah_gain.g_current +=
					ee->ee_cck_ofdm_gain_delta;
			else
				ah->ah_gain.g_current +=
					AR5K_GAIN_CCK_PROBE_CORR;
		}

		/* Further correct gain_F measurement for
		 * RF5112A radios */
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			ath5k_hw_rf_gainf_corr(ah);
			ah->ah_gain.g_current =
				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
				0;
		}

		/* Check if measurement is ok and if we need
		 * to adjust gain, schedule a gain adjustment,
		 * else switch back to the active state */
		if (ath5k_hw_rf_check_gainf_readback(ah) &&
		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
		ath5k_hw_rf_gainf_adjust(ah)) {
			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
		} else {
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}
	}

done:
	return ah->ah_gain.g_state;
}

/**
 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 * @ah: The &struct ath5k_hw
 * @band: One of enum nl80211_band
 *
 * Write initial RF gain table to set the RF sensitivity.
 *
 * NOTE: This one works on all RF chips and has nothing to do
 * with Gain_F calibration
 */
static int
ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
{
	const struct ath5k_ini_rfgain *ath5k_rfg;
	unsigned int i, size, index;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ath5k_rfg = rfgain_5111;
		size = ARRAY_SIZE(rfgain_5111);
		break;
	case AR5K_RF5112:
		ath5k_rfg = rfgain_5112;
		size = ARRAY_SIZE(rfgain_5112);
		break;
	case AR5K_RF2413:
		ath5k_rfg = rfgain_2413;
		size = ARRAY_SIZE(rfgain_2413);
		break;
	case AR5K_RF2316:
		ath5k_rfg = rfgain_2316;
		size = ARRAY_SIZE(rfgain_2316);
		break;
	case AR5K_RF5413:
		ath5k_rfg = rfgain_5413;
		size = ARRAY_SIZE(rfgain_5413);
		break;
	case AR5K_RF2317:
	case AR5K_RF2425:
		ath5k_rfg = rfgain_2425;
		size = ARRAY_SIZE(rfgain_2425);
		break;
	default:
		return -EINVAL;
	}

	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;

	for (i = 0; i < size; i++) {
		AR5K_REG_WAIT(i);
		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
			(u32)ath5k_rfg[i].rfg_register);
	}

	return 0;
}


/********************\
* RF Registers setup *
\********************/

/**
 * ath5k_hw_rfregs_init() - Initialize RF register settings
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 * @mode: One of enum ath5k_driver_mode
 *
 * Setup RF registers by writing RF buffer on hw. For
 * more infos on this, check out rfbuffer.h
 */
static int
ath5k_hw_rfregs_init(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			unsigned int mode)
{
	const struct ath5k_rf_reg *rf_regs;
	const struct ath5k_ini_rfbuffer *ini_rfb;
	const struct ath5k_gain_opt *go = NULL;
	const struct ath5k_gain_opt_step *g_step;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u8 ee_mode = 0;
	u32 *rfb;
	int i, obdb = -1, bank = -1;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
		ini_rfb = rfb_5111;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			rf_regs = rf_regs_5112a;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
			ini_rfb = rfb_5112a;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
		} else {
			rf_regs = rf_regs_5112;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
			ini_rfb = rfb_5112;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
		}
		go = &rfgain_opt_5112;
		break;
	case AR5K_RF2413:
		rf_regs = rf_regs_2413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
		ini_rfb = rfb_2413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
		break;
	case AR5K_RF2316:
		rf_regs = rf_regs_2316;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
		ini_rfb = rfb_2316;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
		break;
	case AR5K_RF5413:
		rf_regs = rf_regs_5413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
		ini_rfb = rfb_5413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
		break;
	case AR5K_RF2317:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		ini_rfb = rfb_2317;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
		break;
	case AR5K_RF2425:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
			ini_rfb = rfb_2425;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
		} else {
			ini_rfb = rfb_2417;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
		}
		break;
	default:
		return -EINVAL;
	}

	/* If it's the first time we set RF buffer, allocate
	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
	 * we set above */
	if (ah->ah_rf_banks == NULL) {
		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
								sizeof(u32),
								GFP_KERNEL);
		if (ah->ah_rf_banks == NULL) {
			ATH5K_ERR(ah, "out of memory\n");
			return -ENOMEM;
		}
	}

	/* Copy values to modify them */
	rfb = ah->ah_rf_banks;

	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
			ATH5K_ERR(ah, "invalid bank\n");
			return -EINVAL;
		}

		/* Bank changed, write down the offset */
		if (bank != ini_rfb[i].rfb_bank) {
			bank = ini_rfb[i].rfb_bank;
			ah->ah_offset[bank] = i;
		}

		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
	}

	/* Set Output and Driver bias current (OB/DB) */
	if (channel->band == NL80211_BAND_2GHZ) {

		if (channel->hw_value == AR5K_MODE_11B)
			ee_mode = AR5K_EEPROM_MODE_11B;
		else
			ee_mode = AR5K_EEPROM_MODE_11G;

		/* For RF511X/RF211X combination we
		 * use b_OB and b_DB parameters stored
		 * in eeprom on ee->ee_ob[ee_mode][0]
		 *
		 * For all other chips we use OB/DB for 2GHz
		 * stored in the b/g modal section just like
		 * 802.11a on ee->ee_ob[ee_mode][1] */
		if ((ah->ah_radio == AR5K_RF5111) ||
		(ah->ah_radio == AR5K_RF5112))
			obdb = 0;
		else
			obdb = 1;

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_2GHZ, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_2GHZ, true);

	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
	} else if ((channel->band == NL80211_BAND_5GHZ) ||
			(ah->ah_radio == AR5K_RF5111)) {

		/* For 11a, Turbo and XR we need to choose
		 * OB/DB based on frequency range */
		ee_mode = AR5K_EEPROM_MODE_11A;
		obdb =	 channel->center_freq >= 5725 ? 3 :
			(channel->center_freq >= 5500 ? 2 :
			(channel->center_freq >= 5260 ? 1 :
			 (channel->center_freq > 4000 ? 0 : -1)));

		if (obdb < 0)
			return -EINVAL;

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_5GHZ, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_5GHZ, true);
	}

	g_step = &go->go_step[ah->ah_gain.g_step_idx];

	/* Set turbo mode (N/A on RF5413) */
	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
	(ah->ah_radio != AR5K_RF5413))
		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);

	/* Bank Modifications (chip-specific) */
	if (ah->ah_radio == AR5K_RF5111) {

		/* Set gain_F settings according to current step */
		if (channel->hw_value != AR5K_MODE_11B) {

			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
					AR5K_PHY_FRAME_CTL_TX_CLIP,
					g_step->gos_param[0]);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
							AR5K_RF_PWD_90, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
							AR5K_RF_PWD_84, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_RFGAIN_SEL, true);

			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;

		}

		/* Bank 6/7 setup */

		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
						AR5K_RF_PWD_XPD, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_PLO_SEL, true);

		/* Tweak power detectors for half/quarter rate support */
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
			u8 wait_i;

			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
						AR5K_RF_WAIT_S, true);

			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
							0x1f : 0x10;

			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
						AR5K_RF_WAIT_I, true);
			ath5k_hw_rfb_op(ah, rf_regs, 3,
						AR5K_RF_MAX_TIME, true);

		}
	}

	if (ah->ah_radio == AR5K_RF5112) {

		/* Set gain_F settings according to current step */
		if (channel->hw_value != AR5K_MODE_11B) {

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
						AR5K_RF_MIXGAIN_OVR, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
						AR5K_RF_PWD_138, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
						AR5K_RF_PWD_137, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_PWD_136, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
						AR5K_RF_PWD_132, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
						AR5K_RF_PWD_131, true);

			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
						AR5K_RF_PWD_130, true);

			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}

		/* Bank 6/7 setup */

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_XPD_SEL, true);

		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
			/* Rev. 1 supports only one xpd */
			ath5k_hw_rfb_op(ah, rf_regs,
						ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);

		} else {
			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
			if (ee->ee_pd_gains[ee_mode] > 1) {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_LO, true);
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[1],
						AR5K_RF_PD_GAIN_HI, true);
			} else {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_LO, true);
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_HI, true);
			}

			/* Lower synth voltage on Rev 2 */
			if (ah->ah_radio == AR5K_RF5112 &&
			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
				ath5k_hw_rfb_op(ah, rf_regs, 2,
						AR5K_RF_HIGH_VC_CP, true);

				ath5k_hw_rfb_op(ah, rf_regs, 2,
						AR5K_RF_MID_VC_CP, true);

				ath5k_hw_rfb_op(ah, rf_regs, 2,
						AR5K_RF_LOW_VC_CP, true);

				ath5k_hw_rfb_op(ah, rf_regs, 2,
						AR5K_RF_PUSH_UP, true);
			}

			/* Decrease power consumption on 5213+ BaseBand */
			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PAD2GND, true);

				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB2_LVL, true);

				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB5_LVL, true);

				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_167, true);

				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_166, true);
			}
		}

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);

		/* Tweak power detector for half/quarter rates */
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
			u8 pd_delay;

			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
							0xf : 0x8;

			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
						AR5K_RF_PD_PERIOD_A, true);
			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
						AR5K_RF_PD_DELAY_A, true);

		}
	}

	if (ah->ah_radio == AR5K_RF5413 &&
	channel->band == NL80211_BAND_2GHZ) {

		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
									true);

		/* Set optimum value for early revisions (on pci-e chips) */
		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
		ah->ah_mac_srev < AR5K_SREV_AR5413)
			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
						AR5K_RF_PWD_ICLOBUF_2G, true);

	}

	/* Write RF banks on hw */
	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		AR5K_REG_WAIT(i);
		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
	}

	return 0;
}


/**************************\
  PHY/RF channel functions
\**************************/

/**
 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
 * @channel: The &struct ieee80211_channel
 *
 * Map channel frequency to IEEE channel number and convert it
 * to an internal channel value used by the RF5110 chipset.
 */
static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
	u32 athchan;

	athchan = (ath5k_hw_bitswap(
			(ieee80211_frequency_to_channel(
				channel->center_freq) - 24) / 2, 5)
				<< 1) | (1 << 6) | 0x1;
	return athchan;
}

/**
 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 */
static int
ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data;

	/*
	 * Set the channel and wait
	 */
	data = ath5k_hw_rf5110_chan2athchan(channel);
	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
	usleep_range(1000, 1500);

	return 0;
}

/**
 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
 * @ieee: IEEE channel number
 * @athchan: The &struct ath5k_athchan_2ghz
 *
 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
 * we need to add some offsets and extra flags to the data values we pass
 * on to the PHY. So for every 2GHz channel this function gets called
 * to do the conversion.
 */
static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
		struct ath5k_athchan_2ghz *athchan)
{
	int channel;

	/* Cast this value to catch negative channel numbers (>= -19) */
	channel = (int)ieee;

	/*
	 * Map 2GHz IEEE channel to 5GHz Atheros channel
	 */
	if (channel <= 13) {
		athchan->a2_athchan = 115 + channel;
		athchan->a2_flags = 0x46;
	} else if (channel == 14) {
		athchan->a2_athchan = 124;
		athchan->a2_flags = 0x44;
	} else if (channel >= 15 && channel <= 26) {
		athchan->a2_athchan = ((channel - 14) * 4) + 132;
		athchan->a2_flags = 0x46;
	} else
		return -EINVAL;

	return 0;
}

/**
 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 */
static int
ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
	unsigned int ath5k_channel =
		ieee80211_frequency_to_channel(channel->center_freq);
	u32 data0, data1, clock;
	int ret;

	/*
	 * Set the channel on the RF5111 radio
	 */
	data0 = data1 = 0;

	if (channel->band == NL80211_BAND_2GHZ) {
		/* Map 2GHz channel to 5GHz Atheros channel ID */
		ret = ath5k_hw_rf5111_chan2athchan(
			ieee80211_frequency_to_channel(channel->center_freq),
			&ath5k_channel_2ghz);
		if (ret)
			return ret;

		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
		    << 5) | (1 << 4);
	}

	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
		clock = 1;
		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
			(clock << 1) | (1 << 10) | 1;
	} else {
		clock = 0;
		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
			<< 2) | (clock << 1) | (1 << 10) | 1;
	}

	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
			AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
			AR5K_RF_BUFFER_CONTROL_3);

	return 0;
}

/**
 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * On RF5112/2112 and newer we don't need to do any conversion.
 * We pass the frequency value after a few modifications to the
 * chip directly.
 *
 * NOTE: Make sure channel frequency given is within our range or else
 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
 */
static int
ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data1, data2;
	u16 c;

	data = data0 = data1 = data2 = 0;
	c = channel->center_freq;

	/* My guess based on code:
	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
	 * (3040/2). data0 is used to set the PLL divider and data1
	 * selects synth mode. */
	if (c < 4800) {
		/* Channel 14 and all frequencies with 2Hz spacing
		 * below/above (non-standard channels) */
		if (!((c - 2224) % 5)) {
			/* Same as (c - 2224) / 5 */
			data0 = ((2 * (c - 704)) - 3040) / 10;
			data1 = 1;
		/* Channel 1 and all frequencies with 5Hz spacing
		 * below/above (standard channels without channel 14) */
		} else if (!((c - 2192) % 5)) {
			/* Same as (c - 2192) / 5 */
			data0 = ((2 * (c - 672)) - 3040) / 10;
			data1 = 0;
		} else
			return -EINVAL;

		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
	/* This is more complex, we have a single synthesizer with
	 * 4 reference clock settings (?) based on frequency spacing
	 * and set using data2. LO is at 4800Hz and data0 is again used
	 * to set some divider.
	 *
	 * NOTE: There is an old atheros presentation at Stanford
	 * that mentions a method called dual direct conversion
	 * with 1GHz sliding IF for RF5110. Maybe that's what we
	 * have here, or an updated version. */
	} else if ((c % 5) != 2 || c > 5435) {
		if (!(c % 20) && c >= 5120) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
			data2 = ath5k_hw_bitswap(3, 2);
		} else if (!(c % 10)) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
			data2 = ath5k_hw_bitswap(2, 2);
		} else if (!(c % 5)) {
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
			data2 = ath5k_hw_bitswap(1, 2);
		} else
			return -EINVAL;
	} else {
		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
		data2 = ath5k_hw_bitswap(0, 2);
	}

	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

/**
 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * AR2425/2417 have a different 2GHz RF so code changes
 * a little bit from RF5112.
 */
static int
ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data2;
	u16 c;

	data = data0 = data2 = 0;
	c = channel->center_freq;

	if (c < 4800) {
		data0 = ath5k_hw_bitswap((c - 2272), 8);
		data2 = 0;
	/* ? 5GHz ? */
	} else if ((c % 5) != 2 || c > 5435) {
		if (!(c % 20) && c < 5120)
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
		else if (!(c % 10))
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
		else if (!(c % 5))
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
		else
			return -EINVAL;
		data2 = ath5k_hw_bitswap(1, 2);
	} else {
		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
		data2 = ath5k_hw_bitswap(0, 2);
	}

	data = (data0 << 4) | data2 << 2 | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

/**
 * ath5k_hw_channel() - Set a channel on the radio chip
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * This is the main function called to set a channel on the
 * radio chip based on the radio chip version.
 */
static int
ath5k_hw_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	int ret;
	/*
	 * Check bounds supported by the PHY (we don't care about regulatory
	 * restrictions at this point).
	 */
	if (!ath5k_channel_ok(ah, channel)) {
		ATH5K_ERR(ah,
			"channel frequency (%u MHz) out of supported "
			"band range\n",
			channel->center_freq);
		return -EINVAL;
	}

	/*
	 * Set the channel and wait
	 */
	switch (ah->ah_radio) {
	case AR5K_RF5110:
		ret = ath5k_hw_rf5110_channel(ah, channel);
		break;
	case AR5K_RF5111:
		ret = ath5k_hw_rf5111_channel(ah, channel);
		break;
	case AR5K_RF2317:
	case AR5K_RF2425:
		ret = ath5k_hw_rf2425_channel(ah, channel);
		break;
	default:
		ret = ath5k_hw_rf5112_channel(ah, channel);
		break;
	}

	if (ret)
		return ret;

	/* Set JAPAN setting for channel 14 */
	if (channel->center_freq == 2484) {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_JAPAN);
	} else {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_WORLD);
	}

	ah->ah_current_channel = channel;

	return 0;
}


/*****************\
  PHY calibration
\*****************/

/**
 * DOC: PHY Calibration routines
 *
 * Noise floor calibration: When we tell the hardware to
 * perform a noise floor calibration by setting the
 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
 * sample-and-hold the minimum noise level seen at the antennas.
 * This value is then stored in a ring buffer of recently measured
 * noise floor values so we have a moving window of the last few
 * samples. The median of the values in the history is then loaded
 * into the hardware for its own use for RSSI and CCA measurements.
 * This type of calibration doesn't interfere with traffic.
 *
 * AGC calibration: When we tell the hardware to perform
 * an AGC (Automatic Gain Control) calibration by setting the
 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
 * a calibration on the DC offsets of ADCs. During this period
 * rx/tx gets disabled so we have to deal with it on the driver
 * part.
 *
 * I/Q calibration: When we tell the hardware to perform
 * an I/Q calibration, it tries to correct I/Q imbalance and
 * fix QAM constellation by sampling data from rxed frames.
 * It doesn't interfere with traffic.
 *
 * For more infos on AGC and I/Q calibration check out patent doc
 * #03/094463.
 */

/**
 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
 * @ah: The &struct ath5k_hw
 */
static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
{
	s32 val;

	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
}

/**
 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
 * @ah: The &struct ath5k_hw
 */
void
ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
{
	int i;

	ah->ah_nfcal_hist.index = 0;
	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}

/**
 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
 * @ah: The &struct ath5k_hw
 * @noise_floor: The NF we got from hw
 */
static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
{
	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
	hist->nfval[hist->index] = noise_floor;
}

static int cmps16(const void *a, const void *b)
{
	return *(s16 *)a - *(s16 *)b;
}

/**
 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
 * @ah: The &struct ath5k_hw
 */
static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
{
	s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX];
	int i;

	memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval));
	sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL);
	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
			"cal %d:%d\n", i, sorted_nfval[i]);
	}
	return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
}

/**
 * ath5k_hw_update_noise_floor() - Update NF on hardware
 * @ah: The &struct ath5k_hw
 *
 * This is the main function we call to perform a NF calibration,
 * it reads NF from hardware, calculates the median and updates
 * NF on hw.
 */
void
ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 val;
	s16 nf, threshold;
	u8 ee_mode;

	/* keep last value if calibration hasn't completed */
	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
			"NF did not complete in calibration window\n");

		return;
	}

	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;

	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);

	/* completed NF calibration, test threshold */
	nf = ath5k_hw_read_measured_noise_floor(ah);
	threshold = ee->ee_noise_floor_thr[ee_mode];

	if (nf > threshold) {
		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
			"noise floor failure detected; "
			"read %d, threshold %d\n",
			nf, threshold);

		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
	}

	ath5k_hw_update_nfcal_hist(ah, nf);
	nf = ath5k_hw_get_median_noise_floor(ah);

	/* load noise floor (in .5 dBm) so the hardware will use it */
	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
	val |= (nf * 2) & AR5K_PHY_NF_M;
	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);

	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));

	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
		0, false);

	/*
	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
	 * so that we're not capped by the median we just loaded.
	 * This will be used as the initial value for the next noise
	 * floor calibration.
	 */
	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
		AR5K_PHY_AGCCTL_NF_EN |
		AR5K_PHY_AGCCTL_NF_NOUPDATE |
		AR5K_PHY_AGCCTL_NF);

	ah->ah_noise_floor = nf;

	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;

	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
		"noise floor calibrated: %d\n", nf);
}

/**
 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
 */
static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 phy_sig, phy_agc, phy_sat, beacon;
	int ret;

	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
		return 0;

	/*
	 * Disable beacons and RX/TX queues, wait
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);

	usleep_range(2000, 2500);

	/*
	 * Set the channel (with AGC turned off)
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ret = ath5k_hw_channel(ah, channel);

	/*
	 * Activate PHY and wait
	 */
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
	usleep_range(1000, 1500);

	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	if (ret)
		return ret;

	/*
	 * Calibrate the radio chip
	 */

	/* Remember normal state */
	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);

	/* Update radio registers */
	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);

	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
			AR5K_PHY_AGCCOARSE_LO)) |
		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);

	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
			AR5K_PHY_ADCSAT_THR)) |
		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);

	udelay(20);

	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	usleep_range(1000, 1500);

	/*
	 * Enable calibration and wait until completion
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);

	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_CAL, 0, false);

	/* Reset to normal state */
	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);

	if (ret) {
		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
				channel->center_freq);
		return ret;
	}

	/*
	 * Re-enable RX/TX and beacons
	 */
	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);

	return 0;
}

/**
 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
 * @ah: The &struct ath5k_hw
 */
static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
{
	u32 i_pwr, q_pwr;
	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
	int i;

	/* Skip if I/Q calibration is not needed or if it's still running */
	if (!ah->ah_iq_cal_needed)
		return -EINVAL;
	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
				"I/Q calibration still running");
		return -EBUSY;
	}

	/* Calibration has finished, get the results and re-run */

	/* Work around for empty results which can apparently happen on 5212:
	 * Read registers up to 10 times until we get both i_pr and q_pwr */
	for (i = 0; i <= 10; i++) {
		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
		if (i_pwr && q_pwr)
			break;
	}

	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;

	if (ah->ah_version == AR5K_AR5211)
		q_coffd = q_pwr >> 6;
	else
		q_coffd = q_pwr >> 7;

	/* In case i_coffd became zero, cancel calibration
	 * not only it's too small, it'll also result a divide
	 * by zero later on. */
	if (i_coffd == 0 || q_coffd < 2)
		return -ECANCELED;

	/* Protect against loss of sign bits */

	i_coff = (-iq_corr) / i_coffd;
	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */

	if (ah->ah_version == AR5K_AR5211)
		q_coff = (i_pwr / q_coffd) - 64;
	else
		q_coff = (i_pwr / q_coffd) - 128;
	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */

	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
			i_coff, q_coff, i_coffd, q_coffd);

	/* Commit new I/Q values (set enable bit last to match HAL sources) */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);

	/* Re-enable calibration -if we don't we'll commit
	 * the same values again and again */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);

	return 0;
}

/**
 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * The main function we call from above to perform
 * a short or full PHY calibration based on RF chip
 * and current channel
 */
int
ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	int ret;

	if (ah->ah_radio == AR5K_RF5110)
		return ath5k_hw_rf5110_calibrate(ah, channel);

	ret = ath5k_hw_rf511x_iq_calibrate(ah);
	if (ret) {
		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
			"No I/Q correction performed (%uMHz)\n",
			channel->center_freq);

		/* Happens all the time if there is not much
		 * traffic, consider it normal behaviour. */
		ret = 0;
	}

	/* On full calibration request a PAPD probe for
	 * gainf calibration if needed */
	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
	    (ah->ah_radio == AR5K_RF5111 ||
	     ah->ah_radio == AR5K_RF5112) &&
	    channel->hw_value != AR5K_MODE_11B)
		ath5k_hw_request_rfgain_probe(ah);

	/* Update noise floor */
	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
		ath5k_hw_update_noise_floor(ah);

	return ret;
}


/***************************\
* Spur mitigation functions *
\***************************/

/**
 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * This function gets called during PHY initialization to
 * configure the spur filter for the given channel. Spur is noise
 * generated due to "reflection" effects, for more information on this
 * method check out patent US7643810
 */
static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 mag_mask[4] = {0, 0, 0, 0};
	u32 pilot_mask[2] = {0, 0};
	/* Note: fbin values are scaled up by 2 */
	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
	s32 spur_delta_phase, spur_freq_sigma_delta;
	s32 spur_offset, num_symbols_x16;
	u8 num_symbol_offsets, i, freq_band;

	/* Convert current frequency to fbin value (the same way channels
	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
	 * up by 2 so we can compare it later */
	if (channel->band == NL80211_BAND_2GHZ) {
		chan_fbin = (channel->center_freq - 2300) * 10;
		freq_band = AR5K_EEPROM_BAND_2GHZ;
	} else {
		chan_fbin = (channel->center_freq - 4900) * 10;
		freq_band = AR5K_EEPROM_BAND_5GHZ;
	}

	/* Check if any spur_chan_fbin from EEPROM is
	 * within our current channel's spur detection range */
	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
	/* XXX: Half/Quarter channels ?*/
	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
		spur_detection_window *= 2;

	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];

		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
		 * so it's zero if we got nothing from EEPROM */
		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}

		if ((chan_fbin - spur_detection_window <=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
		(chan_fbin + spur_detection_window >=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}
	}

	/* We need to enable spur filter for this channel */
	if (spur_chan_fbin) {
		spur_offset = spur_chan_fbin - chan_fbin;
		/*
		 * Calculate deltas:
		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
		 * spur_delta_phase -> spur_offset / chip_freq << 11
		 * Note: Both values have 100Hz resolution
		 */
		switch (ah->ah_bwmode) {
		case AR5K_BWMODE_40MHZ:
			/* Both sample_freq and chip_freq are 80MHz */
			spur_delta_phase = (spur_offset << 16) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
			break;
		case AR5K_BWMODE_10MHZ:
			/* Both sample_freq and chip_freq are 20MHz (?) */
			spur_delta_phase = (spur_offset << 18) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
			break;
		case AR5K_BWMODE_5MHZ:
			/* Both sample_freq and chip_freq are 10MHz (?) */
			spur_delta_phase = (spur_offset << 19) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
			break;
		default:
			if (channel->band == NL80211_BAND_5GHZ) {
				/* Both sample_freq and chip_freq are 40MHz */
				spur_delta_phase = (spur_offset << 17) / 25;
				spur_freq_sigma_delta =
						(spur_delta_phase >> 10);
				symbol_width =
					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			} else {
				/* sample_freq -> 40MHz chip_freq -> 44MHz
				 * (for b compatibility) */
				spur_delta_phase = (spur_offset << 17) / 25;
				spur_freq_sigma_delta =
						(spur_offset << 8) / 55;
				symbol_width =
					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			}
			break;
		}

		/* Calculate pilot and magnitude masks */

		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
		 * and divide by symbol_width to find how many symbols we have
		 * Note: number of symbols is scaled up by 16 */
		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;

		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
		if (!(num_symbols_x16 & 0xF))
			/* _X_ */
			num_symbol_offsets = 3;
		else
			/* _xx_ */
			num_symbol_offsets = 4;

		for (i = 0; i < num_symbol_offsets; i++) {

			/* Calculate pilot mask */
			s32 curr_sym_off =
				(num_symbols_x16 / 16) + i + 25;

			/* Pilot magnitude mask seems to be a way to
			 * declare the boundaries for our detection
			 * window or something, it's 2 for the middle
			 * value(s) where the symbol is expected to be
			 * and 1 on the boundary values */
			u8 plt_mag_map =
				(i == 0 || i == (num_symbol_offsets - 1))
								? 1 : 2;

			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
				if (curr_sym_off <= 25)
					pilot_mask[0] |= 1 << curr_sym_off;
				else if (curr_sym_off >= 27)
					pilot_mask[0] |= 1 << (curr_sym_off - 1);
			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
				pilot_mask[1] |= 1 << (curr_sym_off - 33);

			/* Calculate magnitude mask (for viterbi decoder) */
			if (curr_sym_off >= -1 && curr_sym_off <= 14)
				mag_mask[0] |=
					plt_mag_map << (curr_sym_off + 1) * 2;
			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
				mag_mask[1] |=
					plt_mag_map << (curr_sym_off - 15) * 2;
			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
				mag_mask[2] |=
					plt_mag_map << (curr_sym_off - 31) * 2;
			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
				mag_mask[3] |=
					plt_mag_map << (curr_sym_off - 47) * 2;

		}

		/* Write settings on hw to enable spur filter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
		/* XXX: Self correlator also ? */
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);

		/* Set delta phase and freq sigma delta */
		ath5k_hw_reg_write(ah,
				AR5K_REG_SM(spur_delta_phase,
					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
				AR5K_REG_SM(spur_freq_sigma_delta,
				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
				AR5K_PHY_TIMING_11);

		/* Write pilot masks */
		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					pilot_mask[1]);

		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					pilot_mask[1]);

		/* Write magnitude masks */
		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					mag_mask[3]);

		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					mag_mask[3]);

	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
	AR5K_PHY_IQ_SPUR_FILT_EN) {
		/* Clean up spur mitigation settings and disable filter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);

		/* Clear pilot masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					0);

		/* Clear magnitude masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					0);
	}
}


/*****************\
* Antenna control *
\*****************/

/**
 * DOC: Antenna control
 *
 * Hw supports up to 14 antennas ! I haven't found any card that implements
 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
 *
 * We can have a single antenna for RX and multiple antennas for TX.
 * RX antenna is our "default" antenna (usually antenna 1) set on
 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
 * (0 for automatic selection, 1 - 14 antenna number).
 *
 * We can let hw do all the work doing fast antenna diversity for both
 * tx and rx or we can do things manually. Here are the options we have
 * (all are bits of STA_ID1 register):
 *
 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
 * control descriptor, use the default antenna to transmit or else use the last
 * antenna on which we received an ACK.
 *
 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
 * the antenna on which we got the ACK for that frame.
 *
 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
 * one on the TX descriptor.
 *
 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
 * (ACKs etc), or else use current antenna (the one we just used for TX).
 *
 * Using the above we support the following scenarios:
 *
 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
 *
 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
 *
 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
 *
 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
 *
 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
 *
 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
 *
 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
 *
 * Also note that when setting antenna to F on tx descriptor card inverts
 * current tx antenna.
 */

/**
 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
 * @ah: The &struct ath5k_hw
 * @ant: Antenna number
 */
static void
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
{
	if (ah->ah_version != AR5K_AR5210)
		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
}

/**
 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
 * @ah: The &struct ath5k_hw
 * @ee_mode: One of enum ath5k_driver_mode
 * @enable: True to enable, false to disable
 */
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
	switch (ee_mode) {
	case AR5K_EEPROM_MODE_11G:
		/* XXX: This is set to
		 * disabled on initvals !!! */
	case AR5K_EEPROM_MODE_11A:
		if (enable)
			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		else
			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	case AR5K_EEPROM_MODE_11B:
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	default:
		return;
	}

	if (enable) {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
				AR5K_PHY_RESTART_DIV_GC, 4);

		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	} else {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
				AR5K_PHY_RESTART_DIV_GC, 0);

		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	}
}

/**
 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
 * @ah: The &struct ath5k_hw
 * @ee_mode: One of enum ath5k_driver_mode
 *
 * Switch table comes from EEPROM and includes information on controlling
 * the 2 antenna RX attenuators
 */
void
ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
{
	u8 ant0, ant1;

	/*
	 * In case a fixed antenna was set as default
	 * use the same switch table twice.
	 */
	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
	else {
		ant0 = AR5K_ANT_SWTABLE_A;
		ant1 = AR5K_ANT_SWTABLE_B;
	}

	/* Set antenna idle switch table */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
			AR5K_PHY_ANT_CTL_TXRX_EN));

	/* Set antenna switch tables */
	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
		AR5K_PHY_ANT_SWITCH_TABLE_0);
	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
		AR5K_PHY_ANT_SWITCH_TABLE_1);
}

/**
 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
 * @ah: The &struct ath5k_hw
 * @ant_mode: One of enum ath5k_ant_mode
 */
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
	struct ieee80211_channel *channel = ah->ah_current_channel;
	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
	bool use_def_for_sg;
	int ee_mode;
	u8 def_ant, tx_ant;
	u32 sta_id1 = 0;

	/* if channel is not initialized yet we can't set the antennas
	 * so just store the mode. it will be set on the next reset */
	if (channel == NULL) {
		ah->ah_ant_mode = ant_mode;
		return;
	}

	def_ant = ah->ah_def_ant;

	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);

	switch (ant_mode) {
	case AR5K_ANTMODE_DEFAULT:
		tx_ant = 0;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_FIXED_A:
		def_ant = 1;
		tx_ant = 1;
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_FIXED_B:
		def_ant = 2;
		tx_ant = 2;
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SINGLE_AP:
		def_ant = 1;	/* updated on tx */
		tx_ant = 0;
		use_def_for_tx = true;
		update_def_on_tx = true;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = true;
		break;
	case AR5K_ANTMODE_SECTOR_AP:
		tx_ant = 1;	/* variable */
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SECTOR_STA:
		tx_ant = 1;	/* variable */
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_DEBUG:
		def_ant = 1;
		tx_ant = 2;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = false;
		break;
	default:
		return;
	}

	ah->ah_tx_ant = tx_ant;
	ah->ah_ant_mode = ant_mode;
	ah->ah_def_ant = def_ant;

	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;

	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);

	if (sta_id1)
		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);

	ath5k_hw_set_antenna_switch(ah, ee_mode);
	/* Note: set diversity before default antenna
	 * because it won't work correctly */
	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
	ath5k_hw_set_def_antenna(ah, def_ant);
}


/****************\
* TX power setup *
\****************/

/*
 * Helper functions
 */

/**
 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
 * @target: X value of the middle point
 * @x_left: X value of the left point
 * @x_right: X value of the right point
 * @y_left: Y value of the left point
 * @y_right: Y value of the right point
 */
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
					s16 y_left, s16 y_right)
{
	s16 ratio, result;

	/* Avoid divide by zero and skip interpolation
	 * if we have the same point */
	if ((x_left == x_right) || (y_left == y_right))
		return y_left;

	/*
	 * Since we use ints and not fps, we need to scale up in
	 * order to get a sane ratio value (or else we 'll eg. get
	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
	 * to have some accuracy both for 0.5 and 0.25 steps.
	 */
	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));

	/* Now scale down to be in range */
	result = y_left + (ratio * (target - x_left) / 100);

	return result;
}

/**
 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
 * linear PCDAC curve
 * @stepL: Left array with y values (pcdac steps)
 * @stepR: Right array with y values (pcdac steps)
 * @pwrL: Left array with x values (power steps)
 * @pwrR: Right array with x values (power steps)
 *
 * Since we have the top of the curve and we draw the line below
 * until we reach 1 (1 pcdac step) we need to know which point
 * (x value) that is so that we don't go below x axis and have negative
 * pcdac values when creating the curve, or fill the table with zeros.
 */
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
				const s16 *pwrL, const s16 *pwrR)
{
	s8 tmp;
	s16 min_pwrL, min_pwrR;
	s16 pwr_i;

	/* Some vendors write the same pcdac value twice !!! */
	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
		return max(pwrL[0], pwrR[0]);

	if (pwrL[0] == pwrL[1])
		min_pwrL = pwrL[0];
	else {
		pwr_i = pwrL[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrL[0], pwrL[1],
							stepL[0], stepL[1]);
		} while (tmp > 1);

		min_pwrL = pwr_i;
	}

	if (pwrR[0] == pwrR[1])
		min_pwrR = pwrR[0];
	else {
		pwr_i = pwrR[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrR[0], pwrR[1],
							stepR[0], stepR[1]);
		} while (tmp > 1);

		min_pwrR = pwr_i;
	}

	/* Keep the right boundary so that it works for both curves */
	return max(min_pwrL, min_pwrR);
}

/**
 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
 * @pmin: Minimum power value (xmin)
 * @pmax: Maximum power value (xmax)
 * @pwr: Array of power steps (x values)
 * @vpd: Array of matching PCDAC/PDADC steps (y values)
 * @num_points: Number of provided points
 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
 * @type: One of enum ath5k_powertable_type (eeprom.h)
 *
 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
 * Power to PCDAC curve.
 *
 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
 * steps (offsets) on y axis. Power can go up to 31.5dB and max
 * PCDAC/PDADC step for each curve is 64 but we can write more than
 * one curves on hw so we can go up to 128 (which is the max step we
 * can write on the final table).
 *
 * We write y values (PCDAC/PDADC steps) on hw.
 */
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
			const s16 *pwr, const u8 *vpd,
			u8 num_points,
			u8 *vpd_table, u8 type)
{
	u8 idx[2] = { 0, 1 };
	s16 pwr_i = 2 * pmin;
	int i;

	if (num_points < 2)
		return;

	/* We want the whole line, so adjust boundaries
	 * to cover the entire power range. Note that
	 * power values are already 0.25dB so no need
	 * to multiply pwr_i by 2 */
	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
		pwr_i = pmin;
		pmin = 0;
		pmax = 63;
	}

	/* Find surrounding turning points (TPs)
	 * and interpolate between them */
	for (i = 0; (i <= (u16) (pmax - pmin)) &&
	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {

		/* We passed the right TP, move to the next set of TPs
		 * if we pass the last TP, extrapolate above using the last
		 * two TPs for ratio */
		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
			idx[0]++;
			idx[1]++;
		}

		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
						pwr[idx[0]], pwr[idx[1]],
						vpd[idx[0]], vpd[idx[1]]);

		/* Increase by 0.5dB
		 * (0.25 dB units) */
		pwr_i += 2;
	}
}

/**
 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
 * for a given channel.
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
 *
 * Get the surrounding per-channel power calibration piers
 * for a given frequency so that we can interpolate between
 * them and come up with an appropriate dataset for our current
 * channel.
 */
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_chan_pcal_info **pcinfo_l,
			struct ath5k_chan_pcal_info **pcinfo_r)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	switch (channel->hw_value) {
	case AR5K_EEPROM_MODE_11A:
		pcinfo = ee->ee_pwr_cal_a;
		mode = AR5K_EEPROM_MODE_11A;
		break;
	case AR5K_EEPROM_MODE_11B:
		pcinfo = ee->ee_pwr_cal_b;
		mode = AR5K_EEPROM_MODE_11B;
		break;
	case AR5K_EEPROM_MODE_11G:
	default:
		pcinfo = ee->ee_pwr_cal_g;
		mode = AR5K_EEPROM_MODE_11G;
		break;
	}
	max = ee->ee_n_piers[mode] - 1;

	/* Frequency is below our calibrated
	 * range. Use the lowest power curve
	 * we have */
	if (target < pcinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	/* Frequency is above our calibrated
	 * range. Use the highest power curve
	 * we have */
	if (target > pcinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	/* Frequency is inside our calibrated
	 * channel range. Pick the surrounding
	 * calibration piers so that we can
	 * interpolate */
	for (i = 0; i <= max; i++) {

		/* Frequency matches one of our calibration
		 * piers, no need to interpolate, just use
		 * that calibration pier */
		if (pcinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		/* We found a calibration pier that's above
		 * frequency, use this pier and the previous
		 * one to interpolate */
		if (target < pcinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	*pcinfo_l = &pcinfo[idx_l];
	*pcinfo_r = &pcinfo[idx_r];
}

/**
 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
 * calibration data
 * @ah: The &struct ath5k_hw *ah,
 * @channel: The &struct ieee80211_channel
 * @rates: The &struct ath5k_rate_pcal_info to fill
 *
 * Get the surrounding per-rate power calibration data
 * for a given frequency and interpolate between power
 * values to set max target power supported by hw for
 * each rate on this frequency.
 */
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_rate_pcal_info *rates)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_rate_pcal_info *rpinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	switch (channel->hw_value) {
	case AR5K_MODE_11A:
		rpinfo = ee->ee_rate_tpwr_a;
		mode = AR5K_EEPROM_MODE_11A;
		break;
	case AR5K_MODE_11B:
		rpinfo = ee->ee_rate_tpwr_b;
		mode = AR5K_EEPROM_MODE_11B;
		break;
	case AR5K_MODE_11G:
	default:
		rpinfo = ee->ee_rate_tpwr_g;
		mode = AR5K_EEPROM_MODE_11G;
		break;
	}
	max = ee->ee_rate_target_pwr_num[mode] - 1;

	/* Get the surrounding calibration
	 * piers - same as above */
	if (target < rpinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	if (target > rpinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	for (i = 0; i <= max; i++) {

		if (rpinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		if (target < rpinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	/* Now interpolate power value, based on the frequency */
	rates->freq = target;

	rates->target_power_6to24 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_6to24,
					rpinfo[idx_r].target_power_6to24);

	rates->target_power_36 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_36,
					rpinfo[idx_r].target_power_36);

	rates->target_power_48 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_48,
					rpinfo[idx_r].target_power_48);

	rates->target_power_54 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_54,
					rpinfo[idx_r].target_power_54);
}

/**
 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
 * @ah: the &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 *
 * Get the max edge power for this channel if
 * we have such data from EEPROM's Conformance Test
 * Limits (CTL), and limit max power if needed.
 */
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
			struct ieee80211_channel *channel)
{
	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
	u8 *ctl_val = ee->ee_ctl;
	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
	s16 edge_pwr = 0;
	u8 rep_idx;
	u8 i, ctl_mode;
	u8 ctl_idx = 0xFF;
	u32 target = channel->center_freq;

	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);

	switch (channel->hw_value) {
	case AR5K_MODE_11A:
		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
			ctl_mode |= AR5K_CTL_TURBO;
		else
			ctl_mode |= AR5K_CTL_11A;
		break;
	case AR5K_MODE_11G:
		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
			ctl_mode |= AR5K_CTL_TURBOG;
		else
			ctl_mode |= AR5K_CTL_11G;
		break;
	case AR5K_MODE_11B:
		ctl_mode |= AR5K_CTL_11B;
		break;
	default:
		return;
	}

	for (i = 0; i < ee->ee_ctls; i++) {
		if (ctl_val[i] == ctl_mode) {
			ctl_idx = i;
			break;
		}
	}

	/* If we have a CTL dataset available grab it and find the
	 * edge power for our frequency */
	if (ctl_idx == 0xFF)
		return;

	/* Edge powers are sorted by frequency from lower
	 * to higher. Each CTL corresponds to 8 edge power
	 * measurements. */
	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;

	/* Don't do boundaries check because we
	 * might have more that one bands defined
	 * for this mode */

	/* Get the edge power that's closer to our
	 * frequency */
	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
		rep_idx += i;
		if (target <= rep[rep_idx].freq)
			edge_pwr = (s16) rep[rep_idx].edge;
	}

	if (edge_pwr)
		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
}


/*
 * Power to PCDAC table functions
 */

/**
 * DOC: Power to PCDAC table functions
 *
 * For RF5111 we have an XPD -eXternal Power Detector- curve
 * for each calibrated channel. Each curve has 0,5dB Power steps
 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 * exponential function. To recreate the curve we read 11 points
 * from eeprom (eeprom.c) and interpolate here.
 *
 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
 * power steps on x axis and PCDAC steps on y axis and looks like a
 * linear function. To recreate the curve and pass the power values
 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
 * and interpolate here.
 *
 * For a given channel we get the calibrated points (piers) for it or
 * -if we don't have calibration data for this specific channel- from the
 * available surrounding channels we have calibration data for, after we do a
 * linear interpolation between them. Then since we have our calibrated points
 * for this channel, we do again a linear interpolation between them to get the
 * whole curve.
 *
 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
 */

/**
 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
 * @ah: The &struct ath5k_hw
 * @table_min: Minimum power (x min)
 * @table_max: Maximum power (x max)
 *
 * No further processing is needed for RF5111, the only thing we have to
 * do is fill the values below and above calibration range since eeprom data
 * may not cover the entire PCDAC table.
 */
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
							s16 *table_max)
{
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
	s16	min_pwr, max_pwr;

	/* Get table boundaries */
	min_pwr = table_min[0];
	pcdac_0 = pcdac_tmp[0];

	max_pwr = table_max[0];
	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];

	/* Extrapolate below minimum using pcdac_0 */
	pcdac_i = 0;
	for (i = 0; i < min_pwr; i++)
		pcdac_out[pcdac_i++] = pcdac_0;

	/* Copy values from pcdac_tmp */
	pwr_idx = min_pwr;
	for (i = 0; pwr_idx <= max_pwr &&
		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
		pcdac_out[pcdac_i++] = pcdac_tmp[i];
		pwr_idx++;
	}

	/* Extrapolate above maximum */
	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
		pcdac_out[pcdac_i++] = pcdac_n;

}

/**
 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
 * @ah: The &struct ath5k_hw
 * @table_min: Minimum power (x min)
 * @table_max: Maximum power (x max)
 * @pdcurves: Number of pd curves
 *
 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
 * RFX112 can have up to 2 curves (one for low txpower range and one for
 * higher txpower range). We need to put them both on pcdac_out and place
 * them in the correct location. In case we only have one curve available
 * just fit it on pcdac_out (it's supposed to cover the entire range of
 * available pwr levels since it's always the higher power curve). Extrapolate
 * below and above final table if needed.
 */
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
						s16 *table_max, u8 pdcurves)
{
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
	u8	*pcdac_low_pwr;
	u8	*pcdac_high_pwr;
	u8	*pcdac_tmp;
	u8	pwr;
	s16	max_pwr_idx;
	s16	min_pwr_idx;
	s16	mid_pwr_idx = 0;
	/* Edge flag turns on the 7nth bit on the PCDAC
	 * to declare the higher power curve (force values
	 * to be greater than 64). If we only have one curve
	 * we don't need to set this, if we have 2 curves and
	 * fill the table backwards this can also be used to
	 * switch from higher power curve to lower power curve */
	u8	edge_flag;
	int	i;

	/* When we have only one curve available
	 * that's the higher power curve. If we have
	 * two curves the first is the high power curve
	 * and the next is the low power curve. */
	if (pdcurves > 1) {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		mid_pwr_idx = table_max[1] - table_min[1] - 1;
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;

		/* If table size goes beyond 31.5dB, keep the
		 * upper 31.5dB range when setting tx power.
		 * Note: 126 = 31.5 dB in quarter dB steps */
		if (table_max[0] - table_min[1] > 126)
			min_pwr_idx = table_max[0] - 126;
		else
			min_pwr_idx = table_min[1];

		/* Since we fill table backwards
		 * start from high power curve */
		pcdac_tmp = pcdac_high_pwr;

		edge_flag = 0x40;
	} else {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		min_pwr_idx = table_min[0];
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
		pcdac_tmp = pcdac_high_pwr;
		edge_flag = 0;
	}

	/* This is used when setting tx power*/
	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;

	/* Fill Power to PCDAC table backwards */
	pwr = max_pwr_idx;
	for (i = 63; i >= 0; i--) {
		/* Entering lower power range, reset
		 * edge flag and set pcdac_tmp to lower
		 * power curve.*/
		if (edge_flag == 0x40 &&
		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
			edge_flag = 0x00;
			pcdac_tmp = pcdac_low_pwr;
			pwr = mid_pwr_idx / 2;
		}

		/* Don't go below 1, extrapolate below if we have
		 * already switched to the lower power curve -or
		 * we only have one curve and edge_flag is zero
		 * anyway */
		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
			while (i >= 0) {
				pcdac_out[i] = pcdac_out[i + 1];
				i--;
			}
			break;
		}

		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;

		/* Extrapolate above if pcdac is greater than
		 * 126 -this can happen because we OR pcdac_out
		 * value with edge_flag on high power curve */
		if (pcdac_out[i] > 126)
			pcdac_out[i] = 126;

		/* Decrease by a 0.5dB step */
		pwr--;
	}
}

/**
 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
 * @ah: The &struct ath5k_hw
 */
static void
ath5k_write_pcdac_table(struct ath5k_hw *ah)
{
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
	int	i;

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		ath5k_hw_reg_write(ah,
			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
			AR5K_PHY_PCDAC_TXPOWER(i));
	}
}


/*
 * Power to PDADC table functions
 */

/**
 * DOC: Power to PDADC table functions
 *
 * For RF2413 and later we have a Power to PDADC table (Power Detector)
 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
 * PDADC steps on y axis and looks like an exponential function like the
 * RF5111 curve.
 *
 * To recreate the curves we read the points from eeprom (eeprom.c)
 * and interpolate here. Note that in most cases only 2 (higher and lower)
 * curves are used (like RF5112) but vendors have the opportunity to include
 * all 4 curves on eeprom. The final curve (higher power) has an extra
 * point for better accuracy like RF5112.
 *
 * The process is similar to what we do above for RF5111/5112
 */

/**
 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
 * @ah: The &struct ath5k_hw
 * @pwr_min: Minimum power (x min)
 * @pwr_max: Maximum power (x max)
 * @pdcurves: Number of available curves
 *
 * Combine the various pd curves and create the final Power to PDADC table
 * We can have up to 4 pd curves, we need to do a similar process
 * as we do for RF5112. This time we don't have an edge_flag but we
 * set the gain boundaries on a separate register.
 */
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
{
	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
	u8 *pdadc_tmp;
	s16 pdadc_0;
	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
	u8 pd_gain_overlap;

	/* Note: Register value is initialized on initvals
	 * there is no feedback from hw.
	 * XXX: What about pd_gain_overlap from EEPROM ? */
	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;

	/* Create final PDADC table */
	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
		pdadc_tmp = ah->ah_txpower.tmpL[pdg];

		if (pdg == pdcurves - 1)
			/* 2 dB boundary stretch for last
			 * (higher power) curve */
			gain_boundaries[pdg] = pwr_max[pdg] + 4;
		else
			/* Set gain boundary in the middle
			 * between this curve and the next one */
			gain_boundaries[pdg] =
				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;

		/* Sanity check in case our 2 db stretch got out of
		 * range. */
		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;

		/* For the first curve (lower power)
		 * start from 0 dB */
		if (pdg == 0)
			pdadc_0 = 0;
		else
			/* For the other curves use the gain overlap */
			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
							pd_gain_overlap;

		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
		else
			pwr_step = 1;

		/* If pdadc_0 is negative, we need to extrapolate
		 * below this pdgain by a number of pwr_steps */
		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
			pdadc_0++;
		}

		/* Set last pwr level, using gain boundaries */
		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
		/* Limit it to be inside pwr range */
		table_size = pwr_max[pdg] - pwr_min[pdg];
		max_idx = min(pdadc_n, table_size);

		/* Fill pdadc_out table */
		while (pdadc_0 < max_idx && pdadc_i < 128)
			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];

		/* Need to extrapolate above this pdgain? */
		if (pdadc_n <= max_idx)
			continue;

		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
			pwr_step = pdadc_tmp[table_size - 1] -
						pdadc_tmp[table_size - 2];
		else
			pwr_step = 1;

		/* Extrapolate above */
		while ((pdadc_0 < (s16) pdadc_n) &&
		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
			s16 tmp = pdadc_tmp[table_size - 1] +
					(pdadc_0 - max_idx) * pwr_step;
			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
			pdadc_0++;
		}
	}

	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
		pdg++;
	}

	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
		pdadc_i++;
	}

	/* Set gain boundaries */
	ath5k_hw_reg_write(ah,
		AR5K_REG_SM(pd_gain_overlap,
			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
		AR5K_REG_SM(gain_boundaries[0],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
		AR5K_REG_SM(gain_boundaries[1],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
		AR5K_REG_SM(gain_boundaries[2],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
		AR5K_REG_SM(gain_boundaries[3],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
		AR5K_PHY_TPC_RG5);

	/* Used for setting rate power table */
	ah->ah_txpower.txp_min_idx = pwr_min[0];

}

/**
 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
 * @ah: The &struct ath5k_hw
 * @ee_mode: One of enum ath5k_driver_mode
 */
static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
	u8 pdcurves = ee->ee_pd_gains[ee_mode];
	u32 reg;
	u8 i;

	/* Select the right pdgain curves */

	/* Clear current settings */
	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
		AR5K_PHY_TPC_RG1_PDGAIN_2 |
		AR5K_PHY_TPC_RG1_PDGAIN_3 |
		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

	/*
	 * Use pd_gains curve from eeprom
	 *
	 * This overrides the default setting from initvals
	 * in case some vendors (e.g. Zcomax) don't use the default
	 * curves. If we don't honor their settings we 'll get a
	 * 5dB (1 * gain overlap ?) drop.
	 */
	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

	switch (pdcurves) {
	case 3:
		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
		fallthrough;
	case 2:
		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
		fallthrough;
	case 1:
		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
		break;
	}
	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
	}
}


/*
 * Common code for PCDAC/PDADC tables
 */

/**
 * ath5k_setup_channel_powertable() - Set up power table for this channel
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 * @ee_mode: One of enum ath5k_driver_mode
 * @type: One of enum ath5k_powertable_type (eeprom.h)
 *
 * This is the main function that uses all of the above
 * to set PCDAC/PDADC table on hw for the current channel.
 * This table is used for tx power calibration on the baseband,
 * without it we get weird tx power levels and in some cases
 * distorted spectral mask
 */
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			u8 ee_mode, u8 type)
{
	struct ath5k_pdgain_info *pdg_L, *pdg_R;
	struct ath5k_chan_pcal_info *pcinfo_L;
	struct ath5k_chan_pcal_info *pcinfo_R;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
	u8 *tmpL;
	u8 *tmpR;
	u32 target = channel->center_freq;
	int pdg, i;

	/* Get surrounding freq piers for this channel */
	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
						&pcinfo_L,
						&pcinfo_R);

	/* Loop over pd gain curves on
	 * surrounding freq piers by index */
	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {

		/* Fill curves in reverse order
		 * from lower power (max gain)
		 * to higher power. Use curve -> idx
		 * backmapping we did on eeprom init */
		u8 idx = pdg_curve_to_idx[pdg];

		/* Grab the needed curves by index */
		pdg_L = &pcinfo_L->pd_curves[idx];
		pdg_R = &pcinfo_R->pd_curves[idx];

		/* Initialize the temp tables */
		tmpL = ah->ah_txpower.tmpL[pdg];
		tmpR = ah->ah_txpower.tmpR[pdg];

		/* Set curve's x boundaries and create
		 * curves so that they cover the same
		 * range (if we don't do that one table
		 * will have values on some range and the
		 * other one won't have any so interpolation
		 * will fail) */
		table_min[pdg] = min(pdg_L->pd_pwr[0],
					pdg_R->pd_pwr[0]) / 2;

		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;

		/* Now create the curves on surrounding channels
		 * and interpolate if needed to get the final
		 * curve for this gain on this channel */
		switch (type) {
		case AR5K_PWRTABLE_LINEAR_PCDAC:
			/* Override min/max so that we don't loose
			 * accuracy (don't divide by 2) */
			table_min[pdg] = min(pdg_L->pd_pwr[0],
						pdg_R->pd_pwr[0]);

			table_max[pdg] =
				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
					pdg_R->pd_pwr[pdg_R->pd_points - 1]);

			/* Override minimum so that we don't get
			 * out of bounds while extrapolating
			 * below. Don't do this when we have 2
			 * curves and we are on the high power curve
			 * because table_min is ok in this case */
			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {

				table_min[pdg] =
					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
								pdg_R->pd_step,
								pdg_L->pd_pwr,
								pdg_R->pd_pwr);

				/* Don't go too low because we will
				 * miss the upper part of the curve.
				 * Note: 126 = 31.5dB (max power supported)
				 * in 0.25dB units */
				if (table_max[pdg] - table_min[pdg] > 126)
					table_min[pdg] = table_max[pdg] - 126;
			}

			fallthrough;
		case AR5K_PWRTABLE_PWR_TO_PCDAC:
		case AR5K_PWRTABLE_PWR_TO_PDADC:

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_L->pd_pwr,
						pdg_L->pd_step,
						pdg_L->pd_points, tmpL, type);

			/* We are in a calibration
			 * pier, no need to interpolate
			 * between freq piers */
			if (pcinfo_L == pcinfo_R)
				continue;

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_R->pd_pwr,
						pdg_R->pd_step,
						pdg_R->pd_points, tmpR, type);
			break;
		default:
			return -EINVAL;
		}

		/* Interpolate between curves
		 * of surrounding freq piers to
		 * get the final curve for this
		 * pd gain. Re-use tmpL for interpolation
		 * output */
		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
							(s16) pcinfo_L->freq,
							(s16) pcinfo_R->freq,
							(s16) tmpL[i],
							(s16) tmpR[i]);
		}
	}

	/* Now we have a set of curves for this
	 * channel on tmpL (x range is table_max - table_min
	 * and y values are tmpL[pdg][]) sorted in the same
	 * order as EEPROM (because we've used the backmapping).
	 * So for RF5112 it's from higher power to lower power
	 * and for RF2413 it's from lower power to higher power.
	 * For RF5111 we only have one curve. */

	/* Fill min and max power levels for this
	 * channel by interpolating the values on
	 * surrounding channels to complete the dataset */
	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->min_pwr, pcinfo_R->min_pwr);

	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->max_pwr, pcinfo_R->max_pwr);

	/* Fill PCDAC/PDADC table */
	switch (type) {
	case AR5K_PWRTABLE_LINEAR_PCDAC:
		/* For RF5112 we can have one or two curves
		 * and each curve covers a certain power lvl
		 * range so we need to do some more processing */
		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Set txp.offset so that we can
		 * match max power value with max
		 * table index */
		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
		break;
	case AR5K_PWRTABLE_PWR_TO_PCDAC:
		/* We are done for RF5111 since it has only
		 * one curve, just fit the curve on the table */
		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);

		/* No rate powertable adjustment for RF5111 */
		ah->ah_txpower.txp_min_idx = 0;
		ah->ah_txpower.txp_offset = 0;
		break;
	case AR5K_PWRTABLE_PWR_TO_PDADC:
		/* Set PDADC boundaries and fill
		 * final PDADC table */
		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Set txp.offset, note that table_min
		 * can be negative */
		ah->ah_txpower.txp_offset = table_min[0];
		break;
	default:
		return -EINVAL;
	}

	ah->ah_txpower.txp_setup = true;

	return 0;
}

/**
 * ath5k_write_channel_powertable() - Set power table for current channel on hw
 * @ah: The &struct ath5k_hw
 * @ee_mode: One of enum ath5k_driver_mode
 * @type: One of enum ath5k_powertable_type (eeprom.h)
 */
static void
ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
{
	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
	else
		ath5k_write_pcdac_table(ah);
}


/**
 * DOC: Per-rate tx power setting
 *
 * This is the code that sets the desired tx power limit (below
 * maximum) on hw for each rate (we also have TPC that sets
 * power per packet type). We do that by providing an index on the
 * PCDAC/PDADC table we set up above, for each rate.
 *
 * For now we only limit txpower based on maximum tx power
 * supported by hw (what's inside rate_info) + conformance test
 * limits. We need to limit this even more, based on regulatory domain
 * etc to be safe. Normally this is done from above so we don't care
 * here, all we care is that the tx power we set will be O.K.
 * for the hw (e.g. won't create noise on PA etc).
 *
 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
 * x values) and is indexed as follows:
 * rates[0] - rates[7] -> OFDM rates
 * rates[8] - rates[14] -> CCK rates
 * rates[15] -> XR rates (they all have the same power)
 */

/**
 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
 * @ah: The &struct ath5k_hw
 * @max_pwr: The maximum tx power requested in 0.5dB steps
 * @rate_info: The &struct ath5k_rate_pcal_info to fill
 * @ee_mode: One of enum ath5k_driver_mode
 */
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
			struct ath5k_rate_pcal_info *rate_info,
			u8 ee_mode)
{
	unsigned int i;
	u16 *rates;
	s16 rate_idx_scaled = 0;

	/* max_pwr is power level we got from driver/user in 0.5dB
	 * units, switch to 0.25dB units so we can compare */
	max_pwr *= 2;
	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;

	/* apply rate limits */
	rates = ah->ah_txpower.txp_rates_power_table;

	/* OFDM rates 6 to 24Mb/s */
	for (i = 0; i < 5; i++)
		rates[i] = min(max_pwr, rate_info->target_power_6to24);

	/* Rest OFDM rates */
	rates[5] = min(rates[0], rate_info->target_power_36);
	rates[6] = min(rates[0], rate_info->target_power_48);
	rates[7] = min(rates[0], rate_info->target_power_54);

	/* CCK rates */
	/* 1L */
	rates[8] = min(rates[0], rate_info->target_power_6to24);
	/* 2L */
	rates[9] = min(rates[0], rate_info->target_power_36);
	/* 2S */
	rates[10] = min(rates[0], rate_info->target_power_36);
	/* 5L */
	rates[11] = min(rates[0], rate_info->target_power_48);
	/* 5S */
	rates[12] = min(rates[0], rate_info->target_power_48);
	/* 11L */
	rates[13] = min(rates[0], rate_info->target_power_54);
	/* 11S */
	rates[14] = min(rates[0], rate_info->target_power_54);

	/* XR rates */
	rates[15] = min(rates[0], rate_info->target_power_6to24);

	/* CCK rates have different peak to average ratio
	 * so we have to tweak their power so that gainf
	 * correction works ok. For this we use OFDM to
	 * CCK delta from eeprom */
	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
		for (i = 8; i <= 15; i++)
			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;

	/* Save min/max and current tx power for this channel
	 * in 0.25dB units.
	 *
	 * Note: We use rates[0] for current tx power because
	 * it covers most of the rates, in most cases. It's our
	 * tx power limit and what the user expects to see. */
	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];

	/* Set max txpower for correct OFDM operation on all rates
	 * -that is the txpower for 54Mbit-, it's used for the PAPD
	 * gain probe and it's in 0.5dB units */
	ah->ah_txpower.txp_ofdm = rates[7];

	/* Now that we have all rates setup use table offset to
	 * match the power range set by user with the power indices
	 * on PCDAC/PDADC table */
	for (i = 0; i < 16; i++) {
		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
		/* Don't get out of bounds */
		if (rate_idx_scaled > 63)
			rate_idx_scaled = 63;
		if (rate_idx_scaled < 0)
			rate_idx_scaled = 0;
		rates[i] = rate_idx_scaled;
	}
}


/**
 * ath5k_hw_txpower() - Set transmission power limit for a given channel
 * @ah: The &struct ath5k_hw
 * @channel: The &struct ieee80211_channel
 * @txpower: Requested tx power in 0.5dB steps
 *
 * Combines all of the above to set the requested tx power limit
 * on hw.
 */
static int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
		 u8 txpower)
{
	struct ath5k_rate_pcal_info rate_info;
	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
	int ee_mode;
	u8 type;
	int ret;

	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
		return -EINVAL;
	}

	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);

	/* Initialize TX power table */
	switch (ah->ah_radio) {
	case AR5K_RF5110:
		/* TODO */
		return 0;
	case AR5K_RF5111:
		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
		break;
	case AR5K_RF5112:
		type = AR5K_PWRTABLE_LINEAR_PCDAC;
		break;
	case AR5K_RF2413:
	case AR5K_RF5413:
	case AR5K_RF2316:
	case AR5K_RF2317:
	case AR5K_RF2425:
		type = AR5K_PWRTABLE_PWR_TO_PDADC;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * If we don't change channel/mode skip tx powertable calculation
	 * and use the cached one.
	 */
	if (!ah->ah_txpower.txp_setup ||
	    (channel->hw_value != curr_channel->hw_value) ||
	    (channel->center_freq != curr_channel->center_freq)) {
		/* Reset TX power values but preserve requested
		 * tx power from above */
		int requested_txpower = ah->ah_txpower.txp_requested;

		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));

		/* Restore TPC setting and requested tx power */
		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;

		ah->ah_txpower.txp_requested = requested_txpower;

		/* Calculate the powertable */
		ret = ath5k_setup_channel_powertable(ah, channel,
							ee_mode, type);
		if (ret)
			return ret;
	}

	/* Write table on hw */
	ath5k_write_channel_powertable(ah, ee_mode, type);

	/* Limit max power if we have a CTL available */
	ath5k_get_max_ctl_power(ah, channel);

	/* FIXME: Antenna reduction stuff */

	/* FIXME: Limit power on turbo modes */

	/* FIXME: TPC scale reduction */

	/* Get surrounding channels for per-rate power table
	 * calibration */
	ath5k_get_rate_pcal_data(ah, channel, &rate_info);

	/* Setup rate power table */
	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);

	/* Write rate power table on hw */
	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);

	/* FIXME: TPC support */
	if (ah->ah_txpower.txp_tpc) {
		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);

		ath5k_hw_reg_write(ah,
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
			AR5K_TPC);
	} else {
		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
			AR5K_PHY_TXPOWER_RATE_MAX);
	}

	return 0;
}

/**
 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
 * @ah: The &struct ath5k_hw
 * @txpower: The requested tx power limit in 0.5dB steps
 *
 * This function provides access to ath5k_hw_txpower to the driver in
 * case user or an application changes it while PHY is running.
 */
int
ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
{
	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
		"changing txpower to %d\n", txpower);

	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
}


/*************\
 Init function
\*************/

/**
 * ath5k_hw_phy_init() - Initialize PHY
 * @ah: The &struct ath5k_hw
 * @channel: The @struct ieee80211_channel
 * @mode: One of enum ath5k_driver_mode
 * @fast: Try a fast channel switch instead
 *
 * This is the main function used during reset to initialize PHY
 * or do a fast channel change if possible.
 *
 * NOTE: Do not call this one from the driver, it assumes PHY is in a
 * warm reset state !
 */
int
ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
		      u8 mode, bool fast)
{
	struct ieee80211_channel *curr_channel;
	int ret, i;
	u32 phy_tst1;
	ret = 0;

	/*
	 * Sanity check for fast flag
	 * Don't try fast channel change when changing modulation
	 * mode/band. We check for chip compatibility on
	 * ath5k_hw_reset.
	 */
	curr_channel = ah->ah_current_channel;
	if (fast && (channel->hw_value != curr_channel->hw_value))
		return -EINVAL;

	/*
	 * On fast channel change we only set the synth parameters
	 * while PHY is running, enable calibration and skip the rest.
	 */
	if (fast) {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
				    AR5K_PHY_RFBUS_REQ_REQUEST);
		for (i = 0; i < 100; i++) {
			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
				break;
			udelay(5);
		}
		/* Failed */
		if (i >= 100)
			return -EIO;

		/* Set channel and wait for synth */
		ret = ath5k_hw_channel(ah, channel);
		if (ret)
			return ret;

		ath5k_hw_wait_for_synth(ah, channel);
	}

	/*
	 * Set TX power
	 *
	 * Note: We need to do that before we set
	 * RF buffer settings on 5211/5212+ so that we
	 * properly set curve indices.
	 */
	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
					ah->ah_txpower.txp_requested * 2 :
					AR5K_TUNE_MAX_TXPOWER);
	if (ret)
		return ret;

	/* Write OFDM timings on 5212*/
	if (ah->ah_version == AR5K_AR5212 &&
		channel->hw_value != AR5K_MODE_11B) {

		ret = ath5k_hw_write_ofdm_timings(ah, channel);
		if (ret)
			return ret;

		/* Spur info is available only from EEPROM versions
		 * greater than 5.3, but the EEPROM routines will use
		 * static values for older versions */
		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
			ath5k_hw_set_spur_mitigation_filter(ah,
							    channel);
	}

	/* If we used fast channel switching
	 * we are done, release RF bus and
	 * fire up NF calibration.
	 *
	 * Note: Only NF calibration due to
	 * channel change, not AGC calibration
	 * since AGC is still running !
	 */
	if (fast) {
		/*
		 * Release RF Bus grant
		 */
		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
				    AR5K_PHY_RFBUS_REQ_REQUEST);

		/*
		 * Start NF calibration
		 */
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_NF);

		return ret;
	}

	/*
	 * For 5210 we do all initialization using
	 * initvals, so we don't have to modify
	 * any settings (5210 also only supports
	 * a/aturbo modes)
	 */
	if (ah->ah_version != AR5K_AR5210) {

		/*
		 * Write initial RF gain settings
		 * This should work for both 5111/5112
		 */
		ret = ath5k_hw_rfgain_init(ah, channel->band);
		if (ret)
			return ret;

		usleep_range(1000, 1500);

		/*
		 * Write RF buffer
		 */
		ret = ath5k_hw_rfregs_init(ah, channel, mode);
		if (ret)
			return ret;

		/*Enable/disable 802.11b mode on 5111
		(enable 2111 frequency converter + CCK)*/
		if (ah->ah_radio == AR5K_RF5111) {
			if (mode == AR5K_MODE_11B)
				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
				    AR5K_TXCFG_B_MODE);
			else
				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
				    AR5K_TXCFG_B_MODE);
		}

	} else if (ah->ah_version == AR5K_AR5210) {
		usleep_range(1000, 1500);
		/* Disable phy and wait */
		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
		usleep_range(1000, 1500);
	}

	/* Set channel on PHY */
	ret = ath5k_hw_channel(ah, channel);
	if (ret)
		return ret;

	/*
	 * Enable the PHY and wait until completion
	 * This includes BaseBand and Synthesizer
	 * activation.
	 */
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);

	ath5k_hw_wait_for_synth(ah, channel);

	/*
	 * Perform ADC test to see if baseband is ready
	 * Set tx hold and check adc test register
	 */
	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
	for (i = 0; i <= 20; i++) {
		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
			break;
		usleep_range(200, 250);
	}
	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);

	/*
	 * Start automatic gain control calibration
	 *
	 * During AGC calibration RX path is re-routed to
	 * a power detector so we don't receive anything.
	 *
	 * This method is used to calibrate some static offsets
	 * used together with on-the fly I/Q calibration (the
	 * one performed via ath5k_hw_phy_calibrate), which doesn't
	 * interrupt rx path.
	 *
	 * While rx path is re-routed to the power detector we also
	 * start a noise floor calibration to measure the
	 * card's noise floor (the noise we measure when we are not
	 * transmitting or receiving anything).
	 *
	 * If we are in a noisy environment, AGC calibration may time
	 * out and/or noise floor calibration might timeout.
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);

	/* At the same time start I/Q calibration for QAM constellation
	 * -no need for CCK- */
	ah->ah_iq_cal_needed = false;
	if (!(mode == AR5K_MODE_11B)) {
		ah->ah_iq_cal_needed = true;
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
				AR5K_PHY_IQ_RUN);
	}

	/* Wait for gain calibration to finish (we check for I/Q calibration
	 * during ath5k_phy_calibrate) */
	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_CAL, 0, false)) {
		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
			channel->center_freq);
	}

	/* Restore antenna mode */
	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);

	return ret;
}