1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
*
* This file contains the architecture-dependent parts of process handling.
*
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/reboot.h>
#include <linux/elfcore.h>
#include <linux/fs.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/mman.h>
#include <linux/pm.h>
#include <linux/syscalls.h>
#include <linux/uaccess.h>
#include <linux/smp.h>
#include <asm/core_reg.h>
#include <asm/user_gateway.h>
#include <asm/tcm.h>
#include <asm/traps.h>
#include <asm/switch_to.h>
/*
* Wait for the next interrupt and enable local interrupts
*/
void arch_cpu_idle(void)
{
int tmp;
/*
* Quickly jump straight into the interrupt entry point without actually
* triggering an interrupt. When TXSTATI gets read the processor will
* block until an interrupt is triggered.
*/
asm volatile (/* Switch into ISTAT mode */
"RTH\n\t"
/* Enable local interrupts */
"MOV TXMASKI, %1\n\t"
/*
* We can't directly "SWAP PC, PCX", so we swap via a
* temporary. Essentially we do:
* PCX_new = 1f (the place to continue execution)
* PC = PCX_old
*/
"ADD %0, CPC0, #(1f-.)\n\t"
"SWAP PCX, %0\n\t"
"MOV PC, %0\n"
/* Continue execution here with interrupts enabled */
"1:"
: "=a" (tmp)
: "r" (get_trigger_mask()));
}
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
void (*pm_power_off)(void);
EXPORT_SYMBOL(pm_power_off);
void (*soc_restart)(char *cmd);
void (*soc_halt)(void);
void machine_restart(char *cmd)
{
if (soc_restart)
soc_restart(cmd);
hard_processor_halt(HALT_OK);
}
void machine_halt(void)
{
if (soc_halt)
soc_halt();
smp_send_stop();
hard_processor_halt(HALT_OK);
}
void machine_power_off(void)
{
if (pm_power_off)
pm_power_off();
smp_send_stop();
hard_processor_halt(HALT_OK);
}
#define FLAG_Z 0x8
#define FLAG_N 0x4
#define FLAG_O 0x2
#define FLAG_C 0x1
void show_regs(struct pt_regs *regs)
{
int i;
const char *AX0_names[] = {"A0StP", "A0FrP"};
const char *AX1_names[] = {"A1GbP", "A1LbP"};
const char *DX0_names[] = {
"D0Re0",
"D0Ar6",
"D0Ar4",
"D0Ar2",
"D0FrT",
"D0.5 ",
"D0.6 ",
"D0.7 "
};
const char *DX1_names[] = {
"D1Re0",
"D1Ar5",
"D1Ar3",
"D1Ar1",
"D1RtP",
"D1.5 ",
"D1.6 ",
"D1.7 "
};
show_regs_print_info(KERN_INFO);
pr_info(" pt_regs @ %p\n", regs);
pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
regs->ctx.Flags & FLAG_N ? 'N' : 'n',
regs->ctx.Flags & FLAG_O ? 'O' : 'o',
regs->ctx.Flags & FLAG_C ? 'C' : 'c');
pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
/* AX regs */
for (i = 0; i < 2; i++) {
pr_info(" %s = 0x%08x ",
AX0_names[i],
regs->ctx.AX[i].U0);
printk(" %s = 0x%08x\n",
AX1_names[i],
regs->ctx.AX[i].U1);
}
if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
/* Special place with AXx.2 */
pr_info(" A0.2 = 0x%08x ",
regs->ctx.Ext.AX2.U0);
printk(" A1.2 = 0x%08x\n",
regs->ctx.Ext.AX2.U1);
/* 'extended' AX regs (nominally, just AXx.3) */
for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
pr_info(" A0.%d = 0x%08x ", i + 3, regs->ctx.AX3[i].U0);
printk(" A1.%d = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
}
for (i = 0; i < 8; i++) {
pr_info(" %s = 0x%08x ", DX0_names[i], regs->ctx.DX[i].U0);
printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
}
show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
}
/*
* Copy architecture-specific thread state
*/
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long kthread_arg, struct task_struct *tsk)
{
struct pt_regs *childregs = task_pt_regs(tsk);
void *kernel_context = ((void *) childregs +
sizeof(struct pt_regs));
unsigned long global_base;
BUG_ON(((unsigned long)childregs) & 0x7);
BUG_ON(((unsigned long)kernel_context) & 0x7);
memset(&tsk->thread.kernel_context, 0,
sizeof(tsk->thread.kernel_context));
tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
ret_from_fork,
0, 0);
if (unlikely(tsk->flags & PF_KTHREAD)) {
/*
* Make sure we don't leak any kernel data to child's regs
* if kernel thread becomes a userspace thread in the future
*/
memset(childregs, 0 , sizeof(struct pt_regs));
global_base = __core_reg_get(A1GbP);
childregs->ctx.AX[0].U1 = (unsigned long) global_base;
childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
/* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */
childregs->ctx.DX[4].U1 = usp;
childregs->ctx.DX[3].U1 = kthread_arg;
tsk->thread.int_depth = 2;
return 0;
}
/*
* Get a pointer to where the new child's register block should have
* been pushed.
* The Meta's stack grows upwards, and the context is the the first
* thing to be pushed by TBX (phew)
*/
*childregs = *current_pt_regs();
/* Set the correct stack for the clone mode */
if (usp)
childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
tsk->thread.int_depth = 1;
/* set return value for child process */
childregs->ctx.DX[0].U0 = 0;
/* The TLS pointer is passed as an argument to sys_clone. */
if (clone_flags & CLONE_SETTLS)
tsk->thread.tls_ptr =
(__force void __user *)childregs->ctx.DX[1].U1;
#ifdef CONFIG_METAG_FPU
if (tsk->thread.fpu_context) {
struct meta_fpu_context *ctx;
ctx = kmemdup(tsk->thread.fpu_context,
sizeof(struct meta_fpu_context), GFP_ATOMIC);
tsk->thread.fpu_context = ctx;
}
#endif
#ifdef CONFIG_METAG_DSP
if (tsk->thread.dsp_context) {
struct meta_ext_context *ctx;
int i;
ctx = kmemdup(tsk->thread.dsp_context,
sizeof(struct meta_ext_context), GFP_ATOMIC);
for (i = 0; i < 2; i++)
ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
GFP_ATOMIC);
tsk->thread.dsp_context = ctx;
}
#endif
return 0;
}
#ifdef CONFIG_METAG_FPU
static void alloc_fpu_context(struct thread_struct *thread)
{
thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
GFP_ATOMIC);
}
static void clear_fpu(struct thread_struct *thread)
{
thread->user_flags &= ~TBICTX_FPAC_BIT;
kfree(thread->fpu_context);
thread->fpu_context = NULL;
}
#else
static void clear_fpu(struct thread_struct *thread)
{
}
#endif
#ifdef CONFIG_METAG_DSP
static void clear_dsp(struct thread_struct *thread)
{
if (thread->dsp_context) {
kfree(thread->dsp_context->ram[0]);
kfree(thread->dsp_context->ram[1]);
kfree(thread->dsp_context);
thread->dsp_context = NULL;
}
__core_reg_set(D0.8, 0);
}
#else
static void clear_dsp(struct thread_struct *thread)
{
}
#endif
struct task_struct *__sched __switch_to(struct task_struct *prev,
struct task_struct *next)
{
TBIRES to, from;
to.Switch.pCtx = next->thread.kernel_context;
to.Switch.pPara = prev;
#ifdef CONFIG_METAG_FPU
if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
struct pt_regs *regs = task_pt_regs(prev);
TBIRES state;
state.Sig.SaveMask = prev->thread.user_flags;
state.Sig.pCtx = ®s->ctx;
if (!prev->thread.fpu_context)
alloc_fpu_context(&prev->thread);
if (prev->thread.fpu_context)
__TBICtxFPUSave(state, prev->thread.fpu_context);
}
/*
* Force a restore of the FPU context next time this process is
* scheduled.
*/
if (prev->thread.fpu_context)
prev->thread.fpu_context->needs_restore = true;
#endif
from = __TBISwitch(to, &prev->thread.kernel_context);
/* Restore TLS pointer for this process. */
set_gateway_tls(current->thread.tls_ptr);
return (struct task_struct *) from.Switch.pPara;
}
void flush_thread(void)
{
clear_fpu(¤t->thread);
clear_dsp(¤t->thread);
}
/*
* Free current thread data structures etc.
*/
void exit_thread(struct task_struct *tsk)
{
clear_fpu(&tsk->thread);
clear_dsp(&tsk->thread);
}
/* TODO: figure out how to unwind the kernel stack here to figure out
* where we went to sleep. */
unsigned long get_wchan(struct task_struct *p)
{
return 0;
}
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
/* Returning 0 indicates that the FPU state was not stored (as it was
* not in use) */
return 0;
}
#ifdef CONFIG_METAG_USER_TCM
#define ELF_MIN_ALIGN PAGE_SIZE
#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
struct elf_phdr *eppnt, int prot, int type,
unsigned long total_size)
{
unsigned long map_addr, size;
unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
unsigned long raw_size = eppnt->p_filesz + page_off;
unsigned long off = eppnt->p_offset - page_off;
unsigned int tcm_tag;
addr = ELF_PAGESTART(addr);
size = ELF_PAGEALIGN(raw_size);
/* mmap() will return -EINVAL if given a zero size, but a
* segment with zero filesize is perfectly valid */
if (!size)
return addr;
tcm_tag = tcm_lookup_tag(addr);
if (tcm_tag != TCM_INVALID_TAG)
type &= ~MAP_FIXED;
/*
* total_size is the size of the ELF (interpreter) image.
* The _first_ mmap needs to know the full size, otherwise
* randomization might put this image into an overlapping
* position with the ELF binary image. (since size < total_size)
* So we first map the 'big' image - and unmap the remainder at
* the end. (which unmap is needed for ELF images with holes.)
*/
if (total_size) {
total_size = ELF_PAGEALIGN(total_size);
map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
if (!BAD_ADDR(map_addr))
vm_munmap(map_addr+size, total_size-size);
} else
map_addr = vm_mmap(filep, addr, size, prot, type, off);
if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
struct tcm_allocation *tcm;
unsigned long tcm_addr;
tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
if (!tcm)
return -ENOMEM;
tcm_addr = tcm_alloc(tcm_tag, raw_size);
if (tcm_addr != addr) {
kfree(tcm);
return -ENOMEM;
}
tcm->tag = tcm_tag;
tcm->addr = tcm_addr;
tcm->size = raw_size;
list_add(&tcm->list, ¤t->mm->context.tcm);
eppnt->p_vaddr = map_addr;
if (copy_from_user((void *) addr, (void __user *) map_addr,
raw_size))
return -EFAULT;
}
return map_addr;
}
#endif
|