summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_dpp_cm.c
blob: ed1216b53465db99eb3389611b2892350e509123 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"

#include "core_types.h"

#include "reg_helper.h"
#include "dcn10_dpp.h"
#include "basics/conversion.h"
#include "dcn10_cm_common.h"

#define NUM_PHASES    64
#define HORZ_MAX_TAPS 8
#define VERT_MAX_TAPS 8

#define BLACK_OFFSET_RGB_Y 0x0
#define BLACK_OFFSET_CBCR  0x8000

#define REG(reg)\
	dpp->tf_regs->reg

#define CTX \
	dpp->base.ctx

#undef FN
#define FN(reg_name, field_name) \
	dpp->tf_shift->field_name, dpp->tf_mask->field_name

struct dcn10_input_csc_matrix {
	enum dc_color_space color_space;
	uint16_t regval[12];
};

enum dcn10_coef_filter_type_sel {
	SCL_COEF_LUMA_VERT_FILTER = 0,
	SCL_COEF_LUMA_HORZ_FILTER = 1,
	SCL_COEF_CHROMA_VERT_FILTER = 2,
	SCL_COEF_CHROMA_HORZ_FILTER = 3,
	SCL_COEF_ALPHA_VERT_FILTER = 4,
	SCL_COEF_ALPHA_HORZ_FILTER = 5
};

enum dscl_autocal_mode {
	AUTOCAL_MODE_OFF = 0,

	/* Autocal calculate the scaling ratio and initial phase and the
	 * DSCL_MODE_SEL must be set to 1
	 */
	AUTOCAL_MODE_AUTOSCALE = 1,
	/* Autocal perform auto centering without replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOCENTER = 2,
	/* Autocal perform auto centering and auto replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOREPLICATE = 3
};

enum dscl_mode_sel {
	DSCL_MODE_SCALING_444_BYPASS = 0,
	DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
	DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
	DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
	DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
	DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
	DSCL_MODE_DSCL_BYPASS = 6
};

enum gamut_remap_select {
	GAMUT_REMAP_BYPASS = 0,
	GAMUT_REMAP_COEFF,
	GAMUT_REMAP_COMA_COEFF,
	GAMUT_REMAP_COMB_COEFF
};

static const struct dcn10_input_csc_matrix dcn10_input_csc_matrix[] = {
	{COLOR_SPACE_SRGB,
		{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
	{COLOR_SPACE_SRGB_LIMITED,
		{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
	{COLOR_SPACE_YCBCR601,
		{0x2cdd, 0x2000, 0, 0xe991, 0xe926, 0x2000, 0xf4fd, 0x10ef,
						0, 0x2000, 0x38b4, 0xe3a6} },
	{COLOR_SPACE_YCBCR601_LIMITED,
		{0x3353, 0x2568, 0, 0xe400, 0xe5dc, 0x2568, 0xf367, 0x1108,
						0, 0x2568, 0x40de, 0xdd3a} },
	{COLOR_SPACE_YCBCR709,
		{0x3265, 0x2000, 0, 0xe6ce, 0xf105, 0x2000, 0xfa01, 0xa7d, 0,
						0x2000, 0x3b61, 0xe24f} },

	{COLOR_SPACE_YCBCR709_LIMITED,
		{0x39a6, 0x2568, 0, 0xe0d6, 0xeedd, 0x2568, 0xf925, 0x9a8, 0,
						0x2568, 0x43ee, 0xdbb2} }
};



static void program_gamut_remap(
		struct dcn10_dpp *dpp,
		const uint16_t *regval,
		enum gamut_remap_select select)
{
	uint16_t selection = 0;
	struct color_matrices_reg gam_regs;

	if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
		REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
				CM_GAMUT_REMAP_MODE, 0);
		return;
	}
	switch (select) {
	case GAMUT_REMAP_COEFF:
		selection = 1;
		break;
	case GAMUT_REMAP_COMA_COEFF:
		selection = 2;
		break;
	case GAMUT_REMAP_COMB_COEFF:
		selection = 3;
		break;
	default:
		break;
	}

	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_GAMUT_REMAP_C11;
	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;


	if (select == GAMUT_REMAP_COEFF) {
		gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				regval,
				&gam_regs);

	} else  if (select == GAMUT_REMAP_COMA_COEFF) {

		gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				regval,
				&gam_regs);

	} else {

		gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				regval,
				&gam_regs);
	}

	REG_SET(
			CM_GAMUT_REMAP_CONTROL, 0,
			CM_GAMUT_REMAP_MODE, selection);

}

void dpp1_cm_set_gamut_remap(
	struct dpp *dpp_base,
	const struct dpp_grph_csc_adjustment *adjust)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
		/* Bypass if type is bypass or hw */
		program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
	else {
		struct fixed31_32 arr_matrix[12];
		uint16_t arr_reg_val[12];

		arr_matrix[0] = adjust->temperature_matrix[0];
		arr_matrix[1] = adjust->temperature_matrix[1];
		arr_matrix[2] = adjust->temperature_matrix[2];
		arr_matrix[3] = dal_fixed31_32_zero;

		arr_matrix[4] = adjust->temperature_matrix[3];
		arr_matrix[5] = adjust->temperature_matrix[4];
		arr_matrix[6] = adjust->temperature_matrix[5];
		arr_matrix[7] = dal_fixed31_32_zero;

		arr_matrix[8] = adjust->temperature_matrix[6];
		arr_matrix[9] = adjust->temperature_matrix[7];
		arr_matrix[10] = adjust->temperature_matrix[8];
		arr_matrix[11] = dal_fixed31_32_zero;

		convert_float_matrix(
			arr_reg_val, arr_matrix, 12);

		program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
	}
}

void dpp1_cm_set_output_csc_default(
		struct dpp *dpp_base,
		enum dc_color_space colorspace)
{

	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	uint32_t ocsc_mode = 0;

	switch (colorspace) {
		case COLOR_SPACE_SRGB:
		case COLOR_SPACE_2020_RGB_FULLRANGE:
			ocsc_mode = 0;
			break;
		case COLOR_SPACE_SRGB_LIMITED:
		case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
			ocsc_mode = 1;
			break;
		case COLOR_SPACE_YCBCR601:
		case COLOR_SPACE_YCBCR601_LIMITED:
			ocsc_mode = 2;
			break;
		case COLOR_SPACE_YCBCR709:
		case COLOR_SPACE_YCBCR709_LIMITED:
		case COLOR_SPACE_2020_YCBCR:
			ocsc_mode = 3;
			break;
		case COLOR_SPACE_UNKNOWN:
		default:
			break;
	}

	REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);

}

static void dpp1_cm_get_reg_field(
		struct dcn10_dpp *dpp,
		struct xfer_func_reg *reg)
{
	reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
	reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
	reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
	reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
	reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
	reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
	reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
	reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;

	reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
	reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
	reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
	reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
	reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
	reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
	reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
	reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
	reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
	reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
	reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
	reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
}

static void dpp1_cm_program_color_matrix(
		struct dcn10_dpp *dpp,
		const struct out_csc_color_matrix *tbl_entry)
{
	uint32_t mode;
	struct color_matrices_reg gam_regs;

	REG_GET(CM_OCSC_CONTROL, CM_OCSC_MODE, &mode);

	if (tbl_entry == NULL) {
		BREAK_TO_DEBUGGER();
		return;
	}

	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_OCSC_C11;
	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;

	if (mode == 4) {

		gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				tbl_entry->regval,
				&gam_regs);

	} else {

		gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				tbl_entry->regval,
				&gam_regs);
	}
}

void dpp1_cm_set_output_csc_adjustment(
		struct dpp *dpp_base,
		const struct out_csc_color_matrix *tbl_entry)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	//enum csc_color_mode config = CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC;
	uint32_t ocsc_mode = 4;

	/**
	*if (tbl_entry != NULL) {
	*	switch (tbl_entry->color_space) {
	*	case COLOR_SPACE_SRGB:
	*	case COLOR_SPACE_2020_RGB_FULLRANGE:
	*		ocsc_mode = 0;
	*		break;
	*	case COLOR_SPACE_SRGB_LIMITED:
	*	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
	*		ocsc_mode = 1;
	*		break;
	*	case COLOR_SPACE_YCBCR601:
	*	case COLOR_SPACE_YCBCR601_LIMITED:
	*		ocsc_mode = 2;
	*		break;
	*	case COLOR_SPACE_YCBCR709:
	*	case COLOR_SPACE_YCBCR709_LIMITED:
	*	case COLOR_SPACE_2020_YCBCR:
	*		ocsc_mode = 3;
	*		break;
	*	case COLOR_SPACE_UNKNOWN:
	*	default:
	*		break;
	*	}
	*}
	*/

	REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
	dpp1_cm_program_color_matrix(dpp, tbl_entry);
}

void dpp1_cm_power_on_regamma_lut(
	struct dpp *dpp_base,
	bool power_on)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	REG_SET(CM_MEM_PWR_CTRL, 0,
			RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);

}

void dpp1_cm_program_regamma_lut(
		struct dpp *dpp_base,
		const struct pwl_result_data *rgb,
		uint32_t num)
{
	uint32_t i;
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	for (i = 0 ; i < num; i++) {
		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);

		REG_SET(CM_RGAM_LUT_DATA, 0,
				CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
		REG_SET(CM_RGAM_LUT_DATA, 0,
				CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
		REG_SET(CM_RGAM_LUT_DATA, 0,
				CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);

	}

}

void dpp1_cm_configure_regamma_lut(
		struct dpp *dpp_base,
		bool is_ram_a)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
			CM_RGAM_LUT_WRITE_EN_MASK, 7);
	REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
			CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
	REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
}

/*program re gamma RAM A*/
void dpp1_cm_program_regamma_luta_settings(
		struct dpp *dpp_base,
		const struct pwl_params *params)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	struct xfer_func_reg gam_regs;

	dpp1_cm_get_reg_field(dpp, &gam_regs);

	gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
	gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
	gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
	gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
	gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
	gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
	gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
	gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
	gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
	gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
	gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
	gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
	gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
	gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);

	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);

}

/*program re gamma RAM B*/
void dpp1_cm_program_regamma_lutb_settings(
		struct dpp *dpp_base,
		const struct pwl_params *params)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	struct xfer_func_reg gam_regs;

	dpp1_cm_get_reg_field(dpp, &gam_regs);

	gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
	gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
	gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
	gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
	gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
	gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
	gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
	gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
	gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
	gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
	gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
	gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
	gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
	gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);

	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}

void dpp1_program_input_csc(
		struct dpp *dpp_base,
		enum dc_color_space color_space,
		enum dcn10_input_csc_select select)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	int i;
	int arr_size = sizeof(dcn10_input_csc_matrix)/sizeof(struct dcn10_input_csc_matrix);
	const uint16_t *regval = NULL;
	uint32_t selection = 1;
	struct color_matrices_reg gam_regs;

	if (select == INPUT_CSC_SELECT_BYPASS) {
		REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
		return;
	}

	for (i = 0; i < arr_size; i++)
		if (dcn10_input_csc_matrix[i].color_space == color_space) {
			regval = dcn10_input_csc_matrix[i].regval;
			break;
		}

	if (regval == NULL) {
		BREAK_TO_DEBUGGER();
		return;
	}

	if (select == INPUT_CSC_SELECT_COMA)
		selection = 2;
	REG_SET(CM_ICSC_CONTROL, 0,
			CM_ICSC_MODE, selection);

	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_ICSC_C11;
	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;


	if (select == INPUT_CSC_SELECT_ICSC) {

		gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				regval,
				&gam_regs);
	} else {

		gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
		gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);

		cm_helper_program_color_matrices(
				dpp->base.ctx,
				regval,
				&gam_regs);
	}
}

/*program de gamma RAM B*/
void dpp1_program_degamma_lutb_settings(
		struct dpp *dpp_base,
		const struct pwl_params *params)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	struct xfer_func_reg gam_regs;

	dpp1_cm_get_reg_field(dpp, &gam_regs);

	gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
	gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
	gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
	gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
	gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
	gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
	gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
	gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
	gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
	gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
	gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
	gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
	gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
	gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);


	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}

/*program de gamma RAM A*/
void dpp1_program_degamma_luta_settings(
		struct dpp *dpp_base,
		const struct pwl_params *params)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	struct xfer_func_reg gam_regs;

	dpp1_cm_get_reg_field(dpp, &gam_regs);

	gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
	gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
	gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
	gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
	gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
	gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
	gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
	gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
	gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
	gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
	gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
	gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
	gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
	gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);

	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}

void dpp1_power_on_degamma_lut(
		struct dpp *dpp_base,
	bool power_on)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	REG_SET(CM_MEM_PWR_CTRL, 0,
			SHARED_MEM_PWR_DIS, power_on == true ? 0:1);

}

static void dpp1_enable_cm_block(
		struct dpp *dpp_base)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
	REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
}

void dpp1_set_degamma(
		struct dpp *dpp_base,
		enum ipp_degamma_mode mode)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	dpp1_enable_cm_block(dpp_base);

	switch (mode) {
	case IPP_DEGAMMA_MODE_BYPASS:
		/* Setting de gamma bypass for now */
		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
		break;
	case IPP_DEGAMMA_MODE_HW_sRGB:
		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
		break;
	case IPP_DEGAMMA_MODE_HW_xvYCC:
		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
			break;
	default:
		BREAK_TO_DEBUGGER();
		break;
	}
}

void dpp1_degamma_ram_select(
		struct dpp *dpp_base,
							bool use_ram_a)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	if (use_ram_a)
		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
	else
		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);

}

static bool dpp1_degamma_ram_inuse(
		struct dpp *dpp_base,
							bool *ram_a_inuse)
{
	bool ret = false;
	uint32_t status_reg = 0;
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
			&status_reg);

	if (status_reg == 9) {
		*ram_a_inuse = true;
		ret = true;
	} else if (status_reg == 10) {
		*ram_a_inuse = false;
		ret = true;
	}
	return ret;
}

void dpp1_program_degamma_lut(
		struct dpp *dpp_base,
		const struct pwl_result_data *rgb,
		uint32_t num,
		bool is_ram_a)
{
	uint32_t i;

	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
	REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
				   CM_DGAM_LUT_WRITE_EN_MASK, 7);
	REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
					is_ram_a == true ? 0:1);

	REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
	for (i = 0 ; i < num; i++) {
		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);

		REG_SET(CM_DGAM_LUT_DATA, 0,
				CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
		REG_SET(CM_DGAM_LUT_DATA, 0,
				CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
		REG_SET(CM_DGAM_LUT_DATA, 0,
				CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
	}
}

void dpp1_set_degamma_pwl(struct dpp *dpp_base,
								 const struct pwl_params *params)
{
	bool is_ram_a = true;

	dpp1_power_on_degamma_lut(dpp_base, true);
	dpp1_enable_cm_block(dpp_base);
	dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
	if (is_ram_a == true)
		dpp1_program_degamma_lutb_settings(dpp_base, params);
	else
		dpp1_program_degamma_luta_settings(dpp_base, params);

	dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
							params->hw_points_num, !is_ram_a);
	dpp1_degamma_ram_select(dpp_base, !is_ram_a);
}

void dpp1_full_bypass(struct dpp *dpp_base)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	/* Input pixel format: ARGB8888 */
	REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
			CNVC_SURFACE_PIXEL_FORMAT, 0x8);

	/* Zero expansion */
	REG_SET_3(FORMAT_CONTROL, 0,
			CNVC_BYPASS, 0,
			FORMAT_CONTROL__ALPHA_EN, 0,
			FORMAT_EXPANSION_MODE, 0);

	/* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
	if (dpp->tf_mask->CM_BYPASS_EN)
		REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);

	/* Setting degamma bypass for now */
	REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
}

static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
							bool *ram_a_inuse)
{
	bool in_use = false;
	uint32_t status_reg = 0;
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
				&status_reg);

	// 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
	if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
		*ram_a_inuse = true;
		in_use = true;
	// 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
	} else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
		*ram_a_inuse = false;
		in_use = true;
	}
	return in_use;
}

/*
 * Input gamma LUT currently supports 256 values only. This means input color
 * can have a maximum of 8 bits per channel (= 256 possible values) in order to
 * have a one-to-one mapping with the LUT. Truncation will occur with color
 * values greater than 8 bits.
 *
 * In the future, this function should support additional input gamma methods,
 * such as piecewise linear mapping, and input gamma bypass.
 */
void dpp1_program_input_lut(
		struct dpp *dpp_base,
		const struct dc_gamma *gamma)
{
	int i;
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	bool rama_occupied = false;
	uint32_t ram_num;
	// Power on LUT memory.
	REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
	dpp1_enable_cm_block(dpp_base);
	// Determine whether to use RAM A or RAM B
	dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
	if (!rama_occupied)
		REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
	else
		REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
	// RW mode is 256-entry LUT
	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
	// IGAM Input format should be 8 bits per channel.
	REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
	// Do not mask any R,G,B values
	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
	// LUT-256, unsigned, integer, new u0.12 format
	REG_UPDATE_3(
		CM_IGAM_CONTROL,
		CM_IGAM_LUT_FORMAT_R, 3,
		CM_IGAM_LUT_FORMAT_G, 3,
		CM_IGAM_LUT_FORMAT_B, 3);
	// Start at index 0 of IGAM LUT
	REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
	for (i = 0; i < gamma->num_entries; i++) {
		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
				dal_fixed31_32_round(
					gamma->entries.red[i]));
		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
				dal_fixed31_32_round(
					gamma->entries.green[i]));
		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
				dal_fixed31_32_round(
					gamma->entries.blue[i]));
	}
	// Power off LUT memory
	REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
	// Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
	REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
	REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
}