diff options
Diffstat (limited to 'drivers/scsi/NCR5380.c')
-rw-r--r-- | drivers/scsi/NCR5380.c | 2868 |
1 files changed, 1305 insertions, 1563 deletions
diff --git a/drivers/scsi/NCR5380.c b/drivers/scsi/NCR5380.c index a777e5c412df..d72867257346 100644 --- a/drivers/scsi/NCR5380.c +++ b/drivers/scsi/NCR5380.c @@ -1,17 +1,17 @@ -/* +/* * NCR 5380 generic driver routines. These should make it *trivial* - * to implement 5380 SCSI drivers under Linux with a non-trantor - * architecture. + * to implement 5380 SCSI drivers under Linux with a non-trantor + * architecture. * - * Note that these routines also work with NR53c400 family chips. + * Note that these routines also work with NR53c400 family chips. * * Copyright 1993, Drew Eckhardt - * Visionary Computing - * (Unix and Linux consulting and custom programming) - * drew@colorado.edu - * +1 (303) 666-5836 + * Visionary Computing + * (Unix and Linux consulting and custom programming) + * drew@colorado.edu + * +1 (303) 666-5836 * - * For more information, please consult + * For more information, please consult * * NCR 5380 Family * SCSI Protocol Controller @@ -25,84 +25,28 @@ */ /* - * Revision 1.10 1998/9/2 Alan Cox - * (alan@lxorguk.ukuu.org.uk) - * Fixed up the timer lockups reported so far. Things still suck. Looking - * forward to 2.3 and per device request queues. Then it'll be possible to - * SMP thread this beast and improve life no end. - - * Revision 1.9 1997/7/27 Ronald van Cuijlenborg - * (ronald.van.cuijlenborg@tip.nl or nutty@dds.nl) - * (hopefully) fixed and enhanced USLEEP - * added support for DTC3181E card (for Mustek scanner) - * - - * Revision 1.8 Ingmar Baumgart - * (ingmar@gonzo.schwaben.de) - * added support for NCR53C400a card - * - - * Revision 1.7 1996/3/2 Ray Van Tassle (rayvt@comm.mot.com) - * added proc_info - * added support needed for DTC 3180/3280 - * fixed a couple of bugs - * - - * Revision 1.5 1994/01/19 09:14:57 drew - * Fixed udelay() hack that was being used on DATAOUT phases - * instead of a proper wait for the final handshake. - * - * Revision 1.4 1994/01/19 06:44:25 drew - * *** empty log message *** - * - * Revision 1.3 1994/01/19 05:24:40 drew - * Added support for TCR LAST_BYTE_SENT bit. - * - * Revision 1.2 1994/01/15 06:14:11 drew - * REAL DMA support, bug fixes. - * - * Revision 1.1 1994/01/15 06:00:54 drew - * Initial revision - * + * With contributions from Ray Van Tassle, Ingmar Baumgart, + * Ronald van Cuijlenborg, Alan Cox and others. */ /* - * Further development / testing that should be done : + * Further development / testing that should be done : * 1. Cleanup the NCR5380_transfer_dma function and DMA operation complete - * code so that everything does the same thing that's done at the - * end of a pseudo-DMA read operation. + * code so that everything does the same thing that's done at the + * end of a pseudo-DMA read operation. * * 2. Fix REAL_DMA (interrupt driven, polled works fine) - - * basically, transfer size needs to be reduced by one - * and the last byte read as is done with PSEUDO_DMA. - * - * 4. Test SCSI-II tagged queueing (I have no devices which support - * tagged queueing) - * - * 5. Test linked command handling code after Eric is ready with - * the high level code. + * basically, transfer size needs to be reduced by one + * and the last byte read as is done with PSEUDO_DMA. + * + * 4. Test SCSI-II tagged queueing (I have no devices which support + * tagged queueing) */ -#include <scsi/scsi_dbg.h> -#include <scsi/scsi_transport_spi.h> - -#if (NDEBUG & NDEBUG_LISTS) -#define LIST(x,y) {printk("LINE:%d Adding %p to %p\n", __LINE__, (void*)(x), (void*)(y)); if ((x)==(y)) udelay(5); } -#define REMOVE(w,x,y,z) {printk("LINE:%d Removing: %p->%p %p->%p \n", __LINE__, (void*)(w), (void*)(x), (void*)(y), (void*)(z)); if ((x)==(y)) udelay(5); } -#else -#define LIST(x,y) -#define REMOVE(w,x,y,z) -#endif #ifndef notyet -#undef LINKED #undef REAL_DMA #endif -#ifdef REAL_DMA_POLL -#undef READ_OVERRUNS -#define READ_OVERRUNS -#endif - #ifdef BOARD_REQUIRES_NO_DELAY #define io_recovery_delay(x) #else @@ -112,44 +56,28 @@ /* * Design * - * This is a generic 5380 driver. To use it on a different platform, + * This is a generic 5380 driver. To use it on a different platform, * one simply writes appropriate system specific macros (ie, data - * transfer - some PC's will use the I/O bus, 68K's must use + * transfer - some PC's will use the I/O bus, 68K's must use * memory mapped) and drops this file in their 'C' wrapper. * - * (Note from hch: unfortunately it was not enough for the different - * m68k folks and instead of improving this driver they copied it - * and hacked it up for their needs. As a consequence they lost - * most updates to this driver. Maybe someone will fix all these - * drivers to use a common core one day..) - * - * As far as command queueing, two queues are maintained for + * As far as command queueing, two queues are maintained for * each 5380 in the system - commands that haven't been issued yet, - * and commands that are currently executing. This means that an - * unlimited number of commands may be queued, letting - * more commands propagate from the higher driver levels giving higher - * throughput. Note that both I_T_L and I_T_L_Q nexuses are supported, - * allowing multiple commands to propagate all the way to a SCSI-II device + * and commands that are currently executing. This means that an + * unlimited number of commands may be queued, letting + * more commands propagate from the higher driver levels giving higher + * throughput. Note that both I_T_L and I_T_L_Q nexuses are supported, + * allowing multiple commands to propagate all the way to a SCSI-II device * while a command is already executing. * * - * Issues specific to the NCR5380 : + * Issues specific to the NCR5380 : * - * When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead - * piece of hardware that requires you to sit in a loop polling for - * the REQ signal as long as you are connected. Some devices are - * brain dead (ie, many TEXEL CD ROM drives) and won't disconnect - * while doing long seek operations. - * - * The workaround for this is to keep track of devices that have - * disconnected. If the device hasn't disconnected, for commands that - * should disconnect, we do something like - * - * while (!REQ is asserted) { sleep for N usecs; poll for M usecs } - * - * Some tweaking of N and M needs to be done. An algorithm based - * on "time to data" would give the best results as long as short time - * to datas (ie, on the same track) were considered, however these + * When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead + * piece of hardware that requires you to sit in a loop polling for + * the REQ signal as long as you are connected. Some devices are + * brain dead (ie, many TEXEL CD ROM drives) and won't disconnect + * while doing long seek operations. [...] These * broken devices are the exception rather than the rule and I'd rather * spend my time optimizing for the normal case. * @@ -159,23 +87,23 @@ * which is started from a workqueue for each NCR5380 host in the * system. It attempts to establish I_T_L or I_T_L_Q nexuses by * removing the commands from the issue queue and calling - * NCR5380_select() if a nexus is not established. + * NCR5380_select() if a nexus is not established. * * Once a nexus is established, the NCR5380_information_transfer() * phase goes through the various phases as instructed by the target. * if the target goes into MSG IN and sends a DISCONNECT message, * the command structure is placed into the per instance disconnected - * queue, and NCR5380_main tries to find more work. If the target is + * queue, and NCR5380_main tries to find more work. If the target is * idle for too long, the system will try to sleep. * * If a command has disconnected, eventually an interrupt will trigger, * calling NCR5380_intr() which will in turn call NCR5380_reselect * to reestablish a nexus. This will run main if necessary. * - * On command termination, the done function will be called as + * On command termination, the done function will be called as * appropriate. * - * SCSI pointers are maintained in the SCp field of SCSI command + * SCSI pointers are maintained in the SCp field of SCSI command * structures, being initialized after the command is connected * in NCR5380_select, and set as appropriate in NCR5380_information_transfer. * Note that in violation of the standard, an implicit SAVE POINTERS operation @@ -185,73 +113,48 @@ /* * Using this file : * This file a skeleton Linux SCSI driver for the NCR 5380 series - * of chips. To use it, you write an architecture specific functions + * of chips. To use it, you write an architecture specific functions * and macros and include this file in your driver. * - * These macros control options : - * AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be - * defined. - * + * These macros control options : + * AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be + * defined. + * * AUTOSENSE - if defined, REQUEST SENSE will be performed automatically - * for commands that return with a CHECK CONDITION status. + * for commands that return with a CHECK CONDITION status. * * DIFFERENTIAL - if defined, NCR53c81 chips will use external differential - * transceivers. + * transceivers. * * DONT_USE_INTR - if defined, never use interrupts, even if we probe or - * override-configure an IRQ. - * - * LIMIT_TRANSFERSIZE - if defined, limit the pseudo-dma transfers to 512 - * bytes at a time. Since interrupts are disabled by default during - * these transfers, we might need this to give reasonable interrupt - * service time if the transfer size gets too large. - * - * LINKED - if defined, linked commands are supported. + * override-configure an IRQ. * * PSEUDO_DMA - if defined, PSEUDO DMA is used during the data transfer phases. * * REAL_DMA - if defined, REAL DMA is used during the data transfer phases. * * REAL_DMA_POLL - if defined, REAL DMA is used but the driver doesn't - * rely on phase mismatch and EOP interrupts to determine end - * of phase. - * - * UNSAFE - leave interrupts enabled during pseudo-DMA transfers. You - * only really want to use this if you're having a problem with - * dropped characters during high speed communications, and even - * then, you're going to be better off twiddling with transfersize - * in the high level code. - * - * Defaults for these will be provided although the user may want to adjust - * these to allocate CPU resources to the SCSI driver or "real" code. - * - * USLEEP_SLEEP - amount of time, in jiffies, to sleep - * - * USLEEP_POLL - amount of time, in jiffies, to poll + * rely on phase mismatch and EOP interrupts to determine end + * of phase. * * These macros MUST be defined : - * NCR5380_local_declare() - declare any local variables needed for your - * transfer routines. * - * NCR5380_setup(instance) - initialize any local variables needed from a given - * instance of the host adapter for NCR5380_{read,write,pread,pwrite} - * * NCR5380_read(register) - read from the specified register * - * NCR5380_write(register, value) - write to the specific register + * NCR5380_write(register, value) - write to the specific register * - * NCR5380_implementation_fields - additional fields needed for this - * specific implementation of the NCR5380 + * NCR5380_implementation_fields - additional fields needed for this + * specific implementation of the NCR5380 * * Either real DMA *or* pseudo DMA may be implemented - * REAL functions : + * REAL functions : * NCR5380_REAL_DMA should be defined if real DMA is to be used. - * Note that the DMA setup functions should return the number of bytes - * that they were able to program the controller for. + * Note that the DMA setup functions should return the number of bytes + * that they were able to program the controller for. * - * Also note that generic i386/PC versions of these macros are - * available as NCR5380_i386_dma_write_setup, - * NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual. + * Also note that generic i386/PC versions of these macros are + * available as NCR5380_i386_dma_write_setup, + * NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual. * * NCR5380_dma_write_setup(instance, src, count) - initialize * NCR5380_dma_read_setup(instance, dst, count) - initialize @@ -262,25 +165,25 @@ * NCR5380_pread(instance, dst, count); * * The generic driver is initialized by calling NCR5380_init(instance), - * after setting the appropriate host specific fields and ID. If the + * after setting the appropriate host specific fields and ID. If the * driver wishes to autoprobe for an IRQ line, the NCR5380_probe_irq(instance, * possible) function may be used. */ -static int do_abort(struct Scsi_Host *host); -static void do_reset(struct Scsi_Host *host); +static int do_abort(struct Scsi_Host *); +static void do_reset(struct Scsi_Host *); -/* - * initialize_SCp - init the scsi pointer field - * @cmd: command block to set up +/** + * initialize_SCp - init the scsi pointer field + * @cmd: command block to set up * - * Set up the internal fields in the SCSI command. + * Set up the internal fields in the SCSI command. */ static inline void initialize_SCp(struct scsi_cmnd *cmd) { - /* - * Initialize the Scsi Pointer field so that all of the commands in the + /* + * Initialize the Scsi Pointer field so that all of the commands in the * various queues are valid. */ @@ -295,120 +198,123 @@ static inline void initialize_SCp(struct scsi_cmnd *cmd) cmd->SCp.ptr = NULL; cmd->SCp.this_residual = 0; } + + cmd->SCp.Status = 0; + cmd->SCp.Message = 0; } /** - * NCR5380_poll_politely - wait for NCR5380 status bits - * @instance: controller to poll - * @reg: 5380 register to poll - * @bit: Bitmask to check - * @val: Value required to exit - * - * Polls the NCR5380 in a reasonably efficient manner waiting for - * an event to occur, after a short quick poll we begin giving the - * CPU back in non IRQ contexts - * - * Returns the value of the register or a negative error code. + * NCR5380_poll_politely2 - wait for two chip register values + * @instance: controller to poll + * @reg1: 5380 register to poll + * @bit1: Bitmask to check + * @val1: Expected value + * @reg2: Second 5380 register to poll + * @bit2: Second bitmask to check + * @val2: Second expected value + * @wait: Time-out in jiffies + * + * Polls the chip in a reasonably efficient manner waiting for an + * event to occur. After a short quick poll we begin to yield the CPU + * (if possible). In irq contexts the time-out is arbitrarily limited. + * Callers may hold locks as long as they are held in irq mode. + * + * Returns 0 if either or both event(s) occurred otherwise -ETIMEDOUT. */ - -static int NCR5380_poll_politely(struct Scsi_Host *instance, int reg, int bit, int val, int t) + +static int NCR5380_poll_politely2(struct Scsi_Host *instance, + int reg1, int bit1, int val1, + int reg2, int bit2, int val2, int wait) { - NCR5380_local_declare(); - int n = 500; /* At about 8uS a cycle for the cpu access */ - unsigned long end = jiffies + t; - int r; - - NCR5380_setup(instance); - - while( n-- > 0) - { - r = NCR5380_read(reg); - if((r & bit) == val) + struct NCR5380_hostdata *hostdata = shost_priv(instance); + unsigned long deadline = jiffies + wait; + unsigned long n; + + /* Busy-wait for up to 10 ms */ + n = min(10000U, jiffies_to_usecs(wait)); + n *= hostdata->accesses_per_ms; + n /= 2000; + do { + if ((NCR5380_read(reg1) & bit1) == val1) + return 0; + if ((NCR5380_read(reg2) & bit2) == val2) return 0; cpu_relax(); - } - - /* t time yet ? */ - while(time_before(jiffies, end)) - { - r = NCR5380_read(reg); - if((r & bit) == val) + } while (n--); + + if (irqs_disabled() || in_interrupt()) + return -ETIMEDOUT; + + /* Repeatedly sleep for 1 ms until deadline */ + while (time_is_after_jiffies(deadline)) { + schedule_timeout_uninterruptible(1); + if ((NCR5380_read(reg1) & bit1) == val1) + return 0; + if ((NCR5380_read(reg2) & bit2) == val2) return 0; - if(!in_interrupt()) - cond_resched(); - else - cpu_relax(); } + return -ETIMEDOUT; } -static struct { - unsigned char value; - const char *name; -} phases[] __maybe_unused = { - {PHASE_DATAOUT, "DATAOUT"}, - {PHASE_DATAIN, "DATAIN"}, - {PHASE_CMDOUT, "CMDOUT"}, - {PHASE_STATIN, "STATIN"}, - {PHASE_MSGOUT, "MSGOUT"}, - {PHASE_MSGIN, "MSGIN"}, - {PHASE_UNKNOWN, "UNKNOWN"} -}; +static inline int NCR5380_poll_politely(struct Scsi_Host *instance, + int reg, int bit, int val, int wait) +{ + return NCR5380_poll_politely2(instance, reg, bit, val, + reg, bit, val, wait); +} #if NDEBUG static struct { unsigned char mask; const char *name; -} signals[] = { - {SR_DBP, "PARITY"}, - {SR_RST, "RST"}, - {SR_BSY, "BSY"}, - {SR_REQ, "REQ"}, - {SR_MSG, "MSG"}, - {SR_CD, "CD"}, - {SR_IO, "IO"}, - {SR_SEL, "SEL"}, +} signals[] = { + {SR_DBP, "PARITY"}, + {SR_RST, "RST"}, + {SR_BSY, "BSY"}, + {SR_REQ, "REQ"}, + {SR_MSG, "MSG"}, + {SR_CD, "CD"}, + {SR_IO, "IO"}, + {SR_SEL, "SEL"}, {0, NULL} -}, +}, basrs[] = { - {BASR_ATN, "ATN"}, - {BASR_ACK, "ACK"}, + {BASR_ATN, "ATN"}, + {BASR_ACK, "ACK"}, {0, NULL} -}, -icrs[] = { - {ICR_ASSERT_RST, "ASSERT RST"}, - {ICR_ASSERT_ACK, "ASSERT ACK"}, - {ICR_ASSERT_BSY, "ASSERT BSY"}, - {ICR_ASSERT_SEL, "ASSERT SEL"}, - {ICR_ASSERT_ATN, "ASSERT ATN"}, - {ICR_ASSERT_DATA, "ASSERT DATA"}, +}, +icrs[] = { + {ICR_ASSERT_RST, "ASSERT RST"}, + {ICR_ASSERT_ACK, "ASSERT ACK"}, + {ICR_ASSERT_BSY, "ASSERT BSY"}, + {ICR_ASSERT_SEL, "ASSERT SEL"}, + {ICR_ASSERT_ATN, "ASSERT ATN"}, + {ICR_ASSERT_DATA, "ASSERT DATA"}, {0, NULL} -}, -mrs[] = { - {MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"}, - {MR_TARGET, "MODE TARGET"}, - {MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"}, - {MR_ENABLE_PAR_INTR, "MODE PARITY INTR"}, - {MR_MONITOR_BSY, "MODE MONITOR BSY"}, - {MR_DMA_MODE, "MODE DMA"}, - {MR_ARBITRATE, "MODE ARBITRATION"}, +}, +mrs[] = { + {MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"}, + {MR_TARGET, "MODE TARGET"}, + {MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"}, + {MR_ENABLE_PAR_INTR, "MODE PARITY INTR"}, + {MR_ENABLE_EOP_INTR, "MODE EOP INTR"}, + {MR_MONITOR_BSY, "MODE MONITOR BSY"}, + {MR_DMA_MODE, "MODE DMA"}, + {MR_ARBITRATE, "MODE ARBITRATION"}, {0, NULL} }; /** - * NCR5380_print - print scsi bus signals - * @instance: adapter state to dump - * - * Print the SCSI bus signals for debugging purposes + * NCR5380_print - print scsi bus signals + * @instance: adapter state to dump * - * Locks: caller holds hostdata lock (not essential) + * Print the SCSI bus signals for debugging purposes */ static void NCR5380_print(struct Scsi_Host *instance) { - NCR5380_local_declare(); unsigned char status, data, basr, mr, icr, i; - NCR5380_setup(instance); data = NCR5380_read(CURRENT_SCSI_DATA_REG); status = NCR5380_read(STATUS_REG); @@ -435,117 +341,56 @@ static void NCR5380_print(struct Scsi_Host *instance) printk("\n"); } +static struct { + unsigned char value; + const char *name; +} phases[] = { + {PHASE_DATAOUT, "DATAOUT"}, + {PHASE_DATAIN, "DATAIN"}, + {PHASE_CMDOUT, "CMDOUT"}, + {PHASE_STATIN, "STATIN"}, + {PHASE_MSGOUT, "MSGOUT"}, + {PHASE_MSGIN, "MSGIN"}, + {PHASE_UNKNOWN, "UNKNOWN"} +}; -/* - * NCR5380_print_phase - show SCSI phase - * @instance: adapter to dump - * - * Print the current SCSI phase for debugging purposes +/** + * NCR5380_print_phase - show SCSI phase + * @instance: adapter to dump * - * Locks: none + * Print the current SCSI phase for debugging purposes */ static void NCR5380_print_phase(struct Scsi_Host *instance) { - NCR5380_local_declare(); unsigned char status; int i; - NCR5380_setup(instance); status = NCR5380_read(STATUS_REG); if (!(status & SR_REQ)) - printk("scsi%d : REQ not asserted, phase unknown.\n", instance->host_no); + shost_printk(KERN_DEBUG, instance, "REQ not asserted, phase unknown.\n"); else { - for (i = 0; (phases[i].value != PHASE_UNKNOWN) && (phases[i].value != (status & PHASE_MASK)); ++i); - printk("scsi%d : phase %s\n", instance->host_no, phases[i].name); + for (i = 0; (phases[i].value != PHASE_UNKNOWN) && + (phases[i].value != (status & PHASE_MASK)); ++i) + ; + shost_printk(KERN_DEBUG, instance, "phase %s\n", phases[i].name); } } #endif -/* - * These need tweaking, and would probably work best as per-device - * flags initialized differently for disk, tape, cd, etc devices. - * People with broken devices are free to experiment as to what gives - * the best results for them. - * - * USLEEP_SLEEP should be a minimum seek time. - * - * USLEEP_POLL should be a maximum rotational latency. - */ -#ifndef USLEEP_SLEEP -/* 20 ms (reasonable hard disk speed) */ -#define USLEEP_SLEEP msecs_to_jiffies(20) -#endif -/* 300 RPM (floppy speed) */ -#ifndef USLEEP_POLL -#define USLEEP_POLL msecs_to_jiffies(200) -#endif -#ifndef USLEEP_WAITLONG -/* RvC: (reasonable time to wait on select error) */ -#define USLEEP_WAITLONG USLEEP_SLEEP -#endif -/* - * Function : int should_disconnect (unsigned char cmd) - * - * Purpose : decide whether a command would normally disconnect or - * not, since if it won't disconnect we should go to sleep. - * - * Input : cmd - opcode of SCSI command - * - * Returns : DISCONNECT_LONG if we should disconnect for a really long - * time (ie always, sleep, look for REQ active, sleep), - * DISCONNECT_TIME_TO_DATA if we would only disconnect for a normal - * time-to-data delay, DISCONNECT_NONE if this command would return - * immediately. - * - * Future sleep algorithms based on time to data can exploit - * something like this so they can differentiate between "normal" - * (ie, read, write, seek) and unusual commands (ie, * format). - * - * Note : We don't deal with commands that handle an immediate disconnect, - * - */ - -static int should_disconnect(unsigned char cmd) -{ - switch (cmd) { - case READ_6: - case WRITE_6: - case SEEK_6: - case READ_10: - case WRITE_10: - case SEEK_10: - return DISCONNECT_TIME_TO_DATA; - case FORMAT_UNIT: - case SEARCH_HIGH: - case SEARCH_LOW: - case SEARCH_EQUAL: - return DISCONNECT_LONG; - default: - return DISCONNECT_NONE; - } -} - -static void NCR5380_set_timer(struct NCR5380_hostdata *hostdata, unsigned long timeout) -{ - hostdata->time_expires = jiffies + timeout; - schedule_delayed_work(&hostdata->coroutine, timeout); -} - - -static int probe_irq __initdata = 0; +static int probe_irq __initdata; /** - * probe_intr - helper for IRQ autoprobe - * @irq: interrupt number - * @dev_id: unused - * @regs: unused + * probe_intr - helper for IRQ autoprobe + * @irq: interrupt number + * @dev_id: unused + * @regs: unused * - * Set a flag to indicate the IRQ in question was received. This is - * used by the IRQ probe code. + * Set a flag to indicate the IRQ in question was received. This is + * used by the IRQ probe code. */ - + static irqreturn_t __init probe_intr(int irq, void *dev_id) { probe_irq = irq; @@ -553,24 +398,20 @@ static irqreturn_t __init probe_intr(int irq, void *dev_id) } /** - * NCR5380_probe_irq - find the IRQ of an NCR5380 - * @instance: NCR5380 controller - * @possible: bitmask of ISA IRQ lines + * NCR5380_probe_irq - find the IRQ of an NCR5380 + * @instance: NCR5380 controller + * @possible: bitmask of ISA IRQ lines * - * Autoprobe for the IRQ line used by the NCR5380 by triggering an IRQ - * and then looking to see what interrupt actually turned up. - * - * Locks: none, irqs must be enabled on entry + * Autoprobe for the IRQ line used by the NCR5380 by triggering an IRQ + * and then looking to see what interrupt actually turned up. */ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance, int possible) { - NCR5380_local_declare(); - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; + struct NCR5380_hostdata *hostdata = shost_priv(instance); unsigned long timeout; int trying_irqs, i, mask; - NCR5380_setup(instance); for (trying_irqs = 0, i = 1, mask = 2; i < 16; ++i, mask <<= 1) if ((mask & possible) && (request_irq(i, &probe_intr, 0, "NCR-probe", NULL) == 0)) @@ -581,7 +422,7 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance, /* * A interrupt is triggered whenever BSY = false, SEL = true - * and a bit set in the SELECT_ENABLE_REG is asserted on the + * and a bit set in the SELECT_ENABLE_REG is asserted on the * SCSI bus. * * Note that the bus is only driven when the phase control signals @@ -596,7 +437,7 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance, while (probe_irq == NO_IRQ && time_before(jiffies, timeout)) schedule_timeout_uninterruptible(1); - + NCR5380_write(SELECT_ENABLE_REG, 0); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); @@ -608,12 +449,10 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance, } /** - * NCR58380_info - report driver and host information - * @instance: relevant scsi host instance - * - * For use as the host template info() handler. + * NCR58380_info - report driver and host information + * @instance: relevant scsi host instance * - * Locks: none + * For use as the host template info() handler. */ static const char *NCR5380_info(struct Scsi_Host *instance) @@ -633,20 +472,14 @@ static void prepare_info(struct Scsi_Host *instance) "can_queue %d, cmd_per_lun %d, " "sg_tablesize %d, this_id %d, " "flags { %s%s%s}, " -#if defined(USLEEP_POLL) && defined(USLEEP_WAITLONG) - "USLEEP_POLL %lu, USLEEP_WAITLONG %lu, " -#endif "options { %s} ", instance->hostt->name, instance->io_port, instance->n_io_port, instance->base, instance->irq, instance->can_queue, instance->cmd_per_lun, instance->sg_tablesize, instance->this_id, - hostdata->flags & FLAG_NCR53C400 ? "NCR53C400 " : "", - hostdata->flags & FLAG_DTC3181E ? "DTC3181E " : "", + hostdata->flags & FLAG_NO_DMA_FIXUP ? "NO_DMA_FIXUP " : "", hostdata->flags & FLAG_NO_PSEUDO_DMA ? "NO_PSEUDO_DMA " : "", -#if defined(USLEEP_POLL) && defined(USLEEP_WAITLONG) - USLEEP_POLL, USLEEP_WAITLONG, -#endif + hostdata->flags & FLAG_TOSHIBA_DELAY ? "TOSHIBA_DELAY " : "", #ifdef AUTOPROBE_IRQ "AUTOPROBE_IRQ " #endif @@ -665,46 +498,10 @@ static void prepare_info(struct Scsi_Host *instance) #ifdef PSEUDO_DMA "PSEUDO_DMA " #endif -#ifdef UNSAFE - "UNSAFE " -#endif -#ifdef NCR53C400 - "NCR53C400 " -#endif ""); } -/** - * NCR5380_print_status - dump controller info - * @instance: controller to dump - * - * Print commands in the various queues, called from NCR5380_abort - * and NCR5380_debug to aid debugging. - * - * Locks: called functions disable irqs - */ - -static void NCR5380_print_status(struct Scsi_Host *instance) -{ - NCR5380_dprint(NDEBUG_ANY, instance); - NCR5380_dprint_phase(NDEBUG_ANY, instance); -} - #ifdef PSEUDO_DMA -/******************************************/ -/* - * /proc/scsi/[dtc pas16 t128 generic]/[0-ASC_NUM_BOARD_SUPPORTED] - * - * *buffer: I/O buffer - * **start: if inout == FALSE pointer into buffer where user read should start - * offset: current offset - * length: length of buffer - * hostno: Scsi_Host host_no - * inout: TRUE - user is writing; FALSE - user is reading - * - * Return the number of bytes read from or written - */ - static int __maybe_unused NCR5380_write_info(struct Scsi_Host *instance, char *buffer, int length) { @@ -714,104 +511,41 @@ static int __maybe_unused NCR5380_write_info(struct Scsi_Host *instance, hostdata->spin_max_w = 0; return 0; } -#endif - -static -void lprint_Scsi_Cmnd(struct scsi_cmnd *cmd, struct seq_file *m); -static -void lprint_command(unsigned char *cmd, struct seq_file *m); -static -void lprint_opcode(int opcode, struct seq_file *m); static int __maybe_unused NCR5380_show_info(struct seq_file *m, - struct Scsi_Host *instance) + struct Scsi_Host *instance) { - struct NCR5380_hostdata *hostdata; - struct scsi_cmnd *ptr; - - hostdata = (struct NCR5380_hostdata *) instance->hostdata; + struct NCR5380_hostdata *hostdata = shost_priv(instance); -#ifdef PSEUDO_DMA seq_printf(m, "Highwater I/O busy spin counts: write %d, read %d\n", hostdata->spin_max_w, hostdata->spin_max_r); -#endif - spin_lock_irq(instance->host_lock); - if (!hostdata->connected) - seq_printf(m, "scsi%d: no currently connected command\n", instance->host_no); - else - lprint_Scsi_Cmnd((struct scsi_cmnd *) hostdata->connected, m); - seq_printf(m, "scsi%d: issue_queue\n", instance->host_no); - for (ptr = (struct scsi_cmnd *) hostdata->issue_queue; ptr; ptr = (struct scsi_cmnd *) ptr->host_scribble) - lprint_Scsi_Cmnd(ptr, m); - - seq_printf(m, "scsi%d: disconnected_queue\n", instance->host_no); - for (ptr = (struct scsi_cmnd *) hostdata->disconnected_queue; ptr; ptr = (struct scsi_cmnd *) ptr->host_scribble) - lprint_Scsi_Cmnd(ptr, m); - spin_unlock_irq(instance->host_lock); return 0; } - -static void lprint_Scsi_Cmnd(struct scsi_cmnd *cmd, struct seq_file *m) -{ - seq_printf(m, "scsi%d : destination target %d, lun %llu\n", cmd->device->host->host_no, cmd->device->id, cmd->device->lun); - seq_puts(m, " command = "); - lprint_command(cmd->cmnd, m); -} - -static void lprint_command(unsigned char *command, struct seq_file *m) -{ - int i, s; - lprint_opcode(command[0], m); - for (i = 1, s = COMMAND_SIZE(command[0]); i < s; ++i) - seq_printf(m, "%02x ", command[i]); - seq_putc(m, '\n'); -} - -static void lprint_opcode(int opcode, struct seq_file *m) -{ - seq_printf(m, "%2d (0x%02x)", opcode, opcode); -} - +#endif /** - * NCR5380_init - initialise an NCR5380 - * @instance: adapter to configure - * @flags: control flags + * NCR5380_init - initialise an NCR5380 + * @instance: adapter to configure + * @flags: control flags * - * Initializes *instance and corresponding 5380 chip, - * with flags OR'd into the initial flags value. + * Initializes *instance and corresponding 5380 chip, + * with flags OR'd into the initial flags value. * - * Notes : I assume that the host, hostno, and id bits have been - * set correctly. I don't care about the irq and other fields. + * Notes : I assume that the host, hostno, and id bits have been + * set correctly. I don't care about the irq and other fields. * - * Returns 0 for success - * - * Locks: interrupts must be enabled when we are called + * Returns 0 for success */ static int NCR5380_init(struct Scsi_Host *instance, int flags) { - NCR5380_local_declare(); - int i, pass; - unsigned long timeout; - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - - if(in_interrupt()) - printk(KERN_ERR "NCR5380_init called with interrupts off!\n"); - /* - * On NCR53C400 boards, NCR5380 registers are mapped 8 past - * the base address. - */ - -#ifdef NCR53C400 - if (flags & FLAG_NCR53C400) - instance->NCR5380_instance_name += NCR53C400_address_adjust; -#endif - - NCR5380_setup(instance); + struct NCR5380_hostdata *hostdata = shost_priv(instance); + int i; + unsigned long deadline; - hostdata->aborted = 0; + hostdata->host = instance; hostdata->id_mask = 1 << instance->this_id; + hostdata->id_higher_mask = 0; for (i = hostdata->id_mask; i <= 0x80; i <<= 1) if (i > hostdata->id_mask) hostdata->id_higher_mask |= i; @@ -820,21 +554,21 @@ static int NCR5380_init(struct Scsi_Host *instance, int flags) #ifdef REAL_DMA hostdata->dmalen = 0; #endif - hostdata->targets_present = 0; + spin_lock_init(&hostdata->lock); hostdata->connected = NULL; - hostdata->issue_queue = NULL; - hostdata->disconnected_queue = NULL; - - INIT_DELAYED_WORK(&hostdata->coroutine, NCR5380_main); - - /* The CHECK code seems to break the 53C400. Will check it later maybe */ - if (flags & FLAG_NCR53C400) - hostdata->flags = FLAG_HAS_LAST_BYTE_SENT | flags; - else - hostdata->flags = FLAG_CHECK_LAST_BYTE_SENT | flags; + hostdata->sensing = NULL; + INIT_LIST_HEAD(&hostdata->autosense); + INIT_LIST_HEAD(&hostdata->unissued); + INIT_LIST_HEAD(&hostdata->disconnected); - hostdata->host = instance; - hostdata->time_expires = 0; + hostdata->flags = flags; + + INIT_WORK(&hostdata->main_task, NCR5380_main); + hostdata->work_q = alloc_workqueue("ncr5380_%d", + WQ_UNBOUND | WQ_MEM_RECLAIM, + 1, instance->host_no); + if (!hostdata->work_q) + return -ENOMEM; prepare_info(instance); @@ -843,43 +577,69 @@ static int NCR5380_init(struct Scsi_Host *instance, int flags) NCR5380_write(TARGET_COMMAND_REG, 0); NCR5380_write(SELECT_ENABLE_REG, 0); -#ifdef NCR53C400 - if (hostdata->flags & FLAG_NCR53C400) { - NCR5380_write(C400_CONTROL_STATUS_REG, CSR_BASE); - } -#endif + /* Calibrate register polling loop */ + i = 0; + deadline = jiffies + 1; + do { + cpu_relax(); + } while (time_is_after_jiffies(deadline)); + deadline += msecs_to_jiffies(256); + do { + NCR5380_read(STATUS_REG); + ++i; + cpu_relax(); + } while (time_is_after_jiffies(deadline)); + hostdata->accesses_per_ms = i / 256; - /* - * Detect and correct bus wedge problems. - * - * If the system crashed, it may have crashed in a state - * where a SCSI command was still executing, and the - * SCSI bus is not in a BUS FREE STATE. - * - * If this is the case, we'll try to abort the currently - * established nexus which we know nothing about, and that - * failing, do a hard reset of the SCSI bus - */ + return 0; +} + +/** + * NCR5380_maybe_reset_bus - Detect and correct bus wedge problems. + * @instance: adapter to check + * + * If the system crashed, it may have crashed with a connected target and + * the SCSI bus busy. Check for BUS FREE phase. If not, try to abort the + * currently established nexus, which we know nothing about. Failing that + * do a bus reset. + * + * Note that a bus reset will cause the chip to assert IRQ. + * + * Returns 0 if successful, otherwise -ENXIO. + */ + +static int NCR5380_maybe_reset_bus(struct Scsi_Host *instance) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); + int pass; for (pass = 1; (NCR5380_read(STATUS_REG) & SR_BSY) && pass <= 6; ++pass) { switch (pass) { case 1: case 3: case 5: - printk(KERN_INFO "scsi%d: SCSI bus busy, waiting up to five seconds\n", instance->host_no); - timeout = jiffies + 5 * HZ; - NCR5380_poll_politely(instance, STATUS_REG, SR_BSY, 0, 5*HZ); + shost_printk(KERN_ERR, instance, "SCSI bus busy, waiting up to five seconds\n"); + NCR5380_poll_politely(instance, + STATUS_REG, SR_BSY, 0, 5 * HZ); break; case 2: - printk(KERN_WARNING "scsi%d: bus busy, attempting abort\n", instance->host_no); + shost_printk(KERN_ERR, instance, "bus busy, attempting abort\n"); do_abort(instance); break; case 4: - printk(KERN_WARNING "scsi%d: bus busy, attempting reset\n", instance->host_no); + shost_printk(KERN_ERR, instance, "bus busy, attempting reset\n"); do_reset(instance); + /* Wait after a reset; the SCSI standard calls for + * 250ms, we wait 500ms to be on the safe side. + * But some Toshiba CD-ROMs need ten times that. + */ + if (hostdata->flags & FLAG_TOSHIBA_DELAY) + msleep(2500); + else + msleep(500); break; case 6: - printk(KERN_ERR "scsi%d: bus locked solid or invalid override\n", instance->host_no); + shost_printk(KERN_ERR, instance, "bus locked solid\n"); return -ENXIO; } } @@ -887,450 +647,513 @@ static int NCR5380_init(struct Scsi_Host *instance, int flags) } /** - * NCR5380_exit - remove an NCR5380 - * @instance: adapter to remove + * NCR5380_exit - remove an NCR5380 + * @instance: adapter to remove + * + * Assumes that no more work can be queued (e.g. by NCR5380_intr). */ static void NCR5380_exit(struct Scsi_Host *instance) { - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; + struct NCR5380_hostdata *hostdata = shost_priv(instance); - cancel_delayed_work_sync(&hostdata->coroutine); + cancel_work_sync(&hostdata->main_task); + destroy_workqueue(hostdata->work_q); } /** - * NCR5380_queue_command - queue a command - * @cmd: SCSI command - * @done: completion handler - * - * cmd is added to the per instance issue_queue, with minor - * twiddling done to the host specific fields of cmd. If the - * main coroutine is not running, it is restarted. + * complete_cmd - finish processing a command and return it to the SCSI ML + * @instance: the host instance + * @cmd: command to complete + */ + +static void complete_cmd(struct Scsi_Host *instance, + struct scsi_cmnd *cmd) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); + + dsprintk(NDEBUG_QUEUES, instance, "complete_cmd: cmd %p\n", cmd); + + if (hostdata->sensing == cmd) { + /* Autosense processing ends here */ + if ((cmd->result & 0xff) != SAM_STAT_GOOD) { + scsi_eh_restore_cmnd(cmd, &hostdata->ses); + set_host_byte(cmd, DID_ERROR); + } else + scsi_eh_restore_cmnd(cmd, &hostdata->ses); + hostdata->sensing = NULL; + } + + hostdata->busy[scmd_id(cmd)] &= ~(1 << cmd->device->lun); + + cmd->scsi_done(cmd); +} + +/** + * NCR5380_queue_command - queue a command + * @instance: the relevant SCSI adapter + * @cmd: SCSI command * - * Locks: host lock taken by caller + * cmd is added to the per-instance issue queue, with minor + * twiddling done to the host specific fields of cmd. If the + * main coroutine is not running, it is restarted. */ -static int NCR5380_queue_command_lck(struct scsi_cmnd *cmd, void (*done) (struct scsi_cmnd *)) +static int NCR5380_queue_command(struct Scsi_Host *instance, + struct scsi_cmnd *cmd) { - struct Scsi_Host *instance = cmd->device->host; - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - struct scsi_cmnd *tmp; + struct NCR5380_hostdata *hostdata = shost_priv(instance); + struct NCR5380_cmd *ncmd = scsi_cmd_priv(cmd); + unsigned long flags; #if (NDEBUG & NDEBUG_NO_WRITE) switch (cmd->cmnd[0]) { case WRITE_6: case WRITE_10: - printk("scsi%d : WRITE attempted with NO_WRITE debugging flag set\n", instance->host_no); + shost_printk(KERN_DEBUG, instance, "WRITE attempted with NDEBUG_NO_WRITE set\n"); cmd->result = (DID_ERROR << 16); - done(cmd); + cmd->scsi_done(cmd); return 0; } -#endif /* (NDEBUG & NDEBUG_NO_WRITE) */ - - /* - * We use the host_scribble field as a pointer to the next command - * in a queue - */ +#endif /* (NDEBUG & NDEBUG_NO_WRITE) */ - cmd->host_scribble = NULL; - cmd->scsi_done = done; cmd->result = 0; - /* - * Insert the cmd into the issue queue. Note that REQUEST SENSE + spin_lock_irqsave(&hostdata->lock, flags); + + /* + * Insert the cmd into the issue queue. Note that REQUEST SENSE * commands are added to the head of the queue since any command will - * clear the contingent allegiance condition that exists and the + * clear the contingent allegiance condition that exists and the * sense data is only guaranteed to be valid while the condition exists. */ - if (!(hostdata->issue_queue) || (cmd->cmnd[0] == REQUEST_SENSE)) { - LIST(cmd, hostdata->issue_queue); - cmd->host_scribble = (unsigned char *) hostdata->issue_queue; - hostdata->issue_queue = cmd; - } else { - for (tmp = (struct scsi_cmnd *) hostdata->issue_queue; tmp->host_scribble; tmp = (struct scsi_cmnd *) tmp->host_scribble); - LIST(cmd, tmp); - tmp->host_scribble = (unsigned char *) cmd; - } - dprintk(NDEBUG_QUEUES, "scsi%d : command added to %s of queue\n", instance->host_no, (cmd->cmnd[0] == REQUEST_SENSE) ? "head" : "tail"); + if (cmd->cmnd[0] == REQUEST_SENSE) + list_add(&ncmd->list, &hostdata->unissued); + else + list_add_tail(&ncmd->list, &hostdata->unissued); + + spin_unlock_irqrestore(&hostdata->lock, flags); + + dsprintk(NDEBUG_QUEUES, instance, "command %p added to %s of queue\n", + cmd, (cmd->cmnd[0] == REQUEST_SENSE) ? "head" : "tail"); - /* Run the coroutine if it isn't already running. */ /* Kick off command processing */ - schedule_delayed_work(&hostdata->coroutine, 0); + queue_work(hostdata->work_q, &hostdata->main_task); return 0; } -static DEF_SCSI_QCMD(NCR5380_queue_command) +/** + * dequeue_next_cmd - dequeue a command for processing + * @instance: the scsi host instance + * + * Priority is given to commands on the autosense queue. These commands + * need autosense because of a CHECK CONDITION result. + * + * Returns a command pointer if a command is found for a target that is + * not already busy. Otherwise returns NULL. + */ + +static struct scsi_cmnd *dequeue_next_cmd(struct Scsi_Host *instance) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); + struct NCR5380_cmd *ncmd; + struct scsi_cmnd *cmd; + + if (list_empty(&hostdata->autosense)) { + list_for_each_entry(ncmd, &hostdata->unissued, list) { + cmd = NCR5380_to_scmd(ncmd); + dsprintk(NDEBUG_QUEUES, instance, "dequeue: cmd=%p target=%d busy=0x%02x lun=%llu\n", + cmd, scmd_id(cmd), hostdata->busy[scmd_id(cmd)], cmd->device->lun); + + if (!(hostdata->busy[scmd_id(cmd)] & (1 << cmd->device->lun))) { + list_del(&ncmd->list); + dsprintk(NDEBUG_QUEUES, instance, + "dequeue: removed %p from issue queue\n", cmd); + return cmd; + } + } + } else { + /* Autosense processing begins here */ + ncmd = list_first_entry(&hostdata->autosense, + struct NCR5380_cmd, list); + list_del(&ncmd->list); + cmd = NCR5380_to_scmd(ncmd); + dsprintk(NDEBUG_QUEUES, instance, + "dequeue: removed %p from autosense queue\n", cmd); + scsi_eh_prep_cmnd(cmd, &hostdata->ses, NULL, 0, ~0); + hostdata->sensing = cmd; + return cmd; + } + return NULL; +} + +static void requeue_cmd(struct Scsi_Host *instance, struct scsi_cmnd *cmd) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); + struct NCR5380_cmd *ncmd = scsi_cmd_priv(cmd); + + if (hostdata->sensing) { + scsi_eh_restore_cmnd(cmd, &hostdata->ses); + list_add(&ncmd->list, &hostdata->autosense); + hostdata->sensing = NULL; + } else + list_add(&ncmd->list, &hostdata->unissued); +} /** - * NCR5380_main - NCR state machines - * - * NCR5380_main is a coroutine that runs as long as more work can - * be done on the NCR5380 host adapters in a system. Both - * NCR5380_queue_command() and NCR5380_intr() will try to start it - * in case it is not running. - * - * Locks: called as its own thread with no locks held. Takes the - * host lock and called routines may take the isa dma lock. + * NCR5380_main - NCR state machines + * + * NCR5380_main is a coroutine that runs as long as more work can + * be done on the NCR5380 host adapters in a system. Both + * NCR5380_queue_command() and NCR5380_intr() will try to start it + * in case it is not running. */ static void NCR5380_main(struct work_struct *work) { struct NCR5380_hostdata *hostdata = - container_of(work, struct NCR5380_hostdata, coroutine.work); + container_of(work, struct NCR5380_hostdata, main_task); struct Scsi_Host *instance = hostdata->host; - struct scsi_cmnd *tmp, *prev; + struct scsi_cmnd *cmd; int done; - - spin_lock_irq(instance->host_lock); + do { - /* Lock held here */ done = 1; - if (!hostdata->connected && !hostdata->selecting) { - dprintk(NDEBUG_MAIN, "scsi%d : not connected\n", instance->host_no); - /* - * Search through the issue_queue for a command destined - * for a target that's not busy. - */ - for (tmp = (struct scsi_cmnd *) hostdata->issue_queue, prev = NULL; tmp; prev = tmp, tmp = (struct scsi_cmnd *) tmp->host_scribble) - { - if (prev != tmp) - dprintk(NDEBUG_LISTS, "MAIN tmp=%p target=%d busy=%d lun=%llu\n", tmp, tmp->device->id, hostdata->busy[tmp->device->id], tmp->device->lun); - /* When we find one, remove it from the issue queue. */ - if (!(hostdata->busy[tmp->device->id] & - (1 << (u8)(tmp->device->lun & 0xff)))) { - if (prev) { - REMOVE(prev, prev->host_scribble, tmp, tmp->host_scribble); - prev->host_scribble = tmp->host_scribble; - } else { - REMOVE(-1, hostdata->issue_queue, tmp, tmp->host_scribble); - hostdata->issue_queue = (struct scsi_cmnd *) tmp->host_scribble; - } - tmp->host_scribble = NULL; - /* - * Attempt to establish an I_T_L nexus here. - * On success, instance->hostdata->connected is set. - * On failure, we must add the command back to the - * issue queue so we can keep trying. - */ - dprintk(NDEBUG_MAIN|NDEBUG_QUEUES, "scsi%d : main() : command for target %d lun %llu removed from issue_queue\n", instance->host_no, tmp->device->id, tmp->device->lun); - - /* - * A successful selection is defined as one that - * leaves us with the command connected and - * in hostdata->connected, OR has terminated the - * command. - * - * With successful commands, we fall through - * and see if we can do an information transfer, - * with failures we will restart. - */ - hostdata->selecting = NULL; - /* RvC: have to preset this to indicate a new command is being performed */ + spin_lock_irq(&hostdata->lock); + while (!hostdata->connected && + (cmd = dequeue_next_cmd(instance))) { - /* - * REQUEST SENSE commands are issued without tagged - * queueing, even on SCSI-II devices because the - * contingent allegiance condition exists for the - * entire unit. - */ + dsprintk(NDEBUG_MAIN, instance, "main: dequeued %p\n", cmd); - if (!NCR5380_select(instance, tmp)) { - break; - } else { - LIST(tmp, hostdata->issue_queue); - tmp->host_scribble = (unsigned char *) hostdata->issue_queue; - hostdata->issue_queue = tmp; - done = 0; - dprintk(NDEBUG_MAIN|NDEBUG_QUEUES, "scsi%d : main(): select() failed, returned to issue_queue\n", instance->host_no); - } - /* lock held here still */ - } /* if target/lun is not busy */ - } /* for */ - /* exited locked */ - } /* if (!hostdata->connected) */ - if (hostdata->selecting) { - tmp = (struct scsi_cmnd *) hostdata->selecting; - /* Selection will drop and retake the lock */ - if (!NCR5380_select(instance, tmp)) { - /* Ok ?? */ + /* + * Attempt to establish an I_T_L nexus here. + * On success, instance->hostdata->connected is set. + * On failure, we must add the command back to the + * issue queue so we can keep trying. + */ + /* + * REQUEST SENSE commands are issued without tagged + * queueing, even on SCSI-II devices because the + * contingent allegiance condition exists for the + * entire unit. + */ + + cmd = NCR5380_select(instance, cmd); + if (!cmd) { + dsprintk(NDEBUG_MAIN, instance, "main: select complete\n"); } else { - /* RvC: device failed, so we wait a long time - this is needed for Mustek scanners, that - do not respond to commands immediately - after a scan */ - printk(KERN_DEBUG "scsi%d: device %d did not respond in time\n", instance->host_no, tmp->device->id); - LIST(tmp, hostdata->issue_queue); - tmp->host_scribble = (unsigned char *) hostdata->issue_queue; - hostdata->issue_queue = tmp; - NCR5380_set_timer(hostdata, USLEEP_WAITLONG); + dsprintk(NDEBUG_MAIN | NDEBUG_QUEUES, instance, + "main: select failed, returning %p to queue\n", cmd); + requeue_cmd(instance, cmd); } - } /* if hostdata->selecting */ + } if (hostdata->connected #ifdef REAL_DMA && !hostdata->dmalen #endif - && (!hostdata->time_expires || time_before_eq(hostdata->time_expires, jiffies)) ) { - dprintk(NDEBUG_MAIN, "scsi%d : main() : performing information transfer\n", instance->host_no); + dsprintk(NDEBUG_MAIN, instance, "main: performing information transfer\n"); NCR5380_information_transfer(instance); - dprintk(NDEBUG_MAIN, "scsi%d : main() : done set false\n", instance->host_no); done = 0; - } else - break; + } + spin_unlock_irq(&hostdata->lock); + if (!done) + cond_resched(); } while (!done); - - spin_unlock_irq(instance->host_lock); } #ifndef DONT_USE_INTR /** - * NCR5380_intr - generic NCR5380 irq handler - * @irq: interrupt number - * @dev_id: device info - * - * Handle interrupts, reestablishing I_T_L or I_T_L_Q nexuses - * from the disconnected queue, and restarting NCR5380_main() - * as required. - * - * Locks: takes the needed instance locks + * NCR5380_intr - generic NCR5380 irq handler + * @irq: interrupt number + * @dev_id: device info + * + * Handle interrupts, reestablishing I_T_L or I_T_L_Q nexuses + * from the disconnected queue, and restarting NCR5380_main() + * as required. + * + * The chip can assert IRQ in any of six different conditions. The IRQ flag + * is then cleared by reading the Reset Parity/Interrupt Register (RPIR). + * Three of these six conditions are latched in the Bus and Status Register: + * - End of DMA (cleared by ending DMA Mode) + * - Parity error (cleared by reading RPIR) + * - Loss of BSY (cleared by reading RPIR) + * Two conditions have flag bits that are not latched: + * - Bus phase mismatch (non-maskable in DMA Mode, cleared by ending DMA Mode) + * - Bus reset (non-maskable) + * The remaining condition has no flag bit at all: + * - Selection/reselection + * + * Hence, establishing the cause(s) of any interrupt is partly guesswork. + * In "The DP8490 and DP5380 Comparison Guide", National Semiconductor + * claimed that "the design of the [DP8490] interrupt logic ensures + * interrupts will not be lost (they can be on the DP5380)." + * The L5380/53C80 datasheet from LOGIC Devices has more details. + * + * Checking for bus reset by reading RST is futile because of interrupt + * latency, but a bus reset will reset chip logic. Checking for parity error + * is unnecessary because that interrupt is never enabled. A Loss of BSY + * condition will clear DMA Mode. We can tell when this occurs because the + * the Busy Monitor interrupt is enabled together with DMA Mode. */ -static irqreturn_t NCR5380_intr(int dummy, void *dev_id) +static irqreturn_t NCR5380_intr(int irq, void *dev_id) { - NCR5380_local_declare(); struct Scsi_Host *instance = dev_id; - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - int done; + struct NCR5380_hostdata *hostdata = shost_priv(instance); + int handled = 0; unsigned char basr; unsigned long flags; - dprintk(NDEBUG_INTR, "scsi : NCR5380 irq %d triggered\n", - instance->irq); + spin_lock_irqsave(&hostdata->lock, flags); + + basr = NCR5380_read(BUS_AND_STATUS_REG); + if (basr & BASR_IRQ) { + unsigned char mr = NCR5380_read(MODE_REG); + unsigned char sr = NCR5380_read(STATUS_REG); + + dsprintk(NDEBUG_INTR, instance, "IRQ %d, BASR 0x%02x, SR 0x%02x, MR 0x%02x\n", + irq, basr, sr, mr); - do { - done = 1; - spin_lock_irqsave(instance->host_lock, flags); - /* Look for pending interrupts */ - NCR5380_setup(instance); - basr = NCR5380_read(BUS_AND_STATUS_REG); - /* XXX dispatch to appropriate routine if found and done=0 */ - if (basr & BASR_IRQ) { - NCR5380_dprint(NDEBUG_INTR, instance); - if ((NCR5380_read(STATUS_REG) & (SR_SEL | SR_IO)) == (SR_SEL | SR_IO)) { - done = 0; - dprintk(NDEBUG_INTR, "scsi%d : SEL interrupt\n", instance->host_no); - NCR5380_reselect(instance); - (void) NCR5380_read(RESET_PARITY_INTERRUPT_REG); - } else if (basr & BASR_PARITY_ERROR) { - dprintk(NDEBUG_INTR, "scsi%d : PARITY interrupt\n", instance->host_no); - (void) NCR5380_read(RESET_PARITY_INTERRUPT_REG); - } else if ((NCR5380_read(STATUS_REG) & SR_RST) == SR_RST) { - dprintk(NDEBUG_INTR, "scsi%d : RESET interrupt\n", instance->host_no); - (void) NCR5380_read(RESET_PARITY_INTERRUPT_REG); - } else { #if defined(REAL_DMA) - /* - * We should only get PHASE MISMATCH and EOP interrupts - * if we have DMA enabled, so do a sanity check based on - * the current setting of the MODE register. - */ + if ((mr & MR_DMA_MODE) || (mr & MR_MONITOR_BSY)) { + /* Probably End of DMA, Phase Mismatch or Loss of BSY. + * We ack IRQ after clearing Mode Register. Workarounds + * for End of DMA errata need to happen in DMA Mode. + */ - if ((NCR5380_read(MODE_REG) & MR_DMA) && ((basr & BASR_END_DMA_TRANSFER) || !(basr & BASR_PHASE_MATCH))) { - int transferred; + dsprintk(NDEBUG_INTR, instance, "interrupt in DMA mode\n"); - if (!hostdata->connected) - panic("scsi%d : received end of DMA interrupt with no connected cmd\n", instance->hostno); + int transferred; - transferred = (hostdata->dmalen - NCR5380_dma_residual(instance)); - hostdata->connected->SCp.this_residual -= transferred; - hostdata->connected->SCp.ptr += transferred; - hostdata->dmalen = 0; + if (!hostdata->connected) + panic("scsi%d : DMA interrupt with no connected cmd\n", + instance->hostno); - (void) NCR5380_read(RESET_PARITY_INTERRUPT_REG); - - /* FIXME: we need to poll briefly then defer a workqueue task ! */ - NCR5380_poll_politely(hostdata, BUS_AND_STATUS_REG, BASR_ACK, 0, 2*HZ); + transferred = hostdata->dmalen - NCR5380_dma_residual(instance); + hostdata->connected->SCp.this_residual -= transferred; + hostdata->connected->SCp.ptr += transferred; + hostdata->dmalen = 0; - NCR5380_write(MODE_REG, MR_BASE); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - } -#else - dprintk(NDEBUG_INTR, "scsi : unknown interrupt, BASR 0x%X, MR 0x%X, SR 0x%x\n", basr, NCR5380_read(MODE_REG), NCR5380_read(STATUS_REG)); - (void) NCR5380_read(RESET_PARITY_INTERRUPT_REG); -#endif + /* FIXME: we need to poll briefly then defer a workqueue task ! */ + NCR5380_poll_politely(hostdata, BUS_AND_STATUS_REG, BASR_ACK, 0, 2 * HZ); + + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + NCR5380_write(MODE_REG, MR_BASE); + NCR5380_read(RESET_PARITY_INTERRUPT_REG); + } else +#endif /* REAL_DMA */ + if ((NCR5380_read(CURRENT_SCSI_DATA_REG) & hostdata->id_mask) && + (sr & (SR_SEL | SR_IO | SR_BSY | SR_RST)) == (SR_SEL | SR_IO)) { + /* Probably reselected */ + NCR5380_write(SELECT_ENABLE_REG, 0); + NCR5380_read(RESET_PARITY_INTERRUPT_REG); + + dsprintk(NDEBUG_INTR, instance, "interrupt with SEL and IO\n"); + + if (!hostdata->connected) { + NCR5380_reselect(instance); + queue_work(hostdata->work_q, &hostdata->main_task); } - } /* if BASR_IRQ */ - spin_unlock_irqrestore(instance->host_lock, flags); - if(!done) - schedule_delayed_work(&hostdata->coroutine, 0); - } while (!done); - return IRQ_HANDLED; + if (!hostdata->connected) + NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); + } else { + /* Probably Bus Reset */ + NCR5380_read(RESET_PARITY_INTERRUPT_REG); + + dsprintk(NDEBUG_INTR, instance, "unknown interrupt\n"); + } + handled = 1; + } else { + shost_printk(KERN_NOTICE, instance, "interrupt without IRQ bit\n"); + } + + spin_unlock_irqrestore(&hostdata->lock, flags); + + return IRQ_RETVAL(handled); } -#endif +#endif -/* +/* * Function : int NCR5380_select(struct Scsi_Host *instance, - * struct scsi_cmnd *cmd) + * struct scsi_cmnd *cmd) * * Purpose : establishes I_T_L or I_T_L_Q nexus for new or existing command, - * including ARBITRATION, SELECTION, and initial message out for - * IDENTIFY and queue messages. - * - * Inputs : instance - instantiation of the 5380 driver on which this - * target lives, cmd - SCSI command to execute. - * - * Returns : -1 if selection could not execute for some reason, - * 0 if selection succeeded or failed because the target - * did not respond. - * - * Side effects : - * If bus busy, arbitration failed, etc, NCR5380_select() will exit - * with registers as they should have been on entry - ie - * SELECT_ENABLE will be set appropriately, the NCR5380 - * will cease to drive any SCSI bus signals. - * - * If successful : I_T_L or I_T_L_Q nexus will be established, - * instance->connected will be set to cmd. - * SELECT interrupt will be disabled. - * - * If failed (no target) : cmd->scsi_done() will be called, and the - * cmd->result host byte set to DID_BAD_TARGET. - * - * Locks: caller holds hostdata lock in IRQ mode + * including ARBITRATION, SELECTION, and initial message out for + * IDENTIFY and queue messages. + * + * Inputs : instance - instantiation of the 5380 driver on which this + * target lives, cmd - SCSI command to execute. + * + * Returns cmd if selection failed but should be retried, + * NULL if selection failed and should not be retried, or + * NULL if selection succeeded (hostdata->connected == cmd). + * + * Side effects : + * If bus busy, arbitration failed, etc, NCR5380_select() will exit + * with registers as they should have been on entry - ie + * SELECT_ENABLE will be set appropriately, the NCR5380 + * will cease to drive any SCSI bus signals. + * + * If successful : I_T_L or I_T_L_Q nexus will be established, + * instance->connected will be set to cmd. + * SELECT interrupt will be disabled. + * + * If failed (no target) : cmd->scsi_done() will be called, and the + * cmd->result host byte set to DID_BAD_TARGET. */ - -static int NCR5380_select(struct Scsi_Host *instance, struct scsi_cmnd *cmd) + +static struct scsi_cmnd *NCR5380_select(struct Scsi_Host *instance, + struct scsi_cmnd *cmd) { - NCR5380_local_declare(); - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; + struct NCR5380_hostdata *hostdata = shost_priv(instance); unsigned char tmp[3], phase; unsigned char *data; int len; - unsigned long timeout; - unsigned char value; int err; - NCR5380_setup(instance); - - if (hostdata->selecting) - goto part2; - - hostdata->restart_select = 0; NCR5380_dprint(NDEBUG_ARBITRATION, instance); - dprintk(NDEBUG_ARBITRATION, "scsi%d : starting arbitration, id = %d\n", instance->host_no, instance->this_id); + dsprintk(NDEBUG_ARBITRATION, instance, "starting arbitration, id = %d\n", + instance->this_id); + + /* + * Arbitration and selection phases are slow and involve dropping the + * lock, so we have to watch out for EH. An exception handler may + * change 'selecting' to NULL. This function will then return NULL + * so that the caller will forget about 'cmd'. (During information + * transfer phases, EH may change 'connected' to NULL.) + */ + hostdata->selecting = cmd; - /* - * Set the phase bits to 0, otherwise the NCR5380 won't drive the + /* + * Set the phase bits to 0, otherwise the NCR5380 won't drive the * data bus during SELECTION. */ NCR5380_write(TARGET_COMMAND_REG, 0); - /* + /* * Start arbitration. */ NCR5380_write(OUTPUT_DATA_REG, hostdata->id_mask); NCR5380_write(MODE_REG, MR_ARBITRATE); + /* The chip now waits for BUS FREE phase. Then after the 800 ns + * Bus Free Delay, arbitration will begin. + */ - /* We can be relaxed here, interrupts are on, we are - in workqueue context, the birds are singing in the trees */ - spin_unlock_irq(instance->host_lock); - err = NCR5380_poll_politely(instance, INITIATOR_COMMAND_REG, ICR_ARBITRATION_PROGRESS, ICR_ARBITRATION_PROGRESS, 5*HZ); - spin_lock_irq(instance->host_lock); + spin_unlock_irq(&hostdata->lock); + err = NCR5380_poll_politely2(instance, MODE_REG, MR_ARBITRATE, 0, + INITIATOR_COMMAND_REG, ICR_ARBITRATION_PROGRESS, + ICR_ARBITRATION_PROGRESS, HZ); + spin_lock_irq(&hostdata->lock); + if (!(NCR5380_read(MODE_REG) & MR_ARBITRATE)) { + /* Reselection interrupt */ + goto out; + } if (err < 0) { - printk(KERN_DEBUG "scsi: arbitration timeout at %d\n", __LINE__); NCR5380_write(MODE_REG, MR_BASE); - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - goto failed; + shost_printk(KERN_ERR, instance, + "select: arbitration timeout\n"); + goto out; } + spin_unlock_irq(&hostdata->lock); - dprintk(NDEBUG_ARBITRATION, "scsi%d : arbitration complete\n", instance->host_no); - - /* - * The arbitration delay is 2.2us, but this is a minimum and there is - * no maximum so we can safely sleep for ceil(2.2) usecs to accommodate - * the integral nature of udelay(). - * - */ - + /* The SCSI-2 arbitration delay is 2.4 us */ udelay(3); /* Check for lost arbitration */ - if ((NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST) || (NCR5380_read(CURRENT_SCSI_DATA_REG) & hostdata->id_higher_mask) || (NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST)) { - NCR5380_write(MODE_REG, MR_BASE); - dprintk(NDEBUG_ARBITRATION, "scsi%d : lost arbitration, deasserting MR_ARBITRATE\n", instance->host_no); - goto failed; - } - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_SEL); - - if (!(hostdata->flags & FLAG_DTC3181E) && - /* RvC: DTC3181E has some trouble with this - * so we simply removed it. Seems to work with - * only Mustek scanner attached - */ + if ((NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST) || + (NCR5380_read(CURRENT_SCSI_DATA_REG) & hostdata->id_higher_mask) || (NCR5380_read(INITIATOR_COMMAND_REG) & ICR_ARBITRATION_LOST)) { NCR5380_write(MODE_REG, MR_BASE); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - dprintk(NDEBUG_ARBITRATION, "scsi%d : lost arbitration, deasserting ICR_ASSERT_SEL\n", instance->host_no); - goto failed; + dsprintk(NDEBUG_ARBITRATION, instance, "lost arbitration, deasserting MR_ARBITRATE\n"); + spin_lock_irq(&hostdata->lock); + goto out; } - /* - * Again, bus clear + bus settle time is 1.2us, however, this is + + /* After/during arbitration, BSY should be asserted. + * IBM DPES-31080 Version S31Q works now + * Tnx to Thomas_Roesch@m2.maus.de for finding this! (Roman) + */ + NCR5380_write(INITIATOR_COMMAND_REG, + ICR_BASE | ICR_ASSERT_SEL | ICR_ASSERT_BSY); + + /* + * Again, bus clear + bus settle time is 1.2us, however, this is * a minimum so we'll udelay ceil(1.2) */ - udelay(2); + if (hostdata->flags & FLAG_TOSHIBA_DELAY) + udelay(15); + else + udelay(2); + + spin_lock_irq(&hostdata->lock); + + /* NCR5380_reselect() clears MODE_REG after a reselection interrupt */ + if (!(NCR5380_read(MODE_REG) & MR_ARBITRATE)) + goto out; + + if (!hostdata->selecting) { + NCR5380_write(MODE_REG, MR_BASE); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + goto out; + } - dprintk(NDEBUG_ARBITRATION, "scsi%d : won arbitration\n", instance->host_no); + dsprintk(NDEBUG_ARBITRATION, instance, "won arbitration\n"); - /* - * Now that we have won arbitration, start Selection process, asserting + /* + * Now that we have won arbitration, start Selection process, asserting * the host and target ID's on the SCSI bus. */ - NCR5380_write(OUTPUT_DATA_REG, (hostdata->id_mask | (1 << scmd_id(cmd)))); + NCR5380_write(OUTPUT_DATA_REG, hostdata->id_mask | (1 << scmd_id(cmd))); - /* + /* * Raise ATN while SEL is true before BSY goes false from arbitration, * since this is the only way to guarantee that we'll get a MESSAGE OUT * phase immediately after selection. */ - NCR5380_write(INITIATOR_COMMAND_REG, (ICR_BASE | ICR_ASSERT_BSY | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_SEL)); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_BSY | + ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_SEL); NCR5380_write(MODE_REG, MR_BASE); - /* + /* * Reselect interrupts must be turned off prior to the dropping of BSY, * otherwise we will trigger an interrupt. */ NCR5380_write(SELECT_ENABLE_REG, 0); + spin_unlock_irq(&hostdata->lock); + /* - * The initiator shall then wait at least two deskew delays and release + * The initiator shall then wait at least two deskew delays and release * the BSY signal. */ - udelay(1); /* wingel -- wait two bus deskew delay >2*45ns */ + udelay(1); /* wingel -- wait two bus deskew delay >2*45ns */ /* Reset BSY */ - NCR5380_write(INITIATOR_COMMAND_REG, (ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_SEL)); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | + ICR_ASSERT_ATN | ICR_ASSERT_SEL); - /* + /* * Something weird happens when we cease to drive BSY - looks - * like the board/chip is letting us do another read before the + * like the board/chip is letting us do another read before the * appropriate propagation delay has expired, and we're confusing * a BSY signal from ourselves as the target's response to SELECTION. * * A small delay (the 'C++' frontend breaks the pipeline with an * unnecessary jump, making it work on my 386-33/Trantor T128, the - * tighter 'C' code breaks and requires this) solves the problem - - * the 1 us delay is arbitrary, and only used because this delay will - * be the same on other platforms and since it works here, it should + * tighter 'C' code breaks and requires this) solves the problem - + * the 1 us delay is arbitrary, and only used because this delay will + * be the same on other platforms and since it works here, it should * work there. * * wingel suggests that this could be due to failing to wait @@ -1339,50 +1162,43 @@ static int NCR5380_select(struct Scsi_Host *instance, struct scsi_cmnd *cmd) udelay(1); - dprintk(NDEBUG_SELECTION, "scsi%d : selecting target %d\n", instance->host_no, scmd_id(cmd)); + dsprintk(NDEBUG_SELECTION, instance, "selecting target %d\n", scmd_id(cmd)); - /* - * The SCSI specification calls for a 250 ms timeout for the actual + /* + * The SCSI specification calls for a 250 ms timeout for the actual * selection. */ - timeout = jiffies + msecs_to_jiffies(250); - - /* - * XXX very interesting - we're seeing a bounce where the BSY we - * asserted is being reflected / still asserted (propagation delay?) - * and it's detecting as true. Sigh. - */ - - hostdata->select_time = 0; /* we count the clock ticks at which we polled */ - hostdata->selecting = cmd; + err = NCR5380_poll_politely(instance, STATUS_REG, SR_BSY, SR_BSY, + msecs_to_jiffies(250)); -part2: - /* RvC: here we enter after a sleeping period, or immediately after - execution of part 1 - we poll only once ech clock tick */ - value = NCR5380_read(STATUS_REG) & (SR_BSY | SR_IO); - - if (!value && (hostdata->select_time < HZ/4)) { - /* RvC: we still must wait for a device response */ - hostdata->select_time++; /* after 25 ticks the device has failed */ - NCR5380_set_timer(hostdata, 1); - return 0; /* RvC: we return here with hostdata->selecting set, - to go to sleep */ - } - - hostdata->selecting = NULL;/* clear this pointer, because we passed the - waiting period */ if ((NCR5380_read(STATUS_REG) & (SR_SEL | SR_IO)) == (SR_SEL | SR_IO)) { + spin_lock_irq(&hostdata->lock); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); NCR5380_reselect(instance); - printk("scsi%d : reselection after won arbitration?\n", instance->host_no); + if (!hostdata->connected) + NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); + shost_printk(KERN_ERR, instance, "reselection after won arbitration?\n"); + goto out; + } + + if (err < 0) { + spin_lock_irq(&hostdata->lock); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - return -1; + /* Can't touch cmd if it has been reclaimed by the scsi ML */ + if (hostdata->selecting) { + cmd->result = DID_BAD_TARGET << 16; + complete_cmd(instance, cmd); + dsprintk(NDEBUG_SELECTION, instance, "target did not respond within 250ms\n"); + cmd = NULL; + } + goto out; } - /* - * No less than two deskew delays after the initiator detects the - * BSY signal is true, it shall release the SEL signal and may + + /* + * No less than two deskew delays after the initiator detects the + * BSY signal is true, it shall release the SEL signal and may * change the DATA BUS. -wingel */ @@ -1390,53 +1206,38 @@ part2: NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); - if (!(NCR5380_read(STATUS_REG) & SR_BSY)) { - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - if (hostdata->targets_present & (1 << scmd_id(cmd))) { - printk(KERN_DEBUG "scsi%d : weirdness\n", instance->host_no); - if (hostdata->restart_select) - printk(KERN_DEBUG "\trestart select\n"); - NCR5380_dprint(NDEBUG_SELECTION, instance); - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - return -1; - } - cmd->result = DID_BAD_TARGET << 16; - cmd->scsi_done(cmd); - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - dprintk(NDEBUG_SELECTION, "scsi%d : target did not respond within 250ms\n", instance->host_no); - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - return 0; - } - hostdata->targets_present |= (1 << scmd_id(cmd)); - /* - * Since we followed the SCSI spec, and raised ATN while SEL + * Since we followed the SCSI spec, and raised ATN while SEL * was true but before BSY was false during selection, the information * transfer phase should be a MESSAGE OUT phase so that we can send the * IDENTIFY message. - * + * * If SCSI-II tagged queuing is enabled, we also send a SIMPLE_QUEUE_TAG * message (2 bytes) with a tag ID that we increment with every command * until it wraps back to 0. * * XXX - it turns out that there are some broken SCSI-II devices, - * which claim to support tagged queuing but fail when more than - * some number of commands are issued at once. + * which claim to support tagged queuing but fail when more than + * some number of commands are issued at once. */ /* Wait for start of REQ/ACK handshake */ - spin_unlock_irq(instance->host_lock); err = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ); - spin_lock_irq(instance->host_lock); - - if(err) { - printk(KERN_ERR "scsi%d: timeout at NCR5380.c:%d\n", instance->host_no, __LINE__); + spin_lock_irq(&hostdata->lock); + if (err < 0) { + shost_printk(KERN_ERR, instance, "select: REQ timeout\n"); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - goto failed; + goto out; + } + if (!hostdata->selecting) { + do_abort(instance); + goto out; } - dprintk(NDEBUG_SELECTION, "scsi%d : target %d selected, going into MESSAGE OUT phase.\n", instance->host_no, cmd->device->id); + dsprintk(NDEBUG_SELECTION, instance, "target %d selected, going into MESSAGE OUT phase.\n", + scmd_id(cmd)); tmp[0] = IDENTIFY(((instance->irq == NO_IRQ) ? 0 : 1), cmd->device->lun); len = 1; @@ -1446,104 +1247,82 @@ part2: data = tmp; phase = PHASE_MSGOUT; NCR5380_transfer_pio(instance, &phase, &len, &data); - dprintk(NDEBUG_SELECTION, "scsi%d : nexus established.\n", instance->host_no); + dsprintk(NDEBUG_SELECTION, instance, "nexus established.\n"); /* XXX need to handle errors here */ + hostdata->connected = cmd; - hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF)); + hostdata->busy[cmd->device->id] |= 1 << cmd->device->lun; initialize_SCp(cmd); - return 0; - - /* Selection failed */ -failed: - return -1; + cmd = NULL; +out: + if (!hostdata->selecting) + return NULL; + hostdata->selecting = NULL; + return cmd; } -/* - * Function : int NCR5380_transfer_pio (struct Scsi_Host *instance, - * unsigned char *phase, int *count, unsigned char **data) +/* + * Function : int NCR5380_transfer_pio (struct Scsi_Host *instance, + * unsigned char *phase, int *count, unsigned char **data) * * Purpose : transfers data in given phase using polled I/O * - * Inputs : instance - instance of driver, *phase - pointer to - * what phase is expected, *count - pointer to number of - * bytes to transfer, **data - pointer to data pointer. - * + * Inputs : instance - instance of driver, *phase - pointer to + * what phase is expected, *count - pointer to number of + * bytes to transfer, **data - pointer to data pointer. + * * Returns : -1 when different phase is entered without transferring - * maximum number of bytes, 0 if all bytes or transferred or exit - * is in same phase. + * maximum number of bytes, 0 if all bytes are transferred or exit + * is in same phase. * - * Also, *phase, *count, *data are modified in place. + * Also, *phase, *count, *data are modified in place. * * XXX Note : handling for bus free may be useful. */ /* - * Note : this code is not as quick as it could be, however it + * Note : this code is not as quick as it could be, however it * IS 100% reliable, and for the actual data transfer where speed * counts, we will always do a pseudo DMA or DMA transfer. */ -static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase, int *count, unsigned char **data) { - NCR5380_local_declare(); +static int NCR5380_transfer_pio(struct Scsi_Host *instance, + unsigned char *phase, int *count, + unsigned char **data) +{ unsigned char p = *phase, tmp; int c = *count; unsigned char *d = *data; - /* - * RvC: some administrative data to process polling time - */ - int break_allowed = 0; - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - NCR5380_setup(instance); - - if (!(p & SR_IO)) - dprintk(NDEBUG_PIO, "scsi%d : pio write %d bytes\n", instance->host_no, c); - else - dprintk(NDEBUG_PIO, "scsi%d : pio read %d bytes\n", instance->host_no, c); - /* - * The NCR5380 chip will only drive the SCSI bus when the + /* + * The NCR5380 chip will only drive the SCSI bus when the * phase specified in the appropriate bits of the TARGET COMMAND * REGISTER match the STATUS REGISTER */ - NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(p)); + NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(p)); - /* RvC: don't know if this is necessary, but other SCSI I/O is short - * so breaks are not necessary there - */ - if ((p == PHASE_DATAIN) || (p == PHASE_DATAOUT)) { - break_allowed = 1; - } do { - /* - * Wait for assertion of REQ, after which the phase bits will be - * valid - */ - - /* RvC: we simply poll once, after that we stop temporarily - * and let the device buffer fill up - * if breaking is not allowed, we keep polling as long as needed + /* + * Wait for assertion of REQ, after which the phase bits will be + * valid */ - /* FIXME */ - while (!((tmp = NCR5380_read(STATUS_REG)) & SR_REQ) && !break_allowed); - if (!(tmp & SR_REQ)) { - /* timeout condition */ - NCR5380_set_timer(hostdata, USLEEP_SLEEP); + if (NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ) < 0) break; - } - dprintk(NDEBUG_HANDSHAKE, "scsi%d : REQ detected\n", instance->host_no); + dsprintk(NDEBUG_HANDSHAKE, instance, "REQ asserted\n"); /* Check for phase mismatch */ - if ((tmp & PHASE_MASK) != p) { - dprintk(NDEBUG_HANDSHAKE, "scsi%d : phase mismatch\n", instance->host_no); - NCR5380_dprint_phase(NDEBUG_HANDSHAKE, instance); + if ((NCR5380_read(STATUS_REG) & PHASE_MASK) != p) { + dsprintk(NDEBUG_PIO, instance, "phase mismatch\n"); + NCR5380_dprint_phase(NDEBUG_PIO, instance); break; } + /* Do actual transfer from SCSI bus to / from memory */ if (!(p & SR_IO)) NCR5380_write(OUTPUT_DATA_REG, *d); @@ -1552,7 +1331,7 @@ static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase ++d; - /* + /* * The SCSI standard suggests that in MSGOUT phase, the initiator * should drop ATN on the last byte of the message phase * after REQ has been asserted for the handshake but before @@ -1563,29 +1342,34 @@ static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase if (!((p & SR_MSG) && c > 1)) { NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA); NCR5380_dprint(NDEBUG_PIO, instance); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ACK); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | + ICR_ASSERT_DATA | ICR_ASSERT_ACK); } else { - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | + ICR_ASSERT_DATA | ICR_ASSERT_ATN); NCR5380_dprint(NDEBUG_PIO, instance); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_ACK); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | + ICR_ASSERT_DATA | ICR_ASSERT_ATN | ICR_ASSERT_ACK); } } else { NCR5380_dprint(NDEBUG_PIO, instance); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ACK); } - /* FIXME - if this fails bus reset ?? */ - NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, 0, 5*HZ); - dprintk(NDEBUG_HANDSHAKE, "scsi%d : req false, handshake complete\n", instance->host_no); + if (NCR5380_poll_politely(instance, + STATUS_REG, SR_REQ, 0, 5 * HZ) < 0) + break; + + dsprintk(NDEBUG_HANDSHAKE, instance, "REQ negated, handshake complete\n"); /* - * We have several special cases to consider during REQ/ACK handshaking : - * 1. We were in MSGOUT phase, and we are on the last byte of the - * message. ATN must be dropped as ACK is dropped. + * We have several special cases to consider during REQ/ACK handshaking : + * 1. We were in MSGOUT phase, and we are on the last byte of the + * message. ATN must be dropped as ACK is dropped. * - * 2. We are in a MSGIN phase, and we are on the last byte of the - * message. We must exit with ACK asserted, so that the calling - * code may raise ATN before dropping ACK to reject the message. + * 2. We are in a MSGIN phase, and we are on the last byte of the + * message. We must exit with ACK asserted, so that the calling + * code may raise ATN before dropping ACK to reject the message. * * 3. ACK and ATN are clear and the target may proceed as normal. */ @@ -1597,12 +1381,16 @@ static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase } } while (--c); - dprintk(NDEBUG_PIO, "scsi%d : residual %d\n", instance->host_no, c); + dsprintk(NDEBUG_PIO, instance, "residual %d\n", c); *count = c; *data = d; tmp = NCR5380_read(STATUS_REG); - if (tmp & SR_REQ) + /* The phase read from the bus is valid if either REQ is (already) + * asserted or if ACK hasn't been released yet. The latter applies if + * we're in MSG IN, DATA IN or STATUS and all bytes have been received. + */ + if ((tmp & SR_REQ) || ((tmp & SR_IO) && c == 0)) *phase = tmp & PHASE_MASK; else *phase = PHASE_UNKNOWN; @@ -1614,79 +1402,80 @@ static int NCR5380_transfer_pio(struct Scsi_Host *instance, unsigned char *phase } /** - * do_reset - issue a reset command - * @host: adapter to reset + * do_reset - issue a reset command + * @instance: adapter to reset * - * Issue a reset sequence to the NCR5380 and try and get the bus - * back into sane shape. + * Issue a reset sequence to the NCR5380 and try and get the bus + * back into sane shape. * - * Locks: caller holds queue lock + * This clears the reset interrupt flag because there may be no handler for + * it. When the driver is initialized, the NCR5380_intr() handler has not yet + * been installed. And when in EH we may have released the ST DMA interrupt. */ - -static void do_reset(struct Scsi_Host *host) { - NCR5380_local_declare(); - NCR5380_setup(host); - NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(NCR5380_read(STATUS_REG) & PHASE_MASK)); +static void do_reset(struct Scsi_Host *instance) +{ + unsigned long flags; + + local_irq_save(flags); + NCR5380_write(TARGET_COMMAND_REG, + PHASE_SR_TO_TCR(NCR5380_read(STATUS_REG) & PHASE_MASK)); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_RST); - udelay(25); + udelay(50); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + (void)NCR5380_read(RESET_PARITY_INTERRUPT_REG); + local_irq_restore(flags); } -/* - * Function : do_abort (Scsi_Host *host) - * - * Purpose : abort the currently established nexus. Should only be - * called from a routine which can drop into a - * - * Returns : 0 on success, -1 on failure. - * - * Locks: queue lock held by caller - * FIXME: sort this out and get new_eh running +/** + * do_abort - abort the currently established nexus by going to + * MESSAGE OUT phase and sending an ABORT message. + * @instance: relevant scsi host instance + * + * Returns 0 on success, -1 on failure. */ -static int do_abort(struct Scsi_Host *host) { - NCR5380_local_declare(); +static int do_abort(struct Scsi_Host *instance) +{ unsigned char *msgptr, phase, tmp; int len; int rc; - NCR5380_setup(host); - /* Request message out phase */ NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); - /* - * Wait for the target to indicate a valid phase by asserting - * REQ. Once this happens, we'll have either a MSGOUT phase - * and can immediately send the ABORT message, or we'll have some + /* + * Wait for the target to indicate a valid phase by asserting + * REQ. Once this happens, we'll have either a MSGOUT phase + * and can immediately send the ABORT message, or we'll have some * other phase and will have to source/sink data. - * + * * We really don't care what value was on the bus or what value * the target sees, so we just handshake. */ - rc = NCR5380_poll_politely(host, STATUS_REG, SR_REQ, SR_REQ, 60 * HZ); - - if(rc < 0) - return -1; + rc = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, 10 * HZ); + if (rc < 0) + goto timeout; + + tmp = NCR5380_read(STATUS_REG) & PHASE_MASK; - tmp = (unsigned char)rc; - NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(tmp)); - if ((tmp & PHASE_MASK) != PHASE_MSGOUT) { - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN | ICR_ASSERT_ACK); - rc = NCR5380_poll_politely(host, STATUS_REG, SR_REQ, 0, 3*HZ); + if (tmp != PHASE_MSGOUT) { + NCR5380_write(INITIATOR_COMMAND_REG, + ICR_BASE | ICR_ASSERT_ATN | ICR_ASSERT_ACK); + rc = NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, 0, 3 * HZ); + if (rc < 0) + goto timeout; NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); - if(rc == -1) - return -1; } + tmp = ABORT; msgptr = &tmp; len = 1; phase = PHASE_MSGOUT; - NCR5380_transfer_pio(host, &phase, &len, &msgptr); + NCR5380_transfer_pio(instance, &phase, &len, &msgptr); /* * If we got here, and the command completed successfully, @@ -1694,32 +1483,37 @@ static int do_abort(struct Scsi_Host *host) { */ return len ? -1 : 0; + +timeout: + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + return -1; } #if defined(REAL_DMA) || defined(PSEUDO_DMA) || defined (REAL_DMA_POLL) -/* - * Function : int NCR5380_transfer_dma (struct Scsi_Host *instance, - * unsigned char *phase, int *count, unsigned char **data) +/* + * Function : int NCR5380_transfer_dma (struct Scsi_Host *instance, + * unsigned char *phase, int *count, unsigned char **data) * * Purpose : transfers data in given phase using either real - * or pseudo DMA. + * or pseudo DMA. * - * Inputs : instance - instance of driver, *phase - pointer to - * what phase is expected, *count - pointer to number of - * bytes to transfer, **data - pointer to data pointer. - * - * Returns : -1 when different phase is entered without transferring - * maximum number of bytes, 0 if all bytes or transferred or exit - * is in same phase. + * Inputs : instance - instance of driver, *phase - pointer to + * what phase is expected, *count - pointer to number of + * bytes to transfer, **data - pointer to data pointer. * - * Also, *phase, *count, *data are modified in place. + * Returns : -1 when different phase is entered without transferring + * maximum number of bytes, 0 if all bytes or transferred or exit + * is in same phase. * - * Locks: io_request lock held by caller + * Also, *phase, *count, *data are modified in place. */ -static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase, int *count, unsigned char **data) { - NCR5380_local_declare(); +static int NCR5380_transfer_dma(struct Scsi_Host *instance, + unsigned char *phase, int *count, + unsigned char **data) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); register int c = *count; register unsigned char p = *phase; register unsigned char *d = *data; @@ -1730,54 +1524,47 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase unsigned char saved_data = 0, overrun = 0, residue; #endif - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - - NCR5380_setup(instance); - if ((tmp = (NCR5380_read(STATUS_REG) & PHASE_MASK)) != p) { *phase = tmp; return -1; } #if defined(REAL_DMA) || defined(REAL_DMA_POLL) -#ifdef READ_OVERRUNS if (p & SR_IO) { - c -= 2; + if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS)) + c -= 2; } -#endif - dprintk(NDEBUG_DMA, "scsi%d : initializing DMA channel %d for %s, %d bytes %s %0x\n", instance->host_no, instance->dma_channel, (p & SR_IO) ? "reading" : "writing", c, (p & SR_IO) ? "to" : "from", (unsigned) d); hostdata->dma_len = (p & SR_IO) ? NCR5380_dma_read_setup(instance, d, c) : NCR5380_dma_write_setup(instance, d, c); + + dsprintk(NDEBUG_DMA, instance, "initializing DMA %s: length %d, address %p\n", + (p & SR_IO) ? "receive" : "send", c, *data); #endif NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(p)); #ifdef REAL_DMA - NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_ENABLE_EOP_INTR | MR_MONITOR_BSY); + NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY | + MR_ENABLE_EOP_INTR); #elif defined(REAL_DMA_POLL) - NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE); + NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY); #else /* * Note : on my sample board, watch-dog timeouts occurred when interrupts - * were not disabled for the duration of a single DMA transfer, from + * were not disabled for the duration of a single DMA transfer, from * before the setting of DMA mode to after transfer of the last byte. */ -#if defined(PSEUDO_DMA) && defined(UNSAFE) - spin_unlock_irq(instance->host_lock); -#endif - /* KLL May need eop and parity in 53c400 */ - if (hostdata->flags & FLAG_NCR53C400) - NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | - MR_ENABLE_PAR_CHECK | MR_ENABLE_PAR_INTR | - MR_ENABLE_EOP_INTR | MR_MONITOR_BSY); + if (hostdata->flags & FLAG_NO_DMA_FIXUP) + NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY | + MR_ENABLE_EOP_INTR); else - NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE); + NCR5380_write(MODE_REG, MR_BASE | MR_DMA_MODE | MR_MONITOR_BSY); #endif /* def REAL_DMA */ dprintk(NDEBUG_DMA, "scsi%d : mode reg = 0x%X\n", instance->host_no, NCR5380_read(MODE_REG)); - /* - * On the PAS16 at least I/O recovery delays are not needed here. - * Everyone else seems to want them. + /* + * On the PAS16 at least I/O recovery delays are not needed here. + * Everyone else seems to want them. */ if (p & SR_IO) { @@ -1797,49 +1584,49 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase } while ((tmp & BASR_PHASE_MATCH) && !(tmp & (BASR_BUSY_ERROR | BASR_END_DMA_TRANSFER))); /* - At this point, either we've completed DMA, or we have a phase mismatch, - or we've unexpectedly lost BUSY (which is a real error). - - For write DMAs, we want to wait until the last byte has been - transferred out over the bus before we turn off DMA mode. Alas, there - seems to be no terribly good way of doing this on a 5380 under all - conditions. For non-scatter-gather operations, we can wait until REQ - and ACK both go false, or until a phase mismatch occurs. Gather-writes - are nastier, since the device will be expecting more data than we - are prepared to send it, and REQ will remain asserted. On a 53C8[01] we - could test LAST BIT SENT to assure transfer (I imagine this is precisely - why this signal was added to the newer chips) but on the older 538[01] - this signal does not exist. The workaround for this lack is a watchdog; - we bail out of the wait-loop after a modest amount of wait-time if - the usual exit conditions are not met. Not a terribly clean or - correct solution :-% - - Reads are equally tricky due to a nasty characteristic of the NCR5380. - If the chip is in DMA mode for an READ, it will respond to a target's - REQ by latching the SCSI data into the INPUT DATA register and asserting - ACK, even if it has _already_ been notified by the DMA controller that - the current DMA transfer has completed! If the NCR5380 is then taken - out of DMA mode, this already-acknowledged byte is lost. - - This is not a problem for "one DMA transfer per command" reads, because - the situation will never arise... either all of the data is DMA'ed - properly, or the target switches to MESSAGE IN phase to signal a - disconnection (either operation bringing the DMA to a clean halt). - However, in order to handle scatter-reads, we must work around the - problem. The chosen fix is to DMA N-2 bytes, then check for the - condition before taking the NCR5380 out of DMA mode. One or two extra - bytes are transferred via PIO as necessary to fill out the original - request. + * At this point, either we've completed DMA, or we have a phase mismatch, + * or we've unexpectedly lost BUSY (which is a real error). + * + * For DMA sends, we want to wait until the last byte has been + * transferred out over the bus before we turn off DMA mode. Alas, there + * seems to be no terribly good way of doing this on a 5380 under all + * conditions. For non-scatter-gather operations, we can wait until REQ + * and ACK both go false, or until a phase mismatch occurs. Gather-sends + * are nastier, since the device will be expecting more data than we + * are prepared to send it, and REQ will remain asserted. On a 53C8[01] we + * could test Last Byte Sent to assure transfer (I imagine this is precisely + * why this signal was added to the newer chips) but on the older 538[01] + * this signal does not exist. The workaround for this lack is a watchdog; + * we bail out of the wait-loop after a modest amount of wait-time if + * the usual exit conditions are not met. Not a terribly clean or + * correct solution :-% + * + * DMA receive is equally tricky due to a nasty characteristic of the NCR5380. + * If the chip is in DMA receive mode, it will respond to a target's + * REQ by latching the SCSI data into the INPUT DATA register and asserting + * ACK, even if it has _already_ been notified by the DMA controller that + * the current DMA transfer has completed! If the NCR5380 is then taken + * out of DMA mode, this already-acknowledged byte is lost. This is + * not a problem for "one DMA transfer per READ command", because + * the situation will never arise... either all of the data is DMA'ed + * properly, or the target switches to MESSAGE IN phase to signal a + * disconnection (either operation bringing the DMA to a clean halt). + * However, in order to handle scatter-receive, we must work around the + * problem. The chosen fix is to DMA N-2 bytes, then check for the + * condition before taking the NCR5380 out of DMA mode. One or two extra + * bytes are transferred via PIO as necessary to fill out the original + * request. */ if (p & SR_IO) { -#ifdef READ_OVERRUNS - udelay(10); - if (((NCR5380_read(BUS_AND_STATUS_REG) & (BASR_PHASE_MATCH | BASR_ACK)) == (BASR_PHASE_MATCH | BASR_ACK))) { - saved_data = NCR5380_read(INPUT_DATA_REGISTER); - overrun = 1; + if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS)) { + udelay(10); + if ((NCR5380_read(BUS_AND_STATUS_REG) & (BASR_PHASE_MATCH | BASR_ACK)) == + (BASR_PHASE_MATCH | BASR_ACK)) { + saved_data = NCR5380_read(INPUT_DATA_REGISTER); + overrun = 1; + } } -#endif } else { int limit = 100; while (((tmp = NCR5380_read(BUS_AND_STATUS_REG)) & BASR_ACK) || (NCR5380_read(STATUS_REG) & SR_REQ)) { @@ -1850,7 +1637,8 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase } } - dprintk(NDEBUG_DMA, "scsi%d : polled DMA transfer complete, basr 0x%X, sr 0x%X\n", instance->host_no, tmp, NCR5380_read(STATUS_REG)); + dsprintk(NDEBUG_DMA, "polled DMA transfer complete, basr 0x%02x, sr 0x%02x\n", + tmp, NCR5380_read(STATUS_REG)); NCR5380_write(MODE_REG, MR_BASE); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); @@ -1861,8 +1649,8 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase *data += c; *phase = NCR5380_read(STATUS_REG) & PHASE_MASK; -#ifdef READ_OVERRUNS - if (*phase == p && (p & SR_IO) && residue == 0) { + if (!(hostdata->flags & FLAG_NO_DMA_FIXUPS) && + *phase == p && (p & SR_IO) && residue == 0) { if (overrun) { dprintk(NDEBUG_DMA, "Got an input overrun, using saved byte\n"); **data = saved_data; @@ -1877,7 +1665,6 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase NCR5380_transfer_pio(instance, phase, &cnt, data); *count -= toPIO - cnt; } -#endif dprintk(NDEBUG_DMA, "Return with data ptr = 0x%X, count %d, last 0x%X, next 0x%X\n", *data, *count, *(*data + *count - 1), *(*data + *count)); return 0; @@ -1886,95 +1673,64 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase return 0; #else /* defined(REAL_DMA_POLL) */ if (p & SR_IO) { -#ifdef DMA_WORKS_RIGHT - foo = NCR5380_pread(instance, d, c); -#else - int diff = 1; - if (hostdata->flags & FLAG_NCR53C400) { - diff = 0; - } - if (!(foo = NCR5380_pread(instance, d, c - diff))) { + foo = NCR5380_pread(instance, d, + hostdata->flags & FLAG_NO_DMA_FIXUP ? c : c - 1); + if (!foo && !(hostdata->flags & FLAG_NO_DMA_FIXUP)) { /* - * We can't disable DMA mode after successfully transferring + * We can't disable DMA mode after successfully transferring * what we plan to be the last byte, since that would open up - * a race condition where if the target asserted REQ before + * a race condition where if the target asserted REQ before * we got the DMA mode reset, the NCR5380 would have latched * an additional byte into the INPUT DATA register and we'd * have dropped it. - * - * The workaround was to transfer one fewer bytes than we - * intended to with the pseudo-DMA read function, wait for + * + * The workaround was to transfer one fewer bytes than we + * intended to with the pseudo-DMA read function, wait for * the chip to latch the last byte, read it, and then disable * pseudo-DMA mode. - * + * * After REQ is asserted, the NCR5380 asserts DRQ and ACK. * REQ is deasserted when ACK is asserted, and not reasserted * until ACK goes false. Since the NCR5380 won't lower ACK * until DACK is asserted, which won't happen unless we twiddle - * the DMA port or we take the NCR5380 out of DMA mode, we - * can guarantee that we won't handshake another extra + * the DMA port or we take the NCR5380 out of DMA mode, we + * can guarantee that we won't handshake another extra * byte. */ - if (!(hostdata->flags & FLAG_NCR53C400)) { - while (!(NCR5380_read(BUS_AND_STATUS_REG) & BASR_DRQ)); - /* Wait for clean handshake */ - while (NCR5380_read(STATUS_REG) & SR_REQ); - d[c - 1] = NCR5380_read(INPUT_DATA_REG); + if (NCR5380_poll_politely(instance, BUS_AND_STATUS_REG, + BASR_DRQ, BASR_DRQ, HZ) < 0) { + foo = -1; + shost_printk(KERN_ERR, instance, "PDMA read: DRQ timeout\n"); + } + if (NCR5380_poll_politely(instance, STATUS_REG, + SR_REQ, 0, HZ) < 0) { + foo = -1; + shost_printk(KERN_ERR, instance, "PDMA read: !REQ timeout\n"); } + d[c - 1] = NCR5380_read(INPUT_DATA_REG); } -#endif } else { -#ifdef DMA_WORKS_RIGHT foo = NCR5380_pwrite(instance, d, c); -#else - int timeout; - dprintk(NDEBUG_C400_PWRITE, "About to pwrite %d bytes\n", c); - if (!(foo = NCR5380_pwrite(instance, d, c))) { + if (!foo && !(hostdata->flags & FLAG_NO_DMA_FIXUP)) { /* - * Wait for the last byte to be sent. If REQ is being asserted for - * the byte we're interested, we'll ACK it and it will go false. + * Wait for the last byte to be sent. If REQ is being asserted for + * the byte we're interested, we'll ACK it and it will go false. */ - if (!(hostdata->flags & FLAG_HAS_LAST_BYTE_SENT)) { - timeout = 20000; - while (!(NCR5380_read(BUS_AND_STATUS_REG) & BASR_DRQ) && (NCR5380_read(BUS_AND_STATUS_REG) & BASR_PHASE_MATCH)); - - if (!timeout) - dprintk(NDEBUG_LAST_BYTE_SENT, "scsi%d : timed out on last byte\n", instance->host_no); - - if (hostdata->flags & FLAG_CHECK_LAST_BYTE_SENT) { - hostdata->flags &= ~FLAG_CHECK_LAST_BYTE_SENT; - if (NCR5380_read(TARGET_COMMAND_REG) & TCR_LAST_BYTE_SENT) { - hostdata->flags |= FLAG_HAS_LAST_BYTE_SENT; - dprintk(NDEBUG_LAST_BYTE_SENT, "scsi%d : last byte sent works\n", instance->host_no); - } - } - } else { - dprintk(NDEBUG_C400_PWRITE, "Waiting for LASTBYTE\n"); - while (!(NCR5380_read(TARGET_COMMAND_REG) & TCR_LAST_BYTE_SENT)); - dprintk(NDEBUG_C400_PWRITE, "Got LASTBYTE\n"); + if (NCR5380_poll_politely2(instance, + BUS_AND_STATUS_REG, BASR_DRQ, BASR_DRQ, + BUS_AND_STATUS_REG, BASR_PHASE_MATCH, 0, HZ) < 0) { + foo = -1; + shost_printk(KERN_ERR, instance, "PDMA write: DRQ and phase timeout\n"); } } -#endif } NCR5380_write(MODE_REG, MR_BASE); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - - if ((!(p & SR_IO)) && (hostdata->flags & FLAG_NCR53C400)) { - dprintk(NDEBUG_C400_PWRITE, "53C400w: Checking for IRQ\n"); - if (NCR5380_read(BUS_AND_STATUS_REG) & BASR_IRQ) { - dprintk(NDEBUG_C400_PWRITE, "53C400w: got it, reading reset interrupt reg\n"); - NCR5380_read(RESET_PARITY_INTERRUPT_REG); - } else { - printk("53C400w: IRQ NOT THERE!\n"); - } - } + NCR5380_read(RESET_PARITY_INTERRUPT_REG); *data = d + c; *count = 0; *phase = NCR5380_read(STATUS_REG) & PHASE_MASK; -#if defined(PSEUDO_DMA) && defined(UNSAFE) - spin_lock_irq(instance->host_lock); -#endif /* defined(REAL_DMA_POLL) */ return foo; #endif /* def REAL_DMA */ } @@ -1983,25 +1739,23 @@ static int NCR5380_transfer_dma(struct Scsi_Host *instance, unsigned char *phase /* * Function : NCR5380_information_transfer (struct Scsi_Host *instance) * - * Purpose : run through the various SCSI phases and do as the target - * directs us to. Operates on the currently connected command, - * instance->connected. + * Purpose : run through the various SCSI phases and do as the target + * directs us to. Operates on the currently connected command, + * instance->connected. * * Inputs : instance, instance for which we are doing commands * - * Side effects : SCSI things happen, the disconnected queue will be - * modified if a command disconnects, *instance->connected will - * change. - * - * XXX Note : we need to watch for bus free or a reset condition here - * to recover from an unexpected bus free condition. + * Side effects : SCSI things happen, the disconnected queue will be + * modified if a command disconnects, *instance->connected will + * change. * - * Locks: io_request_lock held by caller in IRQ mode + * XXX Note : we need to watch for bus free or a reset condition here + * to recover from an unexpected bus free condition. */ -static void NCR5380_information_transfer(struct Scsi_Host *instance) { - NCR5380_local_declare(); - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *)instance->hostdata; +static void NCR5380_information_transfer(struct Scsi_Host *instance) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); unsigned char msgout = NOP; int sink = 0; int len; @@ -2010,13 +1764,11 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { #endif unsigned char *data; unsigned char phase, tmp, extended_msg[10], old_phase = 0xff; - struct scsi_cmnd *cmd = (struct scsi_cmnd *) hostdata->connected; - /* RvC: we need to set the end of the polling time */ - unsigned long poll_time = jiffies + USLEEP_POLL; + struct scsi_cmnd *cmd; - NCR5380_setup(instance); + while ((cmd = hostdata->connected)) { + struct NCR5380_cmd *ncmd = scsi_cmd_priv(cmd); - while (1) { tmp = NCR5380_read(STATUS_REG); /* We only have a valid SCSI phase when REQ is asserted */ if (tmp & SR_REQ) { @@ -2028,24 +1780,28 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { if (sink && (phase != PHASE_MSGOUT)) { NCR5380_write(TARGET_COMMAND_REG, PHASE_SR_TO_TCR(tmp)); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN | ICR_ASSERT_ACK); - while (NCR5380_read(STATUS_REG) & SR_REQ); - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN | + ICR_ASSERT_ACK); + while (NCR5380_read(STATUS_REG) & SR_REQ) + ; + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | + ICR_ASSERT_ATN); sink = 0; continue; } + switch (phase) { - case PHASE_DATAIN: case PHASE_DATAOUT: #if (NDEBUG & NDEBUG_NO_DATAOUT) - printk("scsi%d : NDEBUG_NO_DATAOUT set, attempted DATAOUT aborted\n", instance->host_no); + shost_printk(KERN_DEBUG, instance, "NDEBUG_NO_DATAOUT set, attempted DATAOUT aborted\n"); sink = 1; do_abort(instance); cmd->result = DID_ERROR << 16; - cmd->scsi_done(cmd); + complete_cmd(instance, cmd); return; #endif - /* + case PHASE_DATAIN: + /* * If there is no room left in the current buffer in the * scatter-gather list, move onto the next one. */ @@ -2055,10 +1811,13 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { --cmd->SCp.buffers_residual; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); - dprintk(NDEBUG_INFORMATION, "scsi%d : %d bytes and %d buffers left\n", instance->host_no, cmd->SCp.this_residual, cmd->SCp.buffers_residual); + dsprintk(NDEBUG_INFORMATION, instance, "%d bytes and %d buffers left\n", + cmd->SCp.this_residual, + cmd->SCp.buffers_residual); } + /* - * The preferred transfer method is going to be + * The preferred transfer method is going to be * PSEUDO-DMA for systems that are strictly PIO, * since we can let the hardware do the handshaking. * @@ -2068,50 +1827,39 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { */ #if defined(PSEUDO_DMA) || defined(REAL_DMA_POLL) - /* KLL - * PSEUDO_DMA is defined here. If this is the g_NCR5380 - * driver then it will always be defined, so the - * FLAG_NO_PSEUDO_DMA is used to inhibit PDMA in the base - * NCR5380 case. I think this is a fairly clean solution. - * We supplement these 2 if's with the flag. - */ -#ifdef NCR5380_dma_xfer_len - if (!cmd->device->borken && !(hostdata->flags & FLAG_NO_PSEUDO_DMA) && (transfersize = NCR5380_dma_xfer_len(instance, cmd)) != 0) { -#else - transfersize = cmd->transfersize; - -#ifdef LIMIT_TRANSFERSIZE /* If we have problems with interrupt service */ - if (transfersize > 512) - transfersize = 512; -#endif /* LIMIT_TRANSFERSIZE */ - - if (!cmd->device->borken && transfersize && !(hostdata->flags & FLAG_NO_PSEUDO_DMA) && cmd->SCp.this_residual && !(cmd->SCp.this_residual % transfersize)) { - /* Limit transfers to 32K, for xx400 & xx406 - * pseudoDMA that transfers in 128 bytes blocks. */ - if (transfersize > 32 * 1024) - transfersize = 32 * 1024; -#endif + transfersize = 0; + if (!cmd->device->borken && + !(hostdata->flags & FLAG_NO_PSEUDO_DMA)) + transfersize = NCR5380_dma_xfer_len(instance, cmd, phase); + + if (transfersize) { len = transfersize; - if (NCR5380_transfer_dma(instance, &phase, &len, (unsigned char **) &cmd->SCp.ptr)) { + if (NCR5380_transfer_dma(instance, &phase, + &len, (unsigned char **)&cmd->SCp.ptr)) { /* - * If the watchdog timer fires, all future accesses to this - * device will use the polled-IO. + * If the watchdog timer fires, all future + * accesses to this device will use the + * polled-IO. */ scmd_printk(KERN_INFO, cmd, - "switching to slow handshake\n"); + "switching to slow handshake\n"); cmd->device->borken = 1; - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); sink = 1; do_abort(instance); cmd->result = DID_ERROR << 16; - cmd->scsi_done(cmd); + complete_cmd(instance, cmd); /* XXX - need to source or sink data here, as appropriate */ } else cmd->SCp.this_residual -= transfersize - len; } else #endif /* defined(PSEUDO_DMA) || defined(REAL_DMA_POLL) */ - NCR5380_transfer_pio(instance, &phase, (int *) &cmd->SCp.this_residual, (unsigned char **) - &cmd->SCp.ptr); + { + spin_unlock_irq(&hostdata->lock); + NCR5380_transfer_pio(instance, &phase, + (int *)&cmd->SCp.this_residual, + (unsigned char **)&cmd->SCp.ptr); + spin_lock_irq(&hostdata->lock); + } break; case PHASE_MSGIN: len = 1; @@ -2120,101 +1868,42 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { cmd->SCp.Message = tmp; switch (tmp) { - /* - * Linking lets us reduce the time required to get the - * next command out to the device, hopefully this will - * mean we don't waste another revolution due to the delays - * required by ARBITRATION and another SELECTION. - * - * In the current implementation proposal, low level drivers - * merely have to start the next command, pointed to by - * next_link, done() is called as with unlinked commands. - */ -#ifdef LINKED - case LINKED_CMD_COMPLETE: - case LINKED_FLG_CMD_COMPLETE: - /* Accept message by clearing ACK */ - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - dprintk(NDEBUG_LINKED, "scsi%d : target %d lun %llu linked command complete.\n", instance->host_no, cmd->device->id, cmd->device->lun); - /* - * Sanity check : A linked command should only terminate with - * one of these messages if there are more linked commands - * available. - */ - if (!cmd->next_link) { - printk("scsi%d : target %d lun %llu linked command complete, no next_link\n" instance->host_no, cmd->device->id, cmd->device->lun); - sink = 1; - do_abort(instance); - return; - } - initialize_SCp(cmd->next_link); - /* The next command is still part of this process */ - cmd->next_link->tag = cmd->tag; - cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); - dprintk(NDEBUG_LINKED, "scsi%d : target %d lun %llu linked request done, calling scsi_done().\n", instance->host_no, cmd->device->id, cmd->device->lun); - cmd->scsi_done(cmd); - cmd = hostdata->connected; - break; -#endif /* def LINKED */ case ABORT: case COMMAND_COMPLETE: /* Accept message by clearing ACK */ sink = 1; NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - hostdata->connected = NULL; - dprintk(NDEBUG_QUEUES, "scsi%d : command for target %d, lun %llu completed\n", instance->host_no, cmd->device->id, cmd->device->lun); - hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xFF)); - - /* - * I'm not sure what the correct thing to do here is : - * - * If the command that just executed is NOT a request - * sense, the obvious thing to do is to set the result - * code to the values of the stored parameters. - * - * If it was a REQUEST SENSE command, we need some way - * to differentiate between the failure code of the original - * and the failure code of the REQUEST sense - the obvious - * case is success, where we fall through and leave the result - * code unchanged. - * - * The non-obvious place is where the REQUEST SENSE failed - */ - - if (cmd->cmnd[0] != REQUEST_SENSE) - cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); - else if (status_byte(cmd->SCp.Status) != GOOD) - cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); + dsprintk(NDEBUG_QUEUES, instance, + "COMMAND COMPLETE %p target %d lun %llu\n", + cmd, scmd_id(cmd), cmd->device->lun); - if ((cmd->cmnd[0] == REQUEST_SENSE) && - hostdata->ses.cmd_len) { - scsi_eh_restore_cmnd(cmd, &hostdata->ses); - hostdata->ses.cmd_len = 0 ; - } - - if ((cmd->cmnd[0] != REQUEST_SENSE) && (status_byte(cmd->SCp.Status) == CHECK_CONDITION)) { - scsi_eh_prep_cmnd(cmd, &hostdata->ses, NULL, 0, ~0); - - dprintk(NDEBUG_AUTOSENSE, "scsi%d : performing request sense\n", instance->host_no); + hostdata->connected = NULL; - LIST(cmd, hostdata->issue_queue); - cmd->host_scribble = (unsigned char *) - hostdata->issue_queue; - hostdata->issue_queue = (struct scsi_cmnd *) cmd; - dprintk(NDEBUG_QUEUES, "scsi%d : REQUEST SENSE added to head of issue queue\n", instance->host_no); - } else { - cmd->scsi_done(cmd); + cmd->result &= ~0xffff; + cmd->result |= cmd->SCp.Status; + cmd->result |= cmd->SCp.Message << 8; + + if (cmd->cmnd[0] == REQUEST_SENSE) + complete_cmd(instance, cmd); + else { + if (cmd->SCp.Status == SAM_STAT_CHECK_CONDITION || + cmd->SCp.Status == SAM_STAT_COMMAND_TERMINATED) { + dsprintk(NDEBUG_QUEUES, instance, "autosense: adding cmd %p to tail of autosense queue\n", + cmd); + list_add_tail(&ncmd->list, + &hostdata->autosense); + } else + complete_cmd(instance, cmd); } - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - /* - * Restore phase bits to 0 so an interrupted selection, + /* + * Restore phase bits to 0 so an interrupted selection, * arbitration can resume. */ NCR5380_write(TARGET_COMMAND_REG, 0); - while ((NCR5380_read(STATUS_REG) & SR_BSY) && !hostdata->connected) - barrier(); + /* Enable reselect interrupts */ + NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); return; case MESSAGE_REJECT: /* Accept message by clearing ACK */ @@ -2229,38 +1918,33 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { default: break; } - case DISCONNECT:{ - /* Accept message by clearing ACK */ - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - cmd->device->disconnect = 1; - LIST(cmd, hostdata->disconnected_queue); - cmd->host_scribble = (unsigned char *) - hostdata->disconnected_queue; - hostdata->connected = NULL; - hostdata->disconnected_queue = cmd; - dprintk(NDEBUG_QUEUES, "scsi%d : command for target %d lun %llu was moved from connected to" " the disconnected_queue\n", instance->host_no, cmd->device->id, cmd->device->lun); - /* - * Restore phase bits to 0 so an interrupted selection, - * arbitration can resume. - */ - NCR5380_write(TARGET_COMMAND_REG, 0); - - /* Enable reselect interrupts */ - NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); - /* Wait for bus free to avoid nasty timeouts - FIXME timeout !*/ - /* NCR538_poll_politely(instance, STATUS_REG, SR_BSY, 0, 30 * HZ); */ - while ((NCR5380_read(STATUS_REG) & SR_BSY) && !hostdata->connected) - barrier(); - return; - } - /* + break; + case DISCONNECT: + /* Accept message by clearing ACK */ + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + hostdata->connected = NULL; + list_add(&ncmd->list, &hostdata->disconnected); + dsprintk(NDEBUG_INFORMATION | NDEBUG_QUEUES, + instance, "connected command %p for target %d lun %llu moved to disconnected queue\n", + cmd, scmd_id(cmd), cmd->device->lun); + + /* + * Restore phase bits to 0 so an interrupted selection, + * arbitration can resume. + */ + NCR5380_write(TARGET_COMMAND_REG, 0); + + /* Enable reselect interrupts */ + NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); + return; + /* * The SCSI data pointer is *IMPLICITLY* saved on a disconnect - * operation, in violation of the SCSI spec so we can safely + * operation, in violation of the SCSI spec so we can safely * ignore SAVE/RESTORE pointers calls. * - * Unfortunately, some disks violate the SCSI spec and + * Unfortunately, some disks violate the SCSI spec and * don't issue the required SAVE_POINTERS message before - * disconnecting, and we have to break spec to remain + * disconnecting, and we have to break spec to remain * compatible. */ case SAVE_POINTERS: @@ -2269,31 +1953,28 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); break; case EXTENDED_MESSAGE: -/* - * Extended messages are sent in the following format : - * Byte - * 0 EXTENDED_MESSAGE == 1 - * 1 length (includes one byte for code, doesn't - * include first two bytes) - * 2 code - * 3..length+1 arguments - * - * Start the extended message buffer with the EXTENDED_MESSAGE - * byte, since spi_print_msg() wants the whole thing. - */ + /* + * Start the message buffer with the EXTENDED_MESSAGE + * byte, since spi_print_msg() wants the whole thing. + */ extended_msg[0] = EXTENDED_MESSAGE; /* Accept first byte by clearing ACK */ NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - dprintk(NDEBUG_EXTENDED, "scsi%d : receiving extended message\n", instance->host_no); + + spin_unlock_irq(&hostdata->lock); + + dsprintk(NDEBUG_EXTENDED, instance, "receiving extended message\n"); len = 2; data = extended_msg + 1; phase = PHASE_MSGIN; NCR5380_transfer_pio(instance, &phase, &len, &data); + dsprintk(NDEBUG_EXTENDED, instance, "length %d, code 0x%02x\n", + (int)extended_msg[1], + (int)extended_msg[2]); - dprintk(NDEBUG_EXTENDED, "scsi%d : length=%d, code=0x%02x\n", instance->host_no, (int) extended_msg[1], (int) extended_msg[2]); - - if (!len && extended_msg[1] <= (sizeof(extended_msg) - 1)) { + if (!len && extended_msg[1] > 0 && + extended_msg[1] <= sizeof(extended_msg) - 2) { /* Accept third byte by clearing ACK */ NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); len = extended_msg[1] - 1; @@ -2301,7 +1982,8 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { phase = PHASE_MSGIN; NCR5380_transfer_pio(instance, &phase, &len, &data); - dprintk(NDEBUG_EXTENDED, "scsi%d : message received, residual %d\n", instance->host_no, len); + dsprintk(NDEBUG_EXTENDED, instance, "message received, residual %d\n", + len); switch (extended_msg[2]) { case EXTENDED_SDTR: @@ -2311,34 +1993,42 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { tmp = 0; } } else if (len) { - printk("scsi%d: error receiving extended message\n", instance->host_no); + shost_printk(KERN_ERR, instance, "error receiving extended message\n"); tmp = 0; } else { - printk("scsi%d: extended message code %02x length %d is too long\n", instance->host_no, extended_msg[2], extended_msg[1]); + shost_printk(KERN_NOTICE, instance, "extended message code %02x length %d is too long\n", + extended_msg[2], extended_msg[1]); tmp = 0; } + + spin_lock_irq(&hostdata->lock); + if (!hostdata->connected) + return; + /* Fall through to reject message */ - /* - * If we get something weird that we aren't expecting, + /* + * If we get something weird that we aren't expecting, * reject it. */ default: if (!tmp) { - printk("scsi%d: rejecting message ", instance->host_no); + shost_printk(KERN_ERR, instance, "rejecting message "); spi_print_msg(extended_msg); printk("\n"); } else if (tmp != EXTENDED_MESSAGE) scmd_printk(KERN_INFO, cmd, - "rejecting unknown message %02x\n",tmp); + "rejecting unknown message %02x\n", + tmp); else scmd_printk(KERN_INFO, cmd, - "rejecting unknown extended message code %02x, length %d\n", extended_msg[1], extended_msg[0]); + "rejecting unknown extended message code %02x, length %d\n", + extended_msg[1], extended_msg[0]); msgout = MESSAGE_REJECT; NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_ATN); break; - } /* switch (tmp) */ + } /* switch (tmp) */ break; case PHASE_MSGOUT: len = 1; @@ -2346,10 +2036,9 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { hostdata->last_message = msgout; NCR5380_transfer_pio(instance, &phase, &len, &data); if (msgout == ABORT) { - hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xFF)); hostdata->connected = NULL; cmd->result = DID_ERROR << 16; - cmd->scsi_done(cmd); + complete_cmd(instance, cmd); NCR5380_write(SELECT_ENABLE_REG, hostdata->id_mask); return; } @@ -2358,17 +2047,12 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { case PHASE_CMDOUT: len = cmd->cmd_len; data = cmd->cmnd; - /* - * XXX for performance reasons, on machines with a - * PSEUDO-DMA architecture we should probably - * use the dma transfer function. + /* + * XXX for performance reasons, on machines with a + * PSEUDO-DMA architecture we should probably + * use the dma transfer function. */ NCR5380_transfer_pio(instance, &phase, &len, &data); - if (!cmd->device->disconnect && should_disconnect(cmd->cmnd[0])) { - NCR5380_set_timer(hostdata, USLEEP_SLEEP); - dprintk(NDEBUG_USLEEP, "scsi%d : issued command, sleeping until %lu\n", instance->host_no, hostdata->time_expires); - return; - } break; case PHASE_STATIN: len = 1; @@ -2377,46 +2061,37 @@ static void NCR5380_information_transfer(struct Scsi_Host *instance) { cmd->SCp.Status = tmp; break; default: - printk("scsi%d : unknown phase\n", instance->host_no); + shost_printk(KERN_ERR, instance, "unknown phase\n"); NCR5380_dprint(NDEBUG_ANY, instance); - } /* switch(phase) */ - } /* if (tmp * SR_REQ) */ - else { - /* RvC: go to sleep if polling time expired - */ - if (!cmd->device->disconnect && time_after_eq(jiffies, poll_time)) { - NCR5380_set_timer(hostdata, USLEEP_SLEEP); - dprintk(NDEBUG_USLEEP, "scsi%d : poll timed out, sleeping until %lu\n", instance->host_no, hostdata->time_expires); - return; - } + } /* switch(phase) */ + } else { + spin_unlock_irq(&hostdata->lock); + NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, HZ); + spin_lock_irq(&hostdata->lock); } - } /* while (1) */ + } } /* * Function : void NCR5380_reselect (struct Scsi_Host *instance) * - * Purpose : does reselection, initializing the instance->connected - * field to point to the scsi_cmnd for which the I_T_L or I_T_L_Q - * nexus has been reestablished, - * - * Inputs : instance - this instance of the NCR5380. + * Purpose : does reselection, initializing the instance->connected + * field to point to the scsi_cmnd for which the I_T_L or I_T_L_Q + * nexus has been reestablished, * - * Locks: io_request_lock held by caller if IRQ driven + * Inputs : instance - this instance of the NCR5380. */ -static void NCR5380_reselect(struct Scsi_Host *instance) { - NCR5380_local_declare(); - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) - instance->hostdata; +static void NCR5380_reselect(struct Scsi_Host *instance) +{ + struct NCR5380_hostdata *hostdata = shost_priv(instance); unsigned char target_mask; unsigned char lun, phase; int len; unsigned char msg[3]; unsigned char *data; - struct scsi_cmnd *tmp = NULL, *prev; - int abort = 0; - NCR5380_setup(instance); + struct NCR5380_cmd *ncmd; + struct scsi_cmnd *tmp; /* * Disable arbitration, etc. since the host adapter obviously @@ -2424,12 +2099,12 @@ static void NCR5380_reselect(struct Scsi_Host *instance) { */ NCR5380_write(MODE_REG, MR_BASE); - hostdata->restart_select = 1; target_mask = NCR5380_read(CURRENT_SCSI_DATA_REG) & ~(hostdata->id_mask); - dprintk(NDEBUG_SELECTION, "scsi%d : reselect\n", instance->host_no); - /* + dsprintk(NDEBUG_RESELECTION, instance, "reselect\n"); + + /* * At this point, we have detected that our SCSI ID is on the bus, * SEL is true and BSY was false for at least one bus settle delay * (400 ns). @@ -2439,103 +2114,110 @@ static void NCR5380_reselect(struct Scsi_Host *instance) { */ NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE | ICR_ASSERT_BSY); - - /* FIXME: timeout too long, must fail to workqueue */ - if(NCR5380_poll_politely(instance, STATUS_REG, SR_SEL, 0, 2*HZ)<0) - abort = 1; - + if (NCR5380_poll_politely(instance, + STATUS_REG, SR_SEL, 0, 2 * HZ) < 0) { + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + return; + } NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); /* * Wait for target to go into MSGIN. - * FIXME: timeout needed and fail to work queeu */ - if(NCR5380_poll_politely(instance, STATUS_REG, SR_REQ, SR_REQ, 2*HZ)) - abort = 1; + if (NCR5380_poll_politely(instance, + STATUS_REG, SR_REQ, SR_REQ, 2 * HZ) < 0) { + do_abort(instance); + return; + } len = 1; data = msg; phase = PHASE_MSGIN; NCR5380_transfer_pio(instance, &phase, &len, &data); + if (len) { + do_abort(instance); + return; + } + if (!(msg[0] & 0x80)) { - printk(KERN_ERR "scsi%d : expecting IDENTIFY message, got ", instance->host_no); + shost_printk(KERN_ERR, instance, "expecting IDENTIFY message, got "); spi_print_msg(msg); - abort = 1; - } else { - /* Accept message by clearing ACK */ - NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); - lun = (msg[0] & 0x07); + printk("\n"); + do_abort(instance); + return; + } + lun = msg[0] & 0x07; - /* - * We need to add code for SCSI-II to track which devices have - * I_T_L_Q nexuses established, and which have simple I_T_L - * nexuses so we can chose to do additional data transfer. - */ + /* + * We need to add code for SCSI-II to track which devices have + * I_T_L_Q nexuses established, and which have simple I_T_L + * nexuses so we can chose to do additional data transfer. + */ - /* - * Find the command corresponding to the I_T_L or I_T_L_Q nexus we - * just reestablished, and remove it from the disconnected queue. - */ + /* + * Find the command corresponding to the I_T_L or I_T_L_Q nexus we + * just reestablished, and remove it from the disconnected queue. + */ + tmp = NULL; + list_for_each_entry(ncmd, &hostdata->disconnected, list) { + struct scsi_cmnd *cmd = NCR5380_to_scmd(ncmd); - for (tmp = (struct scsi_cmnd *) hostdata->disconnected_queue, prev = NULL; tmp; prev = tmp, tmp = (struct scsi_cmnd *) tmp->host_scribble) - if ((target_mask == (1 << tmp->device->id)) && (lun == (u8)tmp->device->lun) - ) { - if (prev) { - REMOVE(prev, prev->host_scribble, tmp, tmp->host_scribble); - prev->host_scribble = tmp->host_scribble; - } else { - REMOVE(-1, hostdata->disconnected_queue, tmp, tmp->host_scribble); - hostdata->disconnected_queue = (struct scsi_cmnd *) tmp->host_scribble; - } - tmp->host_scribble = NULL; - break; - } - if (!tmp) { - printk(KERN_ERR "scsi%d : warning : target bitmask %02x lun %d not in disconnect_queue.\n", instance->host_no, target_mask, lun); - /* - * Since we have an established nexus that we can't do anything with, - * we must abort it. - */ - abort = 1; + if (target_mask == (1 << scmd_id(cmd)) && + lun == (u8)cmd->device->lun) { + list_del(&ncmd->list); + tmp = cmd; + break; } } - if (abort) { - do_abort(instance); + if (tmp) { + dsprintk(NDEBUG_RESELECTION | NDEBUG_QUEUES, instance, + "reselect: removed %p from disconnected queue\n", tmp); } else { - hostdata->connected = tmp; - dprintk(NDEBUG_RESELECTION, "scsi%d : nexus established, target = %d, lun = %llu, tag = %d\n", instance->host_no, tmp->device->id, tmp->device->lun, tmp->tag); + shost_printk(KERN_ERR, instance, "target bitmask 0x%02x lun %d not in disconnected queue.\n", + target_mask, lun); + /* + * Since we have an established nexus that we can't do anything + * with, we must abort it. + */ + do_abort(instance); + return; } + + /* Accept message by clearing ACK */ + NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); + + hostdata->connected = tmp; + dsprintk(NDEBUG_RESELECTION, instance, "nexus established, target %d, lun %llu, tag %d\n", + scmd_id(tmp), tmp->device->lun, tmp->tag); } /* * Function : void NCR5380_dma_complete (struct Scsi_Host *instance) * * Purpose : called by interrupt handler when DMA finishes or a phase - * mismatch occurs (which would finish the DMA transfer). + * mismatch occurs (which would finish the DMA transfer). * * Inputs : instance - this instance of the NCR5380. * * Returns : pointer to the scsi_cmnd structure for which the I_T_L - * nexus has been reestablished, on failure NULL is returned. + * nexus has been reestablished, on failure NULL is returned. */ #ifdef REAL_DMA static void NCR5380_dma_complete(NCR5380_instance * instance) { - NCR5380_local_declare(); - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; + struct NCR5380_hostdata *hostdata = shost_priv(instance); int transferred; - NCR5380_setup(instance); /* * XXX this might not be right. * * Wait for final byte to transfer, ie wait for ACK to go false. * - * We should use the Last Byte Sent bit, unfortunately this is + * We should use the Last Byte Sent bit, unfortunately this is * not available on the 5380/5381 (only the various CMOS chips) * * FIXME: timeout, and need to handle long timeout/irq case @@ -2543,7 +2225,6 @@ static void NCR5380_dma_complete(NCR5380_instance * instance) { NCR5380_poll_politely(instance, BUS_AND_STATUS_REG, BASR_ACK, 0, 5*HZ); - NCR5380_write(MODE_REG, MR_BASE); NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE); /* @@ -2560,190 +2241,251 @@ static void NCR5380_dma_complete(NCR5380_instance * instance) { } #endif /* def REAL_DMA */ -/* - * Function : int NCR5380_abort (struct scsi_cmnd *cmd) - * - * Purpose : abort a command - * - * Inputs : cmd - the scsi_cmnd to abort, code - code to set the - * host byte of the result field to, if zero DID_ABORTED is - * used. - * - * Returns : SUCCESS - success, FAILED on failure. - * - * XXX - there is no way to abort the command that is currently - * connected, you have to wait for it to complete. If this is - * a problem, we could implement longjmp() / setjmp(), setjmp() - * called where the loop started in NCR5380_main(). - * - * Locks: host lock taken by caller +/** + * list_find_cmd - test for presence of a command in a linked list + * @haystack: list of commands + * @needle: command to search for */ -static int NCR5380_abort(struct scsi_cmnd *cmd) +static bool list_find_cmd(struct list_head *haystack, + struct scsi_cmnd *needle) { - NCR5380_local_declare(); - struct Scsi_Host *instance = cmd->device->host; - struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata; - struct scsi_cmnd *tmp, **prev; + struct NCR5380_cmd *ncmd; - scmd_printk(KERN_WARNING, cmd, "aborting command\n"); + list_for_each_entry(ncmd, haystack, list) + if (NCR5380_to_scmd(ncmd) == needle) + return true; + return false; +} - NCR5380_print_status(instance); +/** + * list_remove_cmd - remove a command from linked list + * @haystack: list of commands + * @needle: command to remove + */ - NCR5380_setup(instance); +static bool list_del_cmd(struct list_head *haystack, + struct scsi_cmnd *needle) +{ + if (list_find_cmd(haystack, needle)) { + struct NCR5380_cmd *ncmd = scsi_cmd_priv(needle); - dprintk(NDEBUG_ABORT, "scsi%d : abort called\n", instance->host_no); - dprintk(NDEBUG_ABORT, " basr 0x%X, sr 0x%X\n", NCR5380_read(BUS_AND_STATUS_REG), NCR5380_read(STATUS_REG)); + list_del(&ncmd->list); + return true; + } + return false; +} -#if 0 -/* - * Case 1 : If the command is the currently executing command, - * we'll set the aborted flag and return control so that - * information transfer routine can exit cleanly. +/** + * NCR5380_abort - scsi host eh_abort_handler() method + * @cmd: the command to be aborted + * + * Try to abort a given command by removing it from queues and/or sending + * the target an abort message. This may not succeed in causing a target + * to abort the command. Nonetheless, the low-level driver must forget about + * the command because the mid-layer reclaims it and it may be re-issued. + * + * The normal path taken by a command is as follows. For EH we trace this + * same path to locate and abort the command. + * + * unissued -> selecting -> [unissued -> selecting ->]... connected -> + * [disconnected -> connected ->]... + * [autosense -> connected ->] done + * + * If cmd is unissued then just remove it. + * If cmd is disconnected, try to select the target. + * If cmd is connected, try to send an abort message. + * If cmd is waiting for autosense, give it a chance to complete but check + * that it isn't left connected. + * If cmd was not found at all then presumably it has already been completed, + * in which case return SUCCESS to try to avoid further EH measures. + * If the command has not completed yet, we must not fail to find it. */ - if (hostdata->connected == cmd) { - dprintk(NDEBUG_ABORT, "scsi%d : aborting connected command\n", instance->host_no); - hostdata->aborted = 1; -/* - * We should perform BSY checking, and make sure we haven't slipped - * into BUS FREE. - */ +static int NCR5380_abort(struct scsi_cmnd *cmd) +{ + struct Scsi_Host *instance = cmd->device->host; + struct NCR5380_hostdata *hostdata = shost_priv(instance); + unsigned long flags; + int result = SUCCESS; - NCR5380_write(INITIATOR_COMMAND_REG, ICR_ASSERT_ATN); -/* - * Since we can't change phases until we've completed the current - * handshake, we have to source or sink a byte of data if the current - * phase is not MSGOUT. - */ + spin_lock_irqsave(&hostdata->lock, flags); -/* - * Return control to the executing NCR drive so we can clear the - * aborted flag and get back into our main loop. - */ +#if (NDEBUG & NDEBUG_ANY) + scmd_printk(KERN_INFO, cmd, __func__); +#endif + NCR5380_dprint(NDEBUG_ANY, instance); + NCR5380_dprint_phase(NDEBUG_ANY, instance); - return SUCCESS; + if (list_del_cmd(&hostdata->unissued, cmd)) { + dsprintk(NDEBUG_ABORT, instance, + "abort: removed %p from issue queue\n", cmd); + cmd->result = DID_ABORT << 16; + cmd->scsi_done(cmd); /* No tag or busy flag to worry about */ } -#endif -/* - * Case 2 : If the command hasn't been issued yet, we simply remove it - * from the issue queue. - */ - - dprintk(NDEBUG_ABORT, "scsi%d : abort going into loop.\n", instance->host_no); - for (prev = (struct scsi_cmnd **) &(hostdata->issue_queue), tmp = (struct scsi_cmnd *) hostdata->issue_queue; tmp; prev = (struct scsi_cmnd **) &(tmp->host_scribble), tmp = (struct scsi_cmnd *) tmp->host_scribble) - if (cmd == tmp) { - REMOVE(5, *prev, tmp, tmp->host_scribble); - (*prev) = (struct scsi_cmnd *) tmp->host_scribble; - tmp->host_scribble = NULL; - tmp->result = DID_ABORT << 16; - dprintk(NDEBUG_ABORT, "scsi%d : abort removed command from issue queue.\n", instance->host_no); - tmp->scsi_done(tmp); - return SUCCESS; + if (hostdata->selecting == cmd) { + dsprintk(NDEBUG_ABORT, instance, + "abort: cmd %p == selecting\n", cmd); + hostdata->selecting = NULL; + cmd->result = DID_ABORT << 16; + complete_cmd(instance, cmd); + goto out; + } + + if (list_del_cmd(&hostdata->disconnected, cmd)) { + dsprintk(NDEBUG_ABORT, instance, + "abort: removed %p from disconnected list\n", cmd); + cmd->result = DID_ERROR << 16; + if (!hostdata->connected) + NCR5380_select(instance, cmd); + if (hostdata->connected != cmd) { + complete_cmd(instance, cmd); + result = FAILED; + goto out; + } + } + + if (hostdata->connected == cmd) { + dsprintk(NDEBUG_ABORT, instance, "abort: cmd %p is connected\n", cmd); + hostdata->connected = NULL; + if (do_abort(instance)) { + set_host_byte(cmd, DID_ERROR); + complete_cmd(instance, cmd); + result = FAILED; + goto out; } -#if (NDEBUG & NDEBUG_ABORT) - /* KLL */ - else if (prev == tmp) - printk(KERN_ERR "scsi%d : LOOP\n", instance->host_no); + set_host_byte(cmd, DID_ABORT); +#ifdef REAL_DMA + hostdata->dma_len = 0; #endif + if (cmd->cmnd[0] == REQUEST_SENSE) + complete_cmd(instance, cmd); + else { + struct NCR5380_cmd *ncmd = scsi_cmd_priv(cmd); -/* - * Case 3 : If any commands are connected, we're going to fail the abort - * and let the high level SCSI driver retry at a later time or - * issue a reset. - * - * Timeouts, and therefore aborted commands, will be highly unlikely - * and handling them cleanly in this situation would make the common - * case of noresets less efficient, and would pollute our code. So, - * we fail. - */ + /* Perform autosense for this command */ + list_add(&ncmd->list, &hostdata->autosense); + } + } - if (hostdata->connected) { - dprintk(NDEBUG_ABORT, "scsi%d : abort failed, command connected.\n", instance->host_no); - return FAILED; + if (list_find_cmd(&hostdata->autosense, cmd)) { + dsprintk(NDEBUG_ABORT, instance, + "abort: found %p on sense queue\n", cmd); + spin_unlock_irqrestore(&hostdata->lock, flags); + queue_work(hostdata->work_q, &hostdata->main_task); + msleep(1000); + spin_lock_irqsave(&hostdata->lock, flags); + if (list_del_cmd(&hostdata->autosense, cmd)) { + dsprintk(NDEBUG_ABORT, instance, + "abort: removed %p from sense queue\n", cmd); + set_host_byte(cmd, DID_ABORT); + complete_cmd(instance, cmd); + goto out; + } } -/* - * Case 4: If the command is currently disconnected from the bus, and - * there are no connected commands, we reconnect the I_T_L or - * I_T_L_Q nexus associated with it, go into message out, and send - * an abort message. - * - * This case is especially ugly. In order to reestablish the nexus, we - * need to call NCR5380_select(). The easiest way to implement this - * function was to abort if the bus was busy, and let the interrupt - * handler triggered on the SEL for reselect take care of lost arbitrations - * where necessary, meaning interrupts need to be enabled. - * - * When interrupts are enabled, the queues may change - so we - * can't remove it from the disconnected queue before selecting it - * because that could cause a failure in hashing the nexus if that - * device reselected. - * - * Since the queues may change, we can't use the pointers from when we - * first locate it. - * - * So, we must first locate the command, and if NCR5380_select() - * succeeds, then issue the abort, relocate the command and remove - * it from the disconnected queue. - */ - for (tmp = (struct scsi_cmnd *) hostdata->disconnected_queue; tmp; tmp = (struct scsi_cmnd *) tmp->host_scribble) - if (cmd == tmp) { - dprintk(NDEBUG_ABORT, "scsi%d : aborting disconnected command.\n", instance->host_no); + if (hostdata->connected == cmd) { + dsprintk(NDEBUG_ABORT, instance, "abort: cmd %p is connected\n", cmd); + hostdata->connected = NULL; + if (do_abort(instance)) { + set_host_byte(cmd, DID_ERROR); + complete_cmd(instance, cmd); + result = FAILED; + goto out; + } + set_host_byte(cmd, DID_ABORT); +#ifdef REAL_DMA + hostdata->dma_len = 0; +#endif + complete_cmd(instance, cmd); + } - if (NCR5380_select(instance, cmd)) - return FAILED; - dprintk(NDEBUG_ABORT, "scsi%d : nexus reestablished.\n", instance->host_no); +out: + if (result == FAILED) + dsprintk(NDEBUG_ABORT, instance, "abort: failed to abort %p\n", cmd); + else + dsprintk(NDEBUG_ABORT, instance, "abort: successfully aborted %p\n", cmd); - do_abort(instance); + queue_work(hostdata->work_q, &hostdata->main_task); + spin_unlock_irqrestore(&hostdata->lock, flags); - for (prev = (struct scsi_cmnd **) &(hostdata->disconnected_queue), tmp = (struct scsi_cmnd *) hostdata->disconnected_queue; tmp; prev = (struct scsi_cmnd **) &(tmp->host_scribble), tmp = (struct scsi_cmnd *) tmp->host_scribble) - if (cmd == tmp) { - REMOVE(5, *prev, tmp, tmp->host_scribble); - *prev = (struct scsi_cmnd *) tmp->host_scribble; - tmp->host_scribble = NULL; - tmp->result = DID_ABORT << 16; - tmp->scsi_done(tmp); - return SUCCESS; - } - } -/* - * Case 5 : If we reached this point, the command was not found in any of - * the queues. - * - * We probably reached this point because of an unlikely race condition - * between the command completing successfully and the abortion code, - * so we won't panic, but we will notify the user in case something really - * broke. - */ - printk(KERN_WARNING "scsi%d : warning : SCSI command probably completed successfully\n" - " before abortion\n", instance->host_no); - return FAILED; + return result; } -/* - * Function : int NCR5380_bus_reset (struct scsi_cmnd *cmd) - * - * Purpose : reset the SCSI bus. - * - * Returns : SUCCESS +/** + * NCR5380_bus_reset - reset the SCSI bus + * @cmd: SCSI command undergoing EH * - * Locks: host lock taken by caller + * Returns SUCCESS */ static int NCR5380_bus_reset(struct scsi_cmnd *cmd) { struct Scsi_Host *instance = cmd->device->host; + struct NCR5380_hostdata *hostdata = shost_priv(instance); + int i; + unsigned long flags; + struct NCR5380_cmd *ncmd; - NCR5380_local_declare(); - NCR5380_setup(instance); - NCR5380_print_status(instance); + spin_lock_irqsave(&hostdata->lock, flags); + +#if (NDEBUG & NDEBUG_ANY) + scmd_printk(KERN_INFO, cmd, __func__); +#endif + NCR5380_dprint(NDEBUG_ANY, instance); + NCR5380_dprint_phase(NDEBUG_ANY, instance); - spin_lock_irq(instance->host_lock); do_reset(instance); - spin_unlock_irq(instance->host_lock); + + /* reset NCR registers */ + NCR5380_write(MODE_REG, MR_BASE); + NCR5380_write(TARGET_COMMAND_REG, 0); + NCR5380_write(SELECT_ENABLE_REG, 0); + + /* After the reset, there are no more connected or disconnected commands + * and no busy units; so clear the low-level status here to avoid + * conflicts when the mid-level code tries to wake up the affected + * commands! + */ + + hostdata->selecting = NULL; + + list_for_each_entry(ncmd, &hostdata->disconnected, list) { + struct scsi_cmnd *cmd = NCR5380_to_scmd(ncmd); + + set_host_byte(cmd, DID_RESET); + cmd->scsi_done(cmd); + } + + list_for_each_entry(ncmd, &hostdata->autosense, list) { + struct scsi_cmnd *cmd = NCR5380_to_scmd(ncmd); + + set_host_byte(cmd, DID_RESET); + cmd->scsi_done(cmd); + } + + if (hostdata->connected) { + set_host_byte(hostdata->connected, DID_RESET); + complete_cmd(instance, hostdata->connected); + hostdata->connected = NULL; + } + + if (hostdata->sensing) { + set_host_byte(hostdata->connected, DID_RESET); + complete_cmd(instance, hostdata->sensing); + hostdata->sensing = NULL; + } + + for (i = 0; i < 8; ++i) + hostdata->busy[i] = 0; +#ifdef REAL_DMA + hostdata->dma_len = 0; +#endif + + queue_work(hostdata->work_q, &hostdata->main_task); + spin_unlock_irqrestore(&hostdata->lock, flags); return SUCCESS; } |