summaryrefslogtreecommitdiff
path: root/drivers/net/can/m_can/m_can.c
blob: ddcbe8bda55a30d4526264cbe14e2392ca21175c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
/*
 * CAN bus driver for Bosch M_CAN controller
 *
 * Copyright (C) 2014 Freescale Semiconductor, Inc.
 *	Dong Aisheng <b29396@freescale.com>
 *
 * Bosch M_CAN user manual can be obtained from:
 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
 * mcan_users_manual_v302.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>

#include <linux/can/dev.h>

/* napi related */
#define M_CAN_NAPI_WEIGHT	64

/* message ram configuration data length */
#define MRAM_CFG_LEN	8

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
	M_CAN_FBTP	= 0xc,
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
	M_CAN_BTP	= 0x1c,
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

/* m_can lec values */
enum m_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
};

enum m_can_mram_cfg {
	MRAM_SIDF = 0,
	MRAM_XIDF,
	MRAM_RXF0,
	MRAM_RXF1,
	MRAM_RXB,
	MRAM_TXE,
	MRAM_TXB,
	MRAM_CFG_NUM,
};

/* Fast Bit Timing & Prescaler Register (FBTP) */
#define FBTR_FBRP_MASK		0x1f
#define FBTR_FBRP_SHIFT		16
#define FBTR_FTSEG1_SHIFT	8
#define FBTR_FTSEG1_MASK	(0xf << FBTR_FTSEG1_SHIFT)
#define FBTR_FTSEG2_SHIFT	4
#define FBTR_FTSEG2_MASK	(0x7 << FBTR_FTSEG2_SHIFT)
#define FBTR_FSJW_SHIFT		0
#define FBTR_FSJW_MASK		0x3

/* Test Register (TEST) */
#define TEST_LBCK	BIT(4)

/* CC Control Register(CCCR) */
#define CCCR_TEST		BIT(7)
#define CCCR_CMR_MASK		0x3
#define CCCR_CMR_SHIFT		10
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		0x3
#define CCCR_CME_SHIFT		8
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
#define CCCR_TEST		BIT(7)
#define CCCR_MON		BIT(5)
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
#define CCCR_CANFD		0x10

/* Bit Timing & Prescaler Register (BTP) */
#define BTR_BRP_MASK		0x3ff
#define BTR_BRP_SHIFT		16
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0x3f << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		4
#define BTR_TSEG2_MASK		(0xf << BTR_TSEG2_SHIFT)
#define BTR_SJW_SHIFT		0
#define BTR_SJW_MASK		0xf

/* Error Counter Register(ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_SHIFT		8
#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
#define ECR_TEC_SHIFT		0
#define ECR_TEC_MASK		0xff

/* Protocol Status Register(PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	0x7

/* Interrupt Register(IR) */
#define IR_ALL_INT	0xffffffff
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
#define IR_ERR_LEC	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS	(IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
#define IR_ERR_ALL	(IR_ERR_STATE | IR_ERR_BUS)

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT0	BIT(0)
#define ILE_EINT1	BIT(1)

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
#define RXFC_FWM_OFF	24
#define RXFC_FWM_MASK	0x7f
#define RXFC_FWM_1	(1 << RXFC_FWM_OFF)
#define RXFC_FS_OFF	16
#define RXFC_FS_MASK	0x7f

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
#define RXFS_FPI_OFF	16
#define RXFS_FPI_MASK	0x3f0000
#define RXFS_FGI_OFF	8
#define RXFS_FGI_MASK	0x3f00
#define RXFS_FFL_MASK	0x7f

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define M_CAN_RXESC_8BYTES	0x0
#define M_CAN_RXESC_64BYTES	0x777

/* Tx Buffer Configuration(TXBC) */
#define TXBC_NDTB_OFF		16
#define TXBC_NDTB_MASK		0x3f

/* Tx Buffer Element Size Configuration(TXESC) */
#define TXESC_TBDS_8BYTES	0x0
#define TXESC_TBDS_64BYTES	0x7

/* Tx Event FIFO Con.guration (TXEFC) */
#define TXEFC_EFS_OFF		16
#define TXEFC_EFS_MASK		0x3f

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
#define RXB_ELEMENT_SIZE	16
#define TXE_ELEMENT_SIZE	8
#define TXB_ELEMENT_SIZE	72

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))

/* Rx Buffer Element */
/* R0 */
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
/* R1 */
#define RX_BUF_ANMF		BIT(31)
#define RX_BUF_EDL		BIT(21)
#define RX_BUF_BRS		BIT(20)

/* Tx Buffer Element */
/* R0 */
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)

/* address offset and element number for each FIFO/Buffer in the Message RAM */
struct mram_cfg {
	u16 off;
	u8  num;
};

/* m_can private data structure */
struct m_can_priv {
	struct can_priv can;	/* must be the first member */
	struct napi_struct napi;
	struct net_device *dev;
	struct device *device;
	struct clk *hclk;
	struct clk *cclk;
	void __iomem *base;
	u32 irqstatus;

	/* message ram configuration */
	void __iomem *mram_base;
	struct mram_cfg mcfg[MRAM_CFG_NUM];
};

static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
{
	return readl(priv->base + reg);
}

static inline void m_can_write(const struct m_can_priv *priv,
			       enum m_can_reg reg, u32 val)
{
	writel(val, priv->base + reg);
}

static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
				  u32 fgi, unsigned int offset)
{
	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
		     fgi * RXF0_ELEMENT_SIZE + offset);
}

static inline void m_can_fifo_write(const struct m_can_priv *priv,
				    u32 fpi, unsigned int offset, u32 val)
{
	writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
	       fpi * TXB_ELEMENT_SIZE + offset);
}

static inline void m_can_config_endisable(const struct m_can_priv *priv,
					  bool enable)
{
	u32 cccr = m_can_read(priv, M_CAN_CCCR);
	u32 timeout = 10;
	u32 val = 0;

	if (enable) {
		/* enable m_can configuration */
		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
		udelay(5);
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
	} else {
		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
		if (timeout == 0) {
			netdev_warn(priv->dev, "Failed to init module\n");
			return;
		}
		timeout--;
		udelay(1);
	}
}

static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
{
	/* Only interrupt line 0 is used in this driver */
	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
}

static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
{
	m_can_write(priv, M_CAN_ILE, 0x0);
}

static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
{
	struct net_device_stats *stats = &dev->stats;
	struct m_can_priv *priv = netdev_priv(dev);
	struct canfd_frame *cf;
	struct sk_buff *skb;
	u32 id, fgi, dlc;
	int i;

	/* calculate the fifo get index for where to read data */
	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
	if (dlc & RX_BUF_EDL)
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return;
	}

	if (dlc & RX_BUF_EDL)
		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
	else
		cf->len = get_can_dlc((dlc >> 16) & 0x0F);

	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
	if (id & RX_BUF_XTD)
		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (id >> 18) & CAN_SFF_MASK;

	if (id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}

	if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) {
		cf->can_id |= CAN_RTR_FLAG;
	} else {
		if (dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		for (i = 0; i < cf->len; i += 4)
			*(u32 *)(cf->data + i) =
				m_can_fifo_read(priv, fgi,
						M_CAN_FIFO_DATA(i / 4));
	}

	/* acknowledge rx fifo 0 */
	m_can_write(priv, M_CAN_RXF0A, fgi);

	stats->rx_packets++;
	stats->rx_bytes += cf->len;

	netif_receive_skb(skb);
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct m_can_priv *priv = netdev_priv(dev);
	u32 pkts = 0;
	u32 rxfs;

	rxfs = m_can_read(priv, M_CAN_RXF0S);
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
		if (rxfs & RXFS_RFL)
			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");

		m_can_read_fifo(dev, rxfs);

		quota--;
		pkts++;
		rxfs = m_can_read(priv, M_CAN_RXF0S);
	}

	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
	struct m_can_priv *priv = netdev_priv(dev);
	unsigned int ecr;

	ecr = m_can_read(priv, M_CAN_ECR);
	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
	bec->txerr = ecr & ECR_TEC_MASK;

	return 0;
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int err;

	err = clk_prepare_enable(priv->hclk);
	if (err)
		return err;

	err = clk_prepare_enable(priv->cclk);
	if (err) {
		clk_disable_unprepare(priv->hclk);
		return err;
	}

	__m_can_get_berr_counter(dev, bec);

	clk_disable_unprepare(priv->cclk);
	clk_disable_unprepare(priv->hclk);

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(priv);
		priv->can.can_stats.bus_off++;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	__m_can_get_berr_counter(dev, &bec);

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		ecr = m_can_read(priv, M_CAN_ECR);
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;

	if ((psr & PSR_EW) &&
	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

	if ((psr & PSR_EP) &&
	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

	if ((psr & PSR_BO) &&
	    (priv->can.state != CAN_STATE_BUS_OFF)) {
		netdev_dbg(dev, "entered error bus off state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
	if (irqstatus & IR_ELO)
		netdev_err(dev, "Error Logging Overflow\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u32 psr)
{
	psr &= LEC_UNUSED;

	return psr && (psr != LEC_UNUSED);
}

static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
	    is_lec_err(psr))
		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);

	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;
	u32 irqstatus, psr;

	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
	if (!irqstatus)
		goto end;

	psr = m_can_read(priv, M_CAN_PSR);
	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev, psr);

	if (irqstatus & IR_ERR_BUS)
		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);

	if (irqstatus & IR_RF0N)
		work_done += m_can_do_rx_poll(dev, (quota - work_done));

	if (work_done < quota) {
		napi_complete_done(napi, work_done);
		m_can_enable_all_interrupts(priv);
	}

end:
	return work_done;
}

static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	u32 ir;

	ir = m_can_read(priv, M_CAN_IR);
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	if (ir & IR_ALL_INT)
		m_can_write(priv, M_CAN_IR, ir);

	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
		priv->irqstatus = ir;
		m_can_disable_all_interrupts(priv);
		napi_schedule(&priv->napi);
	}

	/* transmission complete interrupt */
	if (ir & IR_TC) {
		stats->tx_bytes += can_get_echo_skb(dev, 0);
		stats->tx_packets++;
		can_led_event(dev, CAN_LED_EVENT_TX);
		netif_wake_queue(dev);
	}

	return IRQ_HANDLED;
}

static const struct can_bittiming_const m_can_bittiming_const = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

static int m_can_set_bittiming(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
	const struct can_bittiming *dbt = &priv->can.data_bittiming;
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
			(tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
	m_can_write(priv, M_CAN_BTP, reg_btp);

	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;
		reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) |
				(tseg1 << FBTR_FTSEG1_SHIFT) |
				(tseg2 << FBTR_FTSEG2_SHIFT);
		m_can_write(priv, M_CAN_FBTP, reg_btp);
	}

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
 * - configure mode
 * - setup bittiming
 */
static void m_can_chip_config(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	u32 cccr, test;

	m_can_config_endisable(priv, true);

	/* RX Buffer/FIFO Element Size 64 bytes data field */
	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);

	/* Accept Non-matching Frames Into FIFO 0 */
	m_can_write(priv, M_CAN_GFC, 0x0);

	/* only support one Tx Buffer currently */
	m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
		    priv->mcfg[MRAM_TXB].off);

	/* support 64 bytes payload */
	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);

	m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
		    priv->mcfg[MRAM_TXE].off);

	/* rx fifo configuration, blocking mode, fifo size 1 */
	m_can_write(priv, M_CAN_RXF0C,
		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
		     priv->mcfg[MRAM_RXF0].off);

	m_can_write(priv, M_CAN_RXF1C,
		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
		     priv->mcfg[MRAM_RXF1].off);

	cccr = m_can_read(priv, M_CAN_CCCR);
	cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
		(CCCR_CME_MASK << CCCR_CME_SHIFT));
	test = m_can_read(priv, M_CAN_TEST);
	test &= ~TEST_LBCK;

	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
		cccr |= CCCR_MON;

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		cccr |= CCCR_TEST;
		test |= TEST_LBCK;
	}

	if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
		cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;

	m_can_write(priv, M_CAN_CCCR, cccr);
	m_can_write(priv, M_CAN_TEST, test);

	/* enable interrupts */
	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
	else
		m_can_write(priv, M_CAN_IE, IR_ALL_INT);

	/* route all interrupts to INT0 */
	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);

	/* set bittiming params */
	m_can_set_bittiming(dev);

	m_can_config_endisable(priv, false);
}

static void m_can_start(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	/* basic m_can configuration */
	m_can_chip_config(dev);

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	m_can_enable_all_interrupts(priv);
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static void free_m_can_dev(struct net_device *dev)
{
	free_candev(dev);
}

static struct net_device *alloc_m_can_dev(void)
{
	struct net_device *dev;
	struct m_can_priv *priv;

	dev = alloc_candev(sizeof(*priv), 1);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &m_can_bittiming_const;
	priv->can.data_bittiming_const = &m_can_data_bittiming_const;
	priv->can.do_set_mode = m_can_set_mode;
	priv->can.do_get_berr_counter = m_can_get_berr_counter;

	/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */
	can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);

	/* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING |
					CAN_CTRLMODE_FD;

	return dev;
}

static int m_can_open(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int err;

	err = clk_prepare_enable(priv->hclk);
	if (err)
		return err;

	err = clk_prepare_enable(priv->cclk);
	if (err)
		goto exit_disable_hclk;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_cclk;
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
			  dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	m_can_start(dev);

	can_led_event(dev, CAN_LED_EVENT_OPEN);
	napi_enable(&priv->napi);
	netif_start_queue(dev);

	return 0;

exit_irq_fail:
	close_candev(dev);
exit_disable_cclk:
	clk_disable_unprepare(priv->cclk);
exit_disable_hclk:
	clk_disable_unprepare(priv->hclk);
	return err;
}

static void m_can_stop(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	m_can_disable_all_interrupts(priv);

	clk_disable_unprepare(priv->hclk);
	clk_disable_unprepare(priv->cclk);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int m_can_close(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	m_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
	can_led_event(dev, CAN_LED_EVENT_STOP);

	return 0;
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
	u32 id, cccr;
	int i;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

	netif_stop_queue(dev);

	if (cf->can_id & CAN_EFF_FLAG) {
		id = cf->can_id & CAN_EFF_MASK;
		id |= TX_BUF_XTD;
	} else {
		id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		id |= TX_BUF_RTR;

	/* message ram configuration */
	m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
	m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16);

	for (i = 0; i < cf->len; i += 4)
		m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4),
				 *(u32 *)(cf->data + i));

	can_put_echo_skb(skb, dev, 0);

	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
		cccr = m_can_read(priv, M_CAN_CCCR);
		cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
		if (can_is_canfd_skb(skb)) {
			if (cf->flags & CANFD_BRS)
				cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT;
			else
				cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT;
		} else {
			cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
		}
		m_can_write(priv, M_CAN_CCCR, cccr);
	}

	/* enable first TX buffer to start transfer  */
	m_can_write(priv, M_CAN_TXBTIE, 0x1);
	m_can_write(priv, M_CAN_TXBAR, 0x1);

	return NETDEV_TX_OK;
}

static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
	.ndo_change_mtu = can_change_mtu,
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;

	return register_candev(dev);
}

static int m_can_of_parse_mram(struct platform_device *pdev,
			       struct m_can_priv *priv)
{
	struct device_node *np = pdev->dev.of_node;
	struct resource *res;
	void __iomem *addr;
	u32 out_val[MRAM_CFG_LEN];
	int i, start, end, ret;

	/* message ram could be shared */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
	if (!res)
		return -ENODEV;

	addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
	if (!addr)
		return -ENOMEM;

	/* get message ram configuration */
	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
					 out_val, sizeof(out_val) / 4);
	if (ret) {
		dev_err(&pdev->dev, "can not get message ram configuration\n");
		return -ENODEV;
	}

	priv->mram_base = addr;
	priv->mcfg[MRAM_SIDF].off = out_val[0];
	priv->mcfg[MRAM_SIDF].num = out_val[1];
	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
	priv->mcfg[MRAM_XIDF].num = out_val[2];
	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
	priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
	priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
	priv->mcfg[MRAM_RXB].num = out_val[5];
	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
	priv->mcfg[MRAM_TXE].num = out_val[6];
	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
	priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;

	dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
		priv->mram_base,
		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);

	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
	start = priv->mcfg[MRAM_SIDF].off;
	end = priv->mcfg[MRAM_TXB].off +
		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
	for (i = start; i < end; i += 4)
		writel(0x0, priv->mram_base + i);

	return 0;
}

static int m_can_plat_probe(struct platform_device *pdev)
{
	struct net_device *dev;
	struct m_can_priv *priv;
	struct resource *res;
	void __iomem *addr;
	struct clk *hclk, *cclk;
	int irq, ret;

	hclk = devm_clk_get(&pdev->dev, "hclk");
	cclk = devm_clk_get(&pdev->dev, "cclk");
	if (IS_ERR(hclk) || IS_ERR(cclk)) {
		dev_err(&pdev->dev, "no clock find\n");
		return -ENODEV;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
	addr = devm_ioremap_resource(&pdev->dev, res);
	irq = platform_get_irq_byname(pdev, "int0");
	if (IS_ERR(addr) || irq < 0)
		return -EINVAL;

	/* allocate the m_can device */
	dev = alloc_m_can_dev();
	if (!dev)
		return -ENOMEM;

	priv = netdev_priv(dev);
	dev->irq = irq;
	priv->base = addr;
	priv->device = &pdev->dev;
	priv->hclk = hclk;
	priv->cclk = cclk;
	priv->can.clock.freq = clk_get_rate(cclk);

	ret = m_can_of_parse_mram(pdev, priv);
	if (ret)
		goto failed_free_dev;

	platform_set_drvdata(pdev, dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	ret = register_m_can_dev(dev);
	if (ret) {
		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
			KBUILD_MODNAME, ret);
		goto failed_free_dev;
	}

	devm_can_led_init(dev);

	dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
		 KBUILD_MODNAME, priv->base, dev->irq);

	return 0;

failed_free_dev:
	free_m_can_dev(dev);
	return ret;
}

static __maybe_unused int m_can_suspend(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct m_can_priv *priv = netdev_priv(ndev);

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
	}

	/* TODO: enter low power */

	priv->can.state = CAN_STATE_SLEEPING;

	return 0;
}

static __maybe_unused int m_can_resume(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct m_can_priv *priv = netdev_priv(ndev);

	/* TODO: exit low power */

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	if (netif_running(ndev)) {
		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}

static void unregister_m_can_dev(struct net_device *dev)
{
	unregister_candev(dev);
}

static int m_can_plat_remove(struct platform_device *pdev)
{
	struct net_device *dev = platform_get_drvdata(pdev);

	unregister_m_can_dev(dev);
	platform_set_drvdata(pdev, NULL);

	free_m_can_dev(dev);

	return 0;
}

static const struct dev_pm_ops m_can_pmops = {
	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
};

static const struct of_device_id m_can_of_table[] = {
	{ .compatible = "bosch,m_can", .data = NULL },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, m_can_of_table);

static struct platform_driver m_can_plat_driver = {
	.driver = {
		.name = KBUILD_MODNAME,
		.of_match_table = m_can_of_table,
		.pm     = &m_can_pmops,
	},
	.probe = m_can_plat_probe,
	.remove = m_can_plat_remove,
};

module_platform_driver(m_can_plat_driver);

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");