summaryrefslogtreecommitdiff
path: root/drivers/accel/ivpu/ivpu_hw_btrs.c
blob: 13734d1abc7deaac26b46e07cff21556ba16527b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020-2024 Intel Corporation
 */

#include "ivpu_drv.h"
#include "ivpu_hw.h"
#include "ivpu_hw_btrs.h"
#include "ivpu_hw_btrs_lnl_reg.h"
#include "ivpu_hw_btrs_mtl_reg.h"
#include "ivpu_hw_reg_io.h"
#include "ivpu_pm.h"

#define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR)))

#define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \
			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR)))

#define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \
			       FREQ_CHANGE)))

#define BTRS_IRQ_DISABLE_MASK ((u32)-1)

#define BTRS_LNL_ALL_IRQ_MASK ((u32)-1)

#define BTRS_MTL_WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_5_3)
#define BTRS_MTL_WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_4_3)
#define BTRS_MTL_WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_5_3)
#define BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3)
#define BTRS_MTL_WP_CONFIG_0_TILE_PLL_OFF   WP_CONFIG(0, 0)

#define PLL_CDYN_DEFAULT               0x80
#define PLL_EPP_DEFAULT                0x80
#define PLL_CONFIG_DEFAULT             0x0
#define PLL_SIMULATION_FREQ            10000000
#define PLL_REF_CLK_FREQ               50000000
#define PLL_TIMEOUT_US		       (1500 * USEC_PER_MSEC)
#define IDLE_TIMEOUT_US		       (5 * USEC_PER_MSEC)
#define TIMEOUT_US                     (150 * USEC_PER_MSEC)

/* Work point configuration values */
#define WP_CONFIG(tile, ratio)         (((tile) << 8) | (ratio))
#define MTL_CONFIG_1_TILE              0x01
#define MTL_CONFIG_2_TILE              0x02
#define MTL_PLL_RATIO_5_3              0x01
#define MTL_PLL_RATIO_4_3              0x02
#define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0
#define BTRS_MTL_TILE_SKU_BOTH         0x3630

#define BTRS_LNL_TILE_MAX_NUM          6
#define BTRS_LNL_TILE_MAX_MASK         0x3f

#define WEIGHTS_DEFAULT                0xf711f711u
#define WEIGHTS_ATS_DEFAULT            0x0000f711u

#define DCT_REQ                        0x2
#define DCT_ENABLE                     0x1
#define DCT_DISABLE                    0x0

int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev)
{
	REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK);
	if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) {
		/* Writing 1s does not clear the interrupt status register */
		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
		return true;
	}

	return false;
}

static void freq_ratios_init_mtl(struct ivpu_device *vdev)
{
	struct ivpu_hw_info *hw = vdev->hw;
	u32 fmin_fuse, fmax_fuse;

	fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE);
	hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
	hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse);

	fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE);
	hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
}

static void freq_ratios_init_lnl(struct ivpu_device *vdev)
{
	struct ivpu_hw_info *hw = vdev->hw;
	u32 fmin_fuse, fmax_fuse;

	fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE);
	hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
	hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse);

	fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE);
	hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
}

void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev)
{
	struct ivpu_hw_info *hw = vdev->hw;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		freq_ratios_init_mtl(vdev);
	else
		freq_ratios_init_lnl(vdev);

	hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
	hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
	hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
}

static bool tile_disable_check(u32 config)
{
	/* Allowed values: 0 or one bit from range 0-5 (6 tiles) */
	if (config == 0)
		return true;

	if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1))
		return false;

	if ((config & (config - 1)) == 0)
		return true;

	return false;
}

static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config)
{
	u32 fuse;
	u32 config;

	fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE);
	if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) {
		ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse);
		return -EIO;
	}

	config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse);
	if (!tile_disable_check(config)) {
		ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", config);
		return -EIO;
	}

	if (config)
		ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n",
			 BTRS_LNL_TILE_MAX_NUM - 1, ffs(config) - 1);
	else
		ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", BTRS_LNL_TILE_MAX_NUM);

	*tile_fuse_config = config;
	return 0;
}

static int info_init_mtl(struct ivpu_device *vdev)
{
	struct ivpu_hw_info *hw = vdev->hw;

	hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH;
	hw->sku = BTRS_MTL_TILE_SKU_BOTH;
	hw->config = BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO;
	hw->sched_mode = ivpu_sched_mode;

	return 0;
}

static int info_init_lnl(struct ivpu_device *vdev)
{
	struct ivpu_hw_info *hw = vdev->hw;
	u32 tile_fuse_config;
	int ret;

	ret = read_tile_config_fuse(vdev, &tile_fuse_config);
	if (ret)
		return ret;

	hw->sched_mode = ivpu_sched_mode;
	hw->tile_fuse = tile_fuse_config;
	hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT;

	return 0;
}

int ivpu_hw_btrs_info_init(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return info_init_mtl(vdev);
	else
		return info_init_lnl(vdev);
}

static int wp_request_sync(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
	else
		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
}

static int wait_for_status_ready(struct ivpu_device *vdev, bool enable)
{
	u32 exp_val = enable ? 0x1 : 0x0;

	if (IVPU_WA(punit_disabled))
		return 0;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
	else
		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
}

struct wp_request {
	u16 min;
	u16 max;
	u16 target;
	u16 cfg;
	u16 epp;
	u16 cdyn;
};

static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp)
{
	u32 val;

	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val);

	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val);
	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val);

	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val);

	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD);
	val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val);
	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val);
}

static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp)
{
	u32 val;

	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val);

	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val);
	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val);

	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val);
	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val);

	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD);
	val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val);
	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val);
}

static void wp_request(struct ivpu_device *vdev, struct wp_request *wp)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		wp_request_mtl(vdev, wp);
	else
		wp_request_lnl(vdev, wp);
}

static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp)
{
	int ret;

	ret = wp_request_sync(vdev);
	if (ret) {
		ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret);
		return ret;
	}

	wp_request(vdev, wp);

	ret = wp_request_sync(vdev);
	if (ret)
		ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret);

	return ret;
}

static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable)
{
	struct ivpu_hw_info *hw = vdev->hw;

	wp->min = hw->pll.min_ratio;
	wp->max = hw->pll.max_ratio;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
		wp->target = enable ? hw->pll.pn_ratio : 0;
		wp->cfg = enable ? hw->config : 0;
		wp->cdyn = 0;
		wp->epp = 0;
	} else {
		wp->target = hw->pll.pn_ratio;
		wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0;
		wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0;
		wp->epp = enable ? PLL_EPP_DEFAULT : 0;
	}

	/* Simics cannot start without at least one tile */
	if (enable && ivpu_is_simics(vdev))
		wp->cfg = 1;
}

static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable)
{
	u32 exp_val = enable ? 0x1 : 0x0;

	if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL)
		return 0;

	if (IVPU_WA(punit_disabled))
		return 0;

	return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
}

int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable)
{
	struct wp_request wp;
	int ret;

	if (IVPU_WA(punit_disabled)) {
		ivpu_dbg(vdev, PM, "Skipping workpoint request\n");
		return 0;
	}

	prepare_wp_request(vdev, &wp, enable);

	ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n",
		 PLL_RATIO_TO_FREQ(wp.target), wp.cfg, wp.epp, wp.cdyn);

	ret = wp_request_send(vdev, &wp);
	if (ret) {
		ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret);
		return ret;
	}

	ret = wait_for_pll_lock(vdev, enable);
	if (ret) {
		ivpu_err(vdev, "Timed out waiting for PLL lock\n");
		return ret;
	}

	ret = wait_for_status_ready(vdev, enable);
	if (ret) {
		ivpu_err(vdev, "Timed out waiting for NPU ready status\n");
		return ret;
	}

	return 0;
}

static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable)
{
	int ret;
	u32 val;

	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
	if (ret) {
		ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
		return ret;
	}

	val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL);
	if (enable)
		val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
	else
		val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
	REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val);

	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
	if (ret)
		ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);

	return ret;
}

static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable)
{
	int ret;
	u32 val;

	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
	if (ret) {
		ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
		return ret;
	}

	val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL);
	if (enable)
		val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
	else
		val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
	REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val);

	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
	if (ret) {
		ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
		return ret;
	}

	return 0;
}

static int d0i3_drive(struct ivpu_device *vdev, bool enable)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return d0i3_drive_mtl(vdev, enable);
	else
		return d0i3_drive_lnl(vdev, enable);
}

int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev)
{
	int ret;

	if (IVPU_WA(punit_disabled))
		return 0;

	ret = d0i3_drive(vdev, true);
	if (ret)
		ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);

	udelay(5); /* VPU requires 5 us to complete the transition */

	return ret;
}

int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev)
{
	int ret;

	if (IVPU_WA(punit_disabled))
		return 0;

	ret = d0i3_drive(vdev, false);
	if (ret)
		ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);

	return ret;
}

int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return 0;

	if (ivpu_is_simics(vdev))
		return 0;

	return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US);
}

void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev)
{
	REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT);
	REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT);
}

static int ip_reset_mtl(struct ivpu_device *vdev)
{
	int ret;
	u32 val;

	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
	if (ret) {
		ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
		return ret;
	}

	val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET);
	val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val);
	REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val);

	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
	if (ret)
		ivpu_err(vdev, "Timed out waiting for RESET completion\n");

	return ret;
}

static int ip_reset_lnl(struct ivpu_device *vdev)
{
	int ret;
	u32 val;

	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
	if (ret) {
		ivpu_err(vdev, "Wait for *_TRIGGER timed out\n");
		return ret;
	}

	val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET);
	val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val);
	REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val);

	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
	if (ret)
		ivpu_err(vdev, "Timed out waiting for RESET completion\n");

	return ret;
}

int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev)
{
	if (IVPU_WA(punit_disabled))
		return 0;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return ip_reset_mtl(vdev);
	else
		return ip_reset_lnl(vdev);
}

void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev)
{
	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);

	if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT)
		val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
	else
		val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);

	REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
}

void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev)
{
	ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n",
		 REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable");
}

void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev)
{
	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);

	val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val);
	REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
}

bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev)
{
	u32 val;

	if (IVPU_WA(punit_disabled))
		return true;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
		val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS);

		return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) &&
		       REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val);
	} else {
		val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);

		return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) &&
		       REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val);
	}
}

int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
	else
		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
}

/* Handler for IRQs from Buttress core (irqB) */
bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq)
{
	u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
	bool schedule_recovery = false;

	if (!status)
		return false;

	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status))
		ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x",
			 REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL));

	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) {
		ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
		REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1);
		schedule_recovery = true;
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) {
		u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);

		ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
			 ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log),
			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log),
			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log));
		REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1);
		schedule_recovery = true;
	}

	/* This must be done after interrupts are cleared at the source. */
	if (IVPU_WA(interrupt_clear_with_0))
		/*
		 * Writing 1 triggers an interrupt, so we can't perform read update write.
		 * Clear local interrupt status by writing 0 to all bits.
		 */
		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
	else
		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status);

	if (schedule_recovery)
		ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");

	return true;
}

/* Handler for IRQs from Buttress core (irqB) */
bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq)
{
	u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
	bool schedule_recovery = false;

	if (!status)
		return false;

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status))
		ivpu_dbg(vdev, IRQ, "Survivability IRQ\n");

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status))
		ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ));

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) {
		ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
		REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1);
		schedule_recovery = true;
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) {
		ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
		REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1);
		schedule_recovery = true;
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) {
		ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
		REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1);
		schedule_recovery = true;
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) {
		ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x",
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
		REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1);
		schedule_recovery = true;
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) {
		ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x",
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
		REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1);
		schedule_recovery = true;
	}

	/* This must be done after interrupts are cleared at the source. */
	REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status);

	if (schedule_recovery)
		ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");

	return true;
}

static void dct_drive_40xx(struct ivpu_device *vdev, u32 dct_val)
{
	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX);

	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX, CMD, DCT_REQ, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX, PARAM1,
			      dct_val ? DCT_ENABLE : DCT_DISABLE, val);
	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX, PARAM2, dct_val, val);

	REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX, val);
}

void ivpu_hw_btrs_dct_drive(struct ivpu_device *vdev, u32 dct_val)
{
	return dct_drive_40xx(vdev, dct_val);
}

static u32 pll_ratio_to_freq_mtl(u32 ratio, u32 config)
{
	u32 pll_clock = PLL_REF_CLK_FREQ * ratio;
	u32 cpu_clock;

	if ((config & 0xff) == MTL_PLL_RATIO_4_3)
		cpu_clock = pll_clock * 2 / 4;
	else
		cpu_clock = pll_clock * 2 / 5;

	return cpu_clock;
}

u32 ivpu_hw_btrs_ratio_to_freq(struct ivpu_device *vdev, u32 ratio)
{
	struct ivpu_hw_info *hw = vdev->hw;

	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return pll_ratio_to_freq_mtl(ratio, hw->config);
	else
		return PLL_RATIO_TO_FREQ(ratio);
}

static u32 pll_freq_get_mtl(struct ivpu_device *vdev)
{
	u32 pll_curr_ratio;

	pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL);
	pll_curr_ratio &= VPU_HW_BTRS_MTL_CURRENT_PLL_RATIO_MASK;

	if (!ivpu_is_silicon(vdev))
		return PLL_SIMULATION_FREQ;

	return pll_ratio_to_freq_mtl(pll_curr_ratio, vdev->hw->config);
}

static u32 pll_freq_get_lnl(struct ivpu_device *vdev)
{
	u32 pll_curr_ratio;

	pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ);
	pll_curr_ratio &= VPU_HW_BTRS_LNL_PLL_FREQ_RATIO_MASK;

	return PLL_RATIO_TO_FREQ(pll_curr_ratio);
}

u32 ivpu_hw_btrs_pll_freq_get(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return pll_freq_get_mtl(vdev);
	else
		return pll_freq_get_lnl(vdev);
}

u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET);
	else
		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET);
}

u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE);
	else
		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE);
}

u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE);
	else
		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE);
}

void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
	else
		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
}

void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
	else
		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
}

void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
		REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK));
		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
	} else {
		REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK));
		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
	}
}

void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
		REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
	} else {
		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
		REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
	}
}

static void diagnose_failure_mtl(struct ivpu_device *vdev)
{
	u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;

	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg))
		ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));

	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) {
		u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);

		ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
			 log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log),
			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log),
			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log));
	}
}

static void diagnose_failure_lnl(struct ivpu_device *vdev)
{
	u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) {
		ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
	}

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg))
		ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg))
		ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg))
		ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n",
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg))
		ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n",
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));

	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg))
		ivpu_err(vdev, "Survivability IRQ\n");
}

void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev)
{
	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
		return diagnose_failure_mtl(vdev);
	else
		return diagnose_failure_lnl(vdev);
}