diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-11 10:21:06 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-11 10:21:06 -0700 |
commit | b5683a37c881e2e08065f1670086e281430ee19f (patch) | |
tree | 3701e5159cf676ffa436dac394237252d2cd0f00 /kernel/fork.c | |
parent | 54126fafea5249480f9962863cfd5ca2e7ba3150 (diff) | |
parent | e9c5263ce16d96311c118111ac779f004be8b473 (diff) |
Merge tag 'vfs-6.9.pidfd' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull pdfd updates from Christian Brauner:
- Until now pidfds could only be created for thread-group leaders but
not for threads. There was no technical reason for this. We simply
had no users that needed support for this. Now we do have users that
need support for this.
This introduces a new PIDFD_THREAD flag for pidfd_open(). If that
flag is set pidfd_open() creates a pidfd that refers to a specific
thread.
In addition, we now allow clone() and clone3() to be called with
CLONE_PIDFD | CLONE_THREAD which wasn't possible before.
A pidfd that refers to an individual thread differs from a pidfd that
refers to a thread-group leader:
(1) Pidfds are pollable. A task may poll a pidfd and get notified
when the task has exited.
For thread-group leader pidfds the polling task is woken if the
thread-group is empty. In other words, if the thread-group
leader task exits when there are still threads alive in its
thread-group the polling task will not be woken when the
thread-group leader exits but rather when the last thread in the
thread-group exits.
For thread-specific pidfds the polling task is woken if the
thread exits.
(2) Passing a thread-group leader pidfd to pidfd_send_signal() will
generate thread-group directed signals like kill(2) does.
Passing a thread-specific pidfd to pidfd_send_signal() will
generate thread-specific signals like tgkill(2) does.
The default scope of the signal is thus determined by the type
of the pidfd.
Since use-cases exist where the default scope of the provided
pidfd needs to be overriden the following flags are added to
pidfd_send_signal():
- PIDFD_SIGNAL_THREAD
Send a thread-specific signal.
- PIDFD_SIGNAL_THREAD_GROUP
Send a thread-group directed signal.
- PIDFD_SIGNAL_PROCESS_GROUP
Send a process-group directed signal.
The scope change will only work if the struct pid is actually
used for this scope.
For example, in order to send a thread-group directed signal the
provided pidfd must be used as a thread-group leader and
similarly for PIDFD_SIGNAL_PROCESS_GROUP the struct pid must be
used as a process group leader.
- Move pidfds from the anonymous inode infrastructure to a tiny pseudo
filesystem. This will unblock further work that we weren't able to do
simply because of the very justified limitations of anonymous inodes.
Moving pidfds to a tiny pseudo filesystem allows for statx on pidfds
to become useful for the first time. They can now be compared by
inode number which are unique for the system lifetime.
Instead of stashing struct pid in file->private_data we can now stash
it in inode->i_private. This makes it possible to introduce concepts
that operate on a process once all file descriptors have been closed.
A concrete example is kill-on-last-close. Another side-effect is that
file->private_data is now freed up for per-file options for pidfds.
Now, each struct pid will refer to a different inode but the same
struct pid will refer to the same inode if it's opened multiple
times. In contrast to now where each struct pid refers to the same
inode.
The tiny pseudo filesystem is not visible anywhere in userspace
exactly like e.g., pipefs and sockfs. There's no lookup, there's no
complex inode operations, nothing. Dentries and inodes are always
deleted when the last pidfd is closed.
We allocate a new inode and dentry for each struct pid and we reuse
that inode and dentry for all pidfds that refer to the same struct
pid. The code is entirely optional and fairly small. If it's not
selected we fallback to anonymous inodes. Heavily inspired by nsfs.
The dentry and inode allocation mechanism is moved into generic
infrastructure that is now shared between nsfs and pidfs. The
path_from_stashed() helper must be provided with a stashing location,
an inode number, a mount, and the private data that is supposed to be
used and it will provide a path that can be passed to dentry_open().
The helper will try retrieve an existing dentry from the provided
stashing location. If a valid dentry is found it is reused. If not a
new one is allocated and we try to stash it in the provided location.
If this fails we retry until we either find an existing dentry or the
newly allocated dentry could be stashed. Subsequent openers of the
same namespace or task are then able to reuse it.
- Currently it is only possible to get notified when a task has exited,
i.e., become a zombie and userspace gets notified with EPOLLIN. We
now also support waiting until the task has been reaped, notifying
userspace with EPOLLHUP.
- Ensure that ESRCH is reported for getfd if a task is exiting instead
of the confusing EBADF.
- Various smaller cleanups to pidfd functions.
* tag 'vfs-6.9.pidfd' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (23 commits)
libfs: improve path_from_stashed()
libfs: add stashed_dentry_prune()
libfs: improve path_from_stashed() helper
pidfs: convert to path_from_stashed() helper
nsfs: convert to path_from_stashed() helper
libfs: add path_from_stashed()
pidfd: add pidfs
pidfd: move struct pidfd_fops
pidfd: allow to override signal scope in pidfd_send_signal()
pidfd: change pidfd_send_signal() to respect PIDFD_THREAD
signal: fill in si_code in prepare_kill_siginfo()
selftests: add ESRCH tests for pidfd_getfd()
pidfd: getfd should always report ESRCH if a task is exiting
pidfd: clone: allow CLONE_THREAD | CLONE_PIDFD together
pidfd: exit: kill the no longer used thread_group_exited()
pidfd: change do_notify_pidfd() to use __wake_up(poll_to_key(EPOLLIN))
pid: kill the obsolete PIDTYPE_PID code in transfer_pid()
pidfd: kill the no longer needed do_notify_pidfd() in de_thread()
pidfd_poll: report POLLHUP when pid_task() == NULL
pidfd: implement PIDFD_THREAD flag for pidfd_open()
...
Diffstat (limited to 'kernel/fork.c')
-rw-r--r-- | kernel/fork.c | 147 |
1 files changed, 20 insertions, 127 deletions
diff --git a/kernel/fork.c b/kernel/fork.c index 0d944e92a43f..1af8dfd149ee 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -101,6 +101,8 @@ #include <linux/user_events.h> #include <linux/iommu.h> #include <linux/rseq.h> +#include <uapi/linux/pidfd.h> +#include <linux/pidfs.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> @@ -1985,119 +1987,6 @@ static inline void rcu_copy_process(struct task_struct *p) #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } -struct pid *pidfd_pid(const struct file *file) -{ - if (file->f_op == &pidfd_fops) - return file->private_data; - - return ERR_PTR(-EBADF); -} - -static int pidfd_release(struct inode *inode, struct file *file) -{ - struct pid *pid = file->private_data; - - file->private_data = NULL; - put_pid(pid); - return 0; -} - -#ifdef CONFIG_PROC_FS -/** - * pidfd_show_fdinfo - print information about a pidfd - * @m: proc fdinfo file - * @f: file referencing a pidfd - * - * Pid: - * This function will print the pid that a given pidfd refers to in the - * pid namespace of the procfs instance. - * If the pid namespace of the process is not a descendant of the pid - * namespace of the procfs instance 0 will be shown as its pid. This is - * similar to calling getppid() on a process whose parent is outside of - * its pid namespace. - * - * NSpid: - * If pid namespaces are supported then this function will also print - * the pid of a given pidfd refers to for all descendant pid namespaces - * starting from the current pid namespace of the instance, i.e. the - * Pid field and the first entry in the NSpid field will be identical. - * If the pid namespace of the process is not a descendant of the pid - * namespace of the procfs instance 0 will be shown as its first NSpid - * entry and no others will be shown. - * Note that this differs from the Pid and NSpid fields in - * /proc/<pid>/status where Pid and NSpid are always shown relative to - * the pid namespace of the procfs instance. The difference becomes - * obvious when sending around a pidfd between pid namespaces from a - * different branch of the tree, i.e. where no ancestral relation is - * present between the pid namespaces: - * - create two new pid namespaces ns1 and ns2 in the initial pid - * namespace (also take care to create new mount namespaces in the - * new pid namespace and mount procfs) - * - create a process with a pidfd in ns1 - * - send pidfd from ns1 to ns2 - * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid - * have exactly one entry, which is 0 - */ -static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) -{ - struct pid *pid = f->private_data; - struct pid_namespace *ns; - pid_t nr = -1; - - if (likely(pid_has_task(pid, PIDTYPE_PID))) { - ns = proc_pid_ns(file_inode(m->file)->i_sb); - nr = pid_nr_ns(pid, ns); - } - - seq_put_decimal_ll(m, "Pid:\t", nr); - -#ifdef CONFIG_PID_NS - seq_put_decimal_ll(m, "\nNSpid:\t", nr); - if (nr > 0) { - int i; - - /* If nr is non-zero it means that 'pid' is valid and that - * ns, i.e. the pid namespace associated with the procfs - * instance, is in the pid namespace hierarchy of pid. - * Start at one below the already printed level. - */ - for (i = ns->level + 1; i <= pid->level; i++) - seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); - } -#endif - seq_putc(m, '\n'); -} -#endif - -/* - * Poll support for process exit notification. - */ -static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) -{ - struct pid *pid = file->private_data; - __poll_t poll_flags = 0; - - poll_wait(file, &pid->wait_pidfd, pts); - - /* - * Inform pollers only when the whole thread group exits. - * If the thread group leader exits before all other threads in the - * group, then poll(2) should block, similar to the wait(2) family. - */ - if (thread_group_exited(pid)) - poll_flags = EPOLLIN | EPOLLRDNORM; - - return poll_flags; -} - -const struct file_operations pidfd_fops = { - .release = pidfd_release, - .poll = pidfd_poll, -#ifdef CONFIG_PROC_FS - .show_fdinfo = pidfd_show_fdinfo, -#endif -}; - /** * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd * @pid: the struct pid for which to create a pidfd @@ -2131,20 +2020,20 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re int pidfd; struct file *pidfd_file; - if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) - return -EINVAL; - - pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); + pidfd = get_unused_fd_flags(O_CLOEXEC); if (pidfd < 0) return pidfd; - pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, - flags | O_RDWR | O_CLOEXEC); + pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); if (IS_ERR(pidfd_file)) { put_unused_fd(pidfd); return PTR_ERR(pidfd_file); } - get_pid(pid); /* held by pidfd_file now */ + /* + * anon_inode_getfile() ignores everything outside of the + * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. + */ + pidfd_file->f_flags |= (flags & PIDFD_THREAD); *ret = pidfd_file; return pidfd; } @@ -2158,7 +2047,8 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re * Allocate a new file that stashes @pid and reserve a new pidfd number in the * caller's file descriptor table. The pidfd is reserved but not installed yet. * - * The helper verifies that @pid is used as a thread group leader. + * The helper verifies that @pid is still in use, without PIDFD_THREAD the + * task identified by @pid must be a thread-group leader. * * If this function returns successfully the caller is responsible to either * call fd_install() passing the returned pidfd and pidfd file as arguments in @@ -2177,7 +2067,9 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re */ int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) { - if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) + bool thread = flags & PIDFD_THREAD; + + if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) return -EINVAL; return __pidfd_prepare(pid, flags, ret); @@ -2299,9 +2191,8 @@ __latent_entropy struct task_struct *copy_process( /* * - CLONE_DETACHED is blocked so that we can potentially * reuse it later for CLONE_PIDFD. - * - CLONE_THREAD is blocked until someone really needs it. */ - if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) + if (clone_flags & CLONE_DETACHED) return ERR_PTR(-EINVAL); } @@ -2524,8 +2415,10 @@ __latent_entropy struct task_struct *copy_process( * if the fd table isn't shared). */ if (clone_flags & CLONE_PIDFD) { + int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; + /* Note that no task has been attached to @pid yet. */ - retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); + retval = __pidfd_prepare(pid, flags, &pidfile); if (retval < 0) goto bad_fork_free_pid; pidfd = retval; @@ -2876,8 +2769,8 @@ pid_t kernel_clone(struct kernel_clone_args *args) * here has the advantage that we don't need to have a separate helper * to check for legacy clone(). */ - if ((args->flags & CLONE_PIDFD) && - (args->flags & CLONE_PARENT_SETTID) && + if ((clone_flags & CLONE_PIDFD) && + (clone_flags & CLONE_PARENT_SETTID) && (args->pidfd == args->parent_tid)) return -EINVAL; |