diff options
author | Ralph Campbell <ralph.campbell@qlogic.com> | 2010-05-23 21:44:54 -0700 |
---|---|---|
committer | Roland Dreier <rolandd@cisco.com> | 2010-05-23 21:44:54 -0700 |
commit | f931551bafe1f10ded7f5282e2aa162c267a2e5d (patch) | |
tree | e81b4656a8116abf5fd0bc0bbc46560aff536159 /drivers/infiniband/hw/qib/qib_eeprom.c | |
parent | 9a6edb60ec10d86b1025a0cdad68fd89f1ddaf02 (diff) |
IB/qib: Add new qib driver for QLogic PCIe InfiniBand adapters
Add a low-level IB driver for QLogic PCIe adapters.
Signed-off-by: Ralph Campbell <ralph.campbell@qlogic.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
Diffstat (limited to 'drivers/infiniband/hw/qib/qib_eeprom.c')
-rw-r--r-- | drivers/infiniband/hw/qib/qib_eeprom.c | 451 |
1 files changed, 451 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/qib/qib_eeprom.c b/drivers/infiniband/hw/qib/qib_eeprom.c new file mode 100644 index 000000000000..92d9cfe98a68 --- /dev/null +++ b/drivers/infiniband/hw/qib/qib_eeprom.c @@ -0,0 +1,451 @@ +/* + * Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved. + * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/delay.h> +#include <linux/pci.h> +#include <linux/vmalloc.h> + +#include "qib.h" + +/* + * Functions specific to the serial EEPROM on cards handled by ib_qib. + * The actual serail interface code is in qib_twsi.c. This file is a client + */ + +/** + * qib_eeprom_read - receives bytes from the eeprom via I2C + * @dd: the qlogic_ib device + * @eeprom_offset: address to read from + * @buffer: where to store result + * @len: number of bytes to receive + */ +int qib_eeprom_read(struct qib_devdata *dd, u8 eeprom_offset, + void *buff, int len) +{ + int ret; + + ret = mutex_lock_interruptible(&dd->eep_lock); + if (!ret) { + ret = qib_twsi_reset(dd); + if (ret) + qib_dev_err(dd, "EEPROM Reset for read failed\n"); + else + ret = qib_twsi_blk_rd(dd, dd->twsi_eeprom_dev, + eeprom_offset, buff, len); + mutex_unlock(&dd->eep_lock); + } + + return ret; +} + +/* + * Actually update the eeprom, first doing write enable if + * needed, then restoring write enable state. + * Must be called with eep_lock held + */ +static int eeprom_write_with_enable(struct qib_devdata *dd, u8 offset, + const void *buf, int len) +{ + int ret, pwen; + + pwen = dd->f_eeprom_wen(dd, 1); + ret = qib_twsi_reset(dd); + if (ret) + qib_dev_err(dd, "EEPROM Reset for write failed\n"); + else + ret = qib_twsi_blk_wr(dd, dd->twsi_eeprom_dev, + offset, buf, len); + dd->f_eeprom_wen(dd, pwen); + return ret; +} + +/** + * qib_eeprom_write - writes data to the eeprom via I2C + * @dd: the qlogic_ib device + * @eeprom_offset: where to place data + * @buffer: data to write + * @len: number of bytes to write + */ +int qib_eeprom_write(struct qib_devdata *dd, u8 eeprom_offset, + const void *buff, int len) +{ + int ret; + + ret = mutex_lock_interruptible(&dd->eep_lock); + if (!ret) { + ret = eeprom_write_with_enable(dd, eeprom_offset, buff, len); + mutex_unlock(&dd->eep_lock); + } + + return ret; +} + +static u8 flash_csum(struct qib_flash *ifp, int adjust) +{ + u8 *ip = (u8 *) ifp; + u8 csum = 0, len; + + /* + * Limit length checksummed to max length of actual data. + * Checksum of erased eeprom will still be bad, but we avoid + * reading past the end of the buffer we were passed. + */ + len = ifp->if_length; + if (len > sizeof(struct qib_flash)) + len = sizeof(struct qib_flash); + while (len--) + csum += *ip++; + csum -= ifp->if_csum; + csum = ~csum; + if (adjust) + ifp->if_csum = csum; + + return csum; +} + +/** + * qib_get_eeprom_info- get the GUID et al. from the TSWI EEPROM device + * @dd: the qlogic_ib device + * + * We have the capability to use the nguid field, and get + * the guid from the first chip's flash, to use for all of them. + */ +void qib_get_eeprom_info(struct qib_devdata *dd) +{ + void *buf; + struct qib_flash *ifp; + __be64 guid; + int len, eep_stat; + u8 csum, *bguid; + int t = dd->unit; + struct qib_devdata *dd0 = qib_lookup(0); + + if (t && dd0->nguid > 1 && t <= dd0->nguid) { + u8 oguid; + dd->base_guid = dd0->base_guid; + bguid = (u8 *) &dd->base_guid; + + oguid = bguid[7]; + bguid[7] += t; + if (oguid > bguid[7]) { + if (bguid[6] == 0xff) { + if (bguid[5] == 0xff) { + qib_dev_err(dd, "Can't set %s GUID" + " from base, wraps to" + " OUI!\n", + qib_get_unit_name(t)); + dd->base_guid = 0; + goto bail; + } + bguid[5]++; + } + bguid[6]++; + } + dd->nguid = 1; + goto bail; + } + + /* + * Read full flash, not just currently used part, since it may have + * been written with a newer definition. + * */ + len = sizeof(struct qib_flash); + buf = vmalloc(len); + if (!buf) { + qib_dev_err(dd, "Couldn't allocate memory to read %u " + "bytes from eeprom for GUID\n", len); + goto bail; + } + + /* + * Use "public" eeprom read function, which does locking and + * figures out device. This will migrate to chip-specific. + */ + eep_stat = qib_eeprom_read(dd, 0, buf, len); + + if (eep_stat) { + qib_dev_err(dd, "Failed reading GUID from eeprom\n"); + goto done; + } + ifp = (struct qib_flash *)buf; + + csum = flash_csum(ifp, 0); + if (csum != ifp->if_csum) { + qib_devinfo(dd->pcidev, "Bad I2C flash checksum: " + "0x%x, not 0x%x\n", csum, ifp->if_csum); + goto done; + } + if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) || + *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) { + qib_dev_err(dd, "Invalid GUID %llx from flash; ignoring\n", + *(unsigned long long *) ifp->if_guid); + /* don't allow GUID if all 0 or all 1's */ + goto done; + } + + /* complain, but allow it */ + if (*(u64 *) ifp->if_guid == 0x100007511000000ULL) + qib_devinfo(dd->pcidev, "Warning, GUID %llx is " + "default, probably not correct!\n", + *(unsigned long long *) ifp->if_guid); + + bguid = ifp->if_guid; + if (!bguid[0] && !bguid[1] && !bguid[2]) { + /* + * Original incorrect GUID format in flash; fix in + * core copy, by shifting up 2 octets; don't need to + * change top octet, since both it and shifted are 0. + */ + bguid[1] = bguid[3]; + bguid[2] = bguid[4]; + bguid[3] = 0; + bguid[4] = 0; + guid = *(__be64 *) ifp->if_guid; + } else + guid = *(__be64 *) ifp->if_guid; + dd->base_guid = guid; + dd->nguid = ifp->if_numguid; + /* + * Things are slightly complicated by the desire to transparently + * support both the Pathscale 10-digit serial number and the QLogic + * 13-character version. + */ + if ((ifp->if_fversion > 1) && ifp->if_sprefix[0] && + ((u8 *) ifp->if_sprefix)[0] != 0xFF) { + char *snp = dd->serial; + + /* + * This board has a Serial-prefix, which is stored + * elsewhere for backward-compatibility. + */ + memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix); + snp[sizeof ifp->if_sprefix] = '\0'; + len = strlen(snp); + snp += len; + len = (sizeof dd->serial) - len; + if (len > sizeof ifp->if_serial) + len = sizeof ifp->if_serial; + memcpy(snp, ifp->if_serial, len); + } else + memcpy(dd->serial, ifp->if_serial, + sizeof ifp->if_serial); + if (!strstr(ifp->if_comment, "Tested successfully")) + qib_dev_err(dd, "Board SN %s did not pass functional " + "test: %s\n", dd->serial, ifp->if_comment); + + memcpy(&dd->eep_st_errs, &ifp->if_errcntp, QIB_EEP_LOG_CNT); + /* + * Power-on (actually "active") hours are kept as little-endian value + * in EEPROM, but as seconds in a (possibly as small as 24-bit) + * atomic_t while running. + */ + atomic_set(&dd->active_time, 0); + dd->eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8); + +done: + vfree(buf); + +bail:; +} + +/** + * qib_update_eeprom_log - copy active-time and error counters to eeprom + * @dd: the qlogic_ib device + * + * Although the time is kept as seconds in the qib_devdata struct, it is + * rounded to hours for re-write, as we have only 16 bits in EEPROM. + * First-cut code reads whole (expected) struct qib_flash, modifies, + * re-writes. Future direction: read/write only what we need, assuming + * that the EEPROM had to have been "good enough" for driver init, and + * if not, we aren't making it worse. + * + */ +int qib_update_eeprom_log(struct qib_devdata *dd) +{ + void *buf; + struct qib_flash *ifp; + int len, hi_water; + uint32_t new_time, new_hrs; + u8 csum; + int ret, idx; + unsigned long flags; + + /* first, check if we actually need to do anything. */ + ret = 0; + for (idx = 0; idx < QIB_EEP_LOG_CNT; ++idx) { + if (dd->eep_st_new_errs[idx]) { + ret = 1; + break; + } + } + new_time = atomic_read(&dd->active_time); + + if (ret == 0 && new_time < 3600) + goto bail; + + /* + * The quick-check above determined that there is something worthy + * of logging, so get current contents and do a more detailed idea. + * read full flash, not just currently used part, since it may have + * been written with a newer definition + */ + len = sizeof(struct qib_flash); + buf = vmalloc(len); + ret = 1; + if (!buf) { + qib_dev_err(dd, "Couldn't allocate memory to read %u " + "bytes from eeprom for logging\n", len); + goto bail; + } + + /* Grab semaphore and read current EEPROM. If we get an + * error, let go, but if not, keep it until we finish write. + */ + ret = mutex_lock_interruptible(&dd->eep_lock); + if (ret) { + qib_dev_err(dd, "Unable to acquire EEPROM for logging\n"); + goto free_bail; + } + ret = qib_twsi_blk_rd(dd, dd->twsi_eeprom_dev, 0, buf, len); + if (ret) { + mutex_unlock(&dd->eep_lock); + qib_dev_err(dd, "Unable read EEPROM for logging\n"); + goto free_bail; + } + ifp = (struct qib_flash *)buf; + + csum = flash_csum(ifp, 0); + if (csum != ifp->if_csum) { + mutex_unlock(&dd->eep_lock); + qib_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n", + csum, ifp->if_csum); + ret = 1; + goto free_bail; + } + hi_water = 0; + spin_lock_irqsave(&dd->eep_st_lock, flags); + for (idx = 0; idx < QIB_EEP_LOG_CNT; ++idx) { + int new_val = dd->eep_st_new_errs[idx]; + if (new_val) { + /* + * If we have seen any errors, add to EEPROM values + * We need to saturate at 0xFF (255) and we also + * would need to adjust the checksum if we were + * trying to minimize EEPROM traffic + * Note that we add to actual current count in EEPROM, + * in case it was altered while we were running. + */ + new_val += ifp->if_errcntp[idx]; + if (new_val > 0xFF) + new_val = 0xFF; + if (ifp->if_errcntp[idx] != new_val) { + ifp->if_errcntp[idx] = new_val; + hi_water = offsetof(struct qib_flash, + if_errcntp) + idx; + } + /* + * update our shadow (used to minimize EEPROM + * traffic), to match what we are about to write. + */ + dd->eep_st_errs[idx] = new_val; + dd->eep_st_new_errs[idx] = 0; + } + } + /* + * Now update active-time. We would like to round to the nearest hour + * but unless atomic_t are sure to be proper signed ints we cannot, + * because we need to account for what we "transfer" to EEPROM and + * if we log an hour at 31 minutes, then we would need to set + * active_time to -29 to accurately count the _next_ hour. + */ + if (new_time >= 3600) { + new_hrs = new_time / 3600; + atomic_sub((new_hrs * 3600), &dd->active_time); + new_hrs += dd->eep_hrs; + if (new_hrs > 0xFFFF) + new_hrs = 0xFFFF; + dd->eep_hrs = new_hrs; + if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) { + ifp->if_powerhour[0] = new_hrs & 0xFF; + hi_water = offsetof(struct qib_flash, if_powerhour); + } + if ((new_hrs >> 8) != ifp->if_powerhour[1]) { + ifp->if_powerhour[1] = new_hrs >> 8; + hi_water = offsetof(struct qib_flash, if_powerhour) + 1; + } + } + /* + * There is a tiny possibility that we could somehow fail to write + * the EEPROM after updating our shadows, but problems from holding + * the spinlock too long are a much bigger issue. + */ + spin_unlock_irqrestore(&dd->eep_st_lock, flags); + if (hi_water) { + /* we made some change to the data, uopdate cksum and write */ + csum = flash_csum(ifp, 1); + ret = eeprom_write_with_enable(dd, 0, buf, hi_water + 1); + } + mutex_unlock(&dd->eep_lock); + if (ret) + qib_dev_err(dd, "Failed updating EEPROM\n"); + +free_bail: + vfree(buf); +bail: + return ret; +} + +/** + * qib_inc_eeprom_err - increment one of the four error counters + * that are logged to EEPROM. + * @dd: the qlogic_ib device + * @eidx: 0..3, the counter to increment + * @incr: how much to add + * + * Each counter is 8-bits, and saturates at 255 (0xFF). They + * are copied to the EEPROM (aka flash) whenever qib_update_eeprom_log() + * is called, but it can only be called in a context that allows sleep. + * This function can be called even at interrupt level. + */ +void qib_inc_eeprom_err(struct qib_devdata *dd, u32 eidx, u32 incr) +{ + uint new_val; + unsigned long flags; + + spin_lock_irqsave(&dd->eep_st_lock, flags); + new_val = dd->eep_st_new_errs[eidx] + incr; + if (new_val > 255) + new_val = 255; + dd->eep_st_new_errs[eidx] = new_val; + spin_unlock_irqrestore(&dd->eep_st_lock, flags); +} |