1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
|
// SPDX-License-Identifier: GPL-2.0
/*
* page_fault_test.c - Test stage 2 faults.
*
* This test tries different combinations of guest accesses (e.g., write,
* S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
* hugetlbfs with a hole). It checks that the expected handling method is
* called (e.g., uffd faults with the right address and write/read flag).
*/
#define _GNU_SOURCE
#include <linux/bitmap.h>
#include <fcntl.h>
#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <asm/sysreg.h>
#include <linux/bitfield.h>
#include "guest_modes.h"
#include "userfaultfd_util.h"
/* Guest virtual addresses that point to the test page and its PTE. */
#define TEST_GVA 0xc0000000
#define TEST_EXEC_GVA (TEST_GVA + 0x8)
#define TEST_PTE_GVA 0xb0000000
#define TEST_DATA 0x0123456789ABCDEF
static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
#define CMD_NONE (0)
#define CMD_SKIP_TEST (1ULL << 1)
#define CMD_HOLE_PT (1ULL << 2)
#define CMD_HOLE_DATA (1ULL << 3)
#define CMD_CHECK_WRITE_IN_DIRTY_LOG (1ULL << 4)
#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG (1ULL << 5)
#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG (1ULL << 6)
#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG (1ULL << 7)
#define CMD_SET_PTE_AF (1ULL << 8)
#define PREPARE_FN_NR 10
#define CHECK_FN_NR 10
static struct event_cnt {
int mmio_exits;
int fail_vcpu_runs;
int uffd_faults;
/* uffd_faults is incremented from multiple threads. */
pthread_mutex_t uffd_faults_mutex;
} events;
struct test_desc {
const char *name;
uint64_t mem_mark_cmd;
/* Skip the test if any prepare function returns false */
bool (*guest_prepare[PREPARE_FN_NR])(void);
void (*guest_test)(void);
void (*guest_test_check[CHECK_FN_NR])(void);
uffd_handler_t uffd_pt_handler;
uffd_handler_t uffd_data_handler;
void (*dabt_handler)(struct ex_regs *regs);
void (*iabt_handler)(struct ex_regs *regs);
void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
void (*fail_vcpu_run_handler)(int ret);
uint32_t pt_memslot_flags;
uint32_t data_memslot_flags;
bool skip;
struct event_cnt expected_events;
};
struct test_params {
enum vm_mem_backing_src_type src_type;
struct test_desc *test_desc;
};
static inline void flush_tlb_page(uint64_t vaddr)
{
uint64_t page = vaddr >> 12;
dsb(ishst);
asm volatile("tlbi vaae1is, %0" :: "r" (page));
dsb(ish);
isb();
}
static void guest_write64(void)
{
uint64_t val;
WRITE_ONCE(*guest_test_memory, TEST_DATA);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
/* Check the system for atomic instructions. */
static bool guest_check_lse(void)
{
uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
uint64_t atomic;
atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
return atomic >= 2;
}
static bool guest_check_dc_zva(void)
{
uint64_t dczid = read_sysreg(dczid_el0);
uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
return dzp == 0;
}
/* Compare and swap instruction. */
static void guest_cas(void)
{
uint64_t val;
GUEST_ASSERT(guest_check_lse());
asm volatile(".arch_extension lse\n"
"casal %0, %1, [%2]\n"
:: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, TEST_DATA);
}
static void guest_read64(void)
{
uint64_t val;
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/* Address translation instruction */
static void guest_at(void)
{
uint64_t par;
asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
isb();
par = read_sysreg(par_el1);
/* Bit 1 indicates whether the AT was successful */
GUEST_ASSERT_EQ(par & 1, 0);
}
/*
* The size of the block written by "dc zva" is guaranteed to be between (2 <<
* 0) and (2 << 9), which is safe in our case as we need the write to happen
* for at least a word, and not more than a page.
*/
static void guest_dc_zva(void)
{
uint16_t val;
asm volatile("dc zva, %0" :: "r" (guest_test_memory));
dsb(ish);
val = READ_ONCE(*guest_test_memory);
GUEST_ASSERT_EQ(val, 0);
}
/*
* Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
* And that's special because KVM must take special care with those: they
* should still count as accesses for dirty logging or user-faulting, but
* should be handled differently on mmio.
*/
static void guest_ld_preidx(void)
{
uint64_t val;
uint64_t addr = TEST_GVA - 8;
/*
* This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
* in a gap between memslots not backing by anything.
*/
asm volatile("ldr %0, [%1, #8]!"
: "=r" (val), "+r" (addr));
GUEST_ASSERT_EQ(val, 0);
GUEST_ASSERT_EQ(addr, TEST_GVA);
}
static void guest_st_preidx(void)
{
uint64_t val = TEST_DATA;
uint64_t addr = TEST_GVA - 8;
asm volatile("str %0, [%1, #8]!"
: "+r" (val), "+r" (addr));
GUEST_ASSERT_EQ(addr, TEST_GVA);
val = READ_ONCE(*guest_test_memory);
}
static bool guest_set_ha(void)
{
uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
uint64_t hadbs, tcr;
/* Skip if HA is not supported. */
hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
if (hadbs == 0)
return false;
tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
write_sysreg(tcr, tcr_el1);
isb();
return true;
}
static bool guest_clear_pte_af(void)
{
*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
flush_tlb_page(TEST_GVA);
return true;
}
static void guest_check_pte_af(void)
{
dsb(ish);
GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
}
static void guest_check_write_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
}
static void guest_check_no_write_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
}
static void guest_check_s1ptw_wr_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
}
static void guest_check_no_s1ptw_wr_in_dirty_log(void)
{
GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
}
static void guest_exec(void)
{
int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
int ret;
ret = code();
GUEST_ASSERT_EQ(ret, 0x77);
}
static bool guest_prepare(struct test_desc *test)
{
bool (*prepare_fn)(void);
int i;
for (i = 0; i < PREPARE_FN_NR; i++) {
prepare_fn = test->guest_prepare[i];
if (prepare_fn && !prepare_fn())
return false;
}
return true;
}
static void guest_test_check(struct test_desc *test)
{
void (*check_fn)(void);
int i;
for (i = 0; i < CHECK_FN_NR; i++) {
check_fn = test->guest_test_check[i];
if (check_fn)
check_fn();
}
}
static void guest_code(struct test_desc *test)
{
if (!guest_prepare(test))
GUEST_SYNC(CMD_SKIP_TEST);
GUEST_SYNC(test->mem_mark_cmd);
if (test->guest_test)
test->guest_test();
guest_test_check(test);
GUEST_DONE();
}
static void no_dabt_handler(struct ex_regs *regs)
{
GUEST_FAIL("Unexpected dabt, far_el1 = 0x%llx", read_sysreg(far_el1));
}
static void no_iabt_handler(struct ex_regs *regs)
{
GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
}
static struct uffd_args {
char *copy;
void *hva;
uint64_t paging_size;
} pt_args, data_args;
/* Returns true to continue the test, and false if it should be skipped. */
static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
struct uffd_args *args)
{
uint64_t addr = msg->arg.pagefault.address;
uint64_t flags = msg->arg.pagefault.flags;
struct uffdio_copy copy;
int ret;
TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
"The only expected UFFD mode is MISSING");
TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
pr_debug("uffd fault: addr=%p write=%d\n",
(void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
copy.src = (uint64_t)args->copy;
copy.dst = addr;
copy.len = args->paging_size;
copy.mode = 0;
ret = ioctl(uffd, UFFDIO_COPY, ©);
if (ret == -1) {
pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
addr, errno);
return ret;
}
pthread_mutex_lock(&events.uffd_faults_mutex);
events.uffd_faults += 1;
pthread_mutex_unlock(&events.uffd_faults_mutex);
return 0;
}
static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
{
return uffd_generic_handler(mode, uffd, msg, &pt_args);
}
static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
{
return uffd_generic_handler(mode, uffd, msg, &data_args);
}
static void setup_uffd_args(struct userspace_mem_region *region,
struct uffd_args *args)
{
args->hva = (void *)region->region.userspace_addr;
args->paging_size = region->region.memory_size;
args->copy = malloc(args->paging_size);
TEST_ASSERT(args->copy, "Failed to allocate data copy.");
memcpy(args->copy, args->hva, args->paging_size);
}
static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
{
struct test_desc *test = p->test_desc;
int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
*pt_uffd = NULL;
if (test->uffd_pt_handler)
*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
pt_args.hva,
pt_args.paging_size,
test->uffd_pt_handler);
*data_uffd = NULL;
if (test->uffd_data_handler)
*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
data_args.hva,
data_args.paging_size,
test->uffd_data_handler);
}
static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
struct uffd_desc *data_uffd)
{
if (test->uffd_pt_handler)
uffd_stop_demand_paging(pt_uffd);
if (test->uffd_data_handler)
uffd_stop_demand_paging(data_uffd);
free(pt_args.copy);
free(data_args.copy);
}
static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
{
TEST_FAIL("There was no UFFD fault expected.");
return -1;
}
/* Returns false if the test should be skipped. */
static bool punch_hole_in_backing_store(struct kvm_vm *vm,
struct userspace_mem_region *region)
{
void *hva = (void *)region->region.userspace_addr;
uint64_t paging_size = region->region.memory_size;
int ret, fd = region->fd;
if (fd != -1) {
ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
0, paging_size);
TEST_ASSERT(ret == 0, "fallocate failed");
} else {
ret = madvise(hva, paging_size, MADV_DONTNEED);
TEST_ASSERT(ret == 0, "madvise failed");
}
return true;
}
static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
{
struct userspace_mem_region *region;
void *hva;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
hva = (void *)region->region.userspace_addr;
TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
memcpy(hva, run->mmio.data, run->mmio.len);
events.mmio_exits += 1;
}
static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
{
uint64_t data;
memcpy(&data, run->mmio.data, sizeof(data));
pr_debug("addr=%lld len=%d w=%d data=%lx\n",
run->mmio.phys_addr, run->mmio.len,
run->mmio.is_write, data);
TEST_FAIL("There was no MMIO exit expected.");
}
static bool check_write_in_dirty_log(struct kvm_vm *vm,
struct userspace_mem_region *region,
uint64_t host_pg_nr)
{
unsigned long *bmap;
bool first_page_dirty;
uint64_t size = region->region.memory_size;
/* getpage_size() is not always equal to vm->page_size */
bmap = bitmap_zalloc(size / getpagesize());
kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
first_page_dirty = test_bit(host_pg_nr, bmap);
free(bmap);
return first_page_dirty;
}
/* Returns true to continue the test, and false if it should be skipped. */
static bool handle_cmd(struct kvm_vm *vm, int cmd)
{
struct userspace_mem_region *data_region, *pt_region;
bool continue_test = true;
uint64_t pte_gpa, pte_pg;
data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
if (cmd == CMD_SKIP_TEST)
continue_test = false;
if (cmd & CMD_HOLE_PT)
continue_test = punch_hole_in_backing_store(vm, pt_region);
if (cmd & CMD_HOLE_DATA)
continue_test = punch_hole_in_backing_store(vm, data_region);
if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
"Missing write in dirty log");
if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
"Missing s1ptw write in dirty log");
if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
"Unexpected write in dirty log");
if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
"Unexpected s1ptw write in dirty log");
return continue_test;
}
void fail_vcpu_run_no_handler(int ret)
{
TEST_FAIL("Unexpected vcpu run failure");
}
void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
{
TEST_ASSERT(errno == ENOSYS,
"The mmio handler should have returned not implemented.");
events.fail_vcpu_runs += 1;
}
typedef uint32_t aarch64_insn_t;
extern aarch64_insn_t __exec_test[2];
noinline void __return_0x77(void)
{
asm volatile("__exec_test: mov x0, #0x77\n"
"ret\n");
}
/*
* Note that this function runs on the host before the test VM starts: there's
* no need to sync the D$ and I$ caches.
*/
static void load_exec_code_for_test(struct kvm_vm *vm)
{
uint64_t *code;
struct userspace_mem_region *region;
void *hva;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
hva = (void *)region->region.userspace_addr;
assert(TEST_EXEC_GVA > TEST_GVA);
code = hva + TEST_EXEC_GVA - TEST_GVA;
memcpy(code, __exec_test, sizeof(__exec_test));
}
static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
vm_init_descriptor_tables(vm);
vcpu_init_descriptor_tables(vcpu);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_DABT, no_dabt_handler);
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
ESR_EC_IABT, no_iabt_handler);
}
static void setup_gva_maps(struct kvm_vm *vm)
{
struct userspace_mem_region *region;
uint64_t pte_gpa;
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
/* Map TEST_GVA first. This will install a new PTE. */
virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
/* Then map TEST_PTE_GVA to the above PTE. */
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
}
enum pf_test_memslots {
CODE_AND_DATA_MEMSLOT,
PAGE_TABLE_MEMSLOT,
TEST_DATA_MEMSLOT,
};
/*
* Create a memslot for code and data at pfn=0, and test-data and PT ones
* at max_gfn.
*/
static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
{
uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
uint64_t guest_page_size = vm->page_size;
uint64_t max_gfn = vm_compute_max_gfn(vm);
/* Enough for 2M of code when using 4K guest pages. */
uint64_t code_npages = 512;
uint64_t pt_size, data_size, data_gpa;
/*
* This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
* VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13
* pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
* twice that just in case.
*/
pt_size = 26 * guest_page_size;
/* memslot sizes and gpa's must be aligned to the backing page size */
pt_size = align_up(pt_size, backing_src_pagesz);
data_size = align_up(guest_page_size, backing_src_pagesz);
data_gpa = (max_gfn * guest_page_size) - data_size;
data_gpa = align_down(data_gpa, backing_src_pagesz);
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
CODE_AND_DATA_MEMSLOT, code_npages, 0);
vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
p->test_desc->pt_memslot_flags);
vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
data_size / guest_page_size,
p->test_desc->data_memslot_flags);
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
}
static void setup_ucall(struct kvm_vm *vm)
{
struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
}
static void setup_default_handlers(struct test_desc *test)
{
if (!test->mmio_handler)
test->mmio_handler = mmio_no_handler;
if (!test->fail_vcpu_run_handler)
test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
}
static void check_event_counts(struct test_desc *test)
{
TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
}
static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
{
struct test_desc *test = p->test_desc;
pr_debug("Test: %s\n", test->name);
pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
pr_debug("Testing memory backing src type: %s\n",
vm_mem_backing_src_alias(p->src_type)->name);
}
static void reset_event_counts(void)
{
memset(&events, 0, sizeof(events));
}
/*
* This function either succeeds, skips the test (after setting test->skip), or
* fails with a TEST_FAIL that aborts all tests.
*/
static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
struct test_desc *test)
{
struct kvm_run *run;
struct ucall uc;
int ret;
run = vcpu->run;
for (;;) {
ret = _vcpu_run(vcpu);
if (ret) {
test->fail_vcpu_run_handler(ret);
goto done;
}
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
if (!handle_cmd(vm, uc.args[1])) {
test->skip = true;
goto done;
}
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_DONE:
goto done;
case UCALL_NONE:
if (run->exit_reason == KVM_EXIT_MMIO)
test->mmio_handler(vm, run);
break;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
}
done:
pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
struct test_params *p = (struct test_params *)arg;
struct test_desc *test = p->test_desc;
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
struct uffd_desc *pt_uffd, *data_uffd;
print_test_banner(mode, p);
vm = ____vm_create(VM_SHAPE(mode));
setup_memslots(vm, p);
kvm_vm_elf_load(vm, program_invocation_name);
setup_ucall(vm);
vcpu = vm_vcpu_add(vm, 0, guest_code);
setup_gva_maps(vm);
reset_event_counts();
/*
* Set some code in the data memslot for the guest to execute (only
* applicable to the EXEC tests). This has to be done before
* setup_uffd() as that function copies the memslot data for the uffd
* handler.
*/
load_exec_code_for_test(vm);
setup_uffd(vm, p, &pt_uffd, &data_uffd);
setup_abort_handlers(vm, vcpu, test);
setup_default_handlers(test);
vcpu_args_set(vcpu, 1, test);
vcpu_run_loop(vm, vcpu, test);
kvm_vm_free(vm);
free_uffd(test, pt_uffd, data_uffd);
/*
* Make sure we check the events after the uffd threads have exited,
* which means they updated their respective event counters.
*/
if (!test->skip)
check_event_counts(test);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-s mem-type]\n", name);
puts("");
guest_modes_help();
backing_src_help("-s");
puts("");
}
#define SNAME(s) #s
#define SCAT2(a, b) SNAME(a ## _ ## b)
#define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c))
#define SCAT4(a, b, c, d) SCAT2(a, SCAT3(b, c, d))
#define _CHECK(_test) _CHECK_##_test
#define _PREPARE(_test) _PREPARE_##_test
#define _PREPARE_guest_read64 NULL
#define _PREPARE_guest_ld_preidx NULL
#define _PREPARE_guest_write64 NULL
#define _PREPARE_guest_st_preidx NULL
#define _PREPARE_guest_exec NULL
#define _PREPARE_guest_at NULL
#define _PREPARE_guest_dc_zva guest_check_dc_zva
#define _PREPARE_guest_cas guest_check_lse
/* With or without access flag checks */
#define _PREPARE_with_af guest_set_ha, guest_clear_pte_af
#define _PREPARE_no_af NULL
#define _CHECK_with_af guest_check_pte_af
#define _CHECK_no_af NULL
/* Performs an access and checks that no faults were triggered. */
#define TEST_ACCESS(_access, _with_af, _mark_cmd) \
{ \
.name = SCAT3(_access, _with_af, #_mark_cmd), \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.mem_mark_cmd = _mark_cmd, \
.guest_test = _access, \
.guest_test_check = { _CHECK(_with_af) }, \
.expected_events = { 0 }, \
}
#define TEST_UFFD(_access, _with_af, _mark_cmd, \
_uffd_data_handler, _uffd_pt_handler, _uffd_faults) \
{ \
.name = SCAT4(uffd, _access, _with_af, #_mark_cmd), \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.mem_mark_cmd = _mark_cmd, \
.guest_test_check = { _CHECK(_with_af) }, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = _uffd_pt_handler, \
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check) \
{ \
.name = SCAT3(dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
.expected_events = { 0 }, \
}
#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \
_uffd_faults, _test_check, _pt_check) \
{ \
.name = SCAT3(uffd_and_dirty_log, _access, _with_af), \
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_with_af), \
_PREPARE(_access) }, \
.guest_test = _access, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_handler, \
.expected_events = { .uffd_faults = _uffd_faults, }, \
}
#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \
{ \
.name = SCAT2(ro_memslot, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.pt_memslot_flags = KVM_MEM_READONLY, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits }, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME(_access) \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.pt_memslot_flags = KVM_MEM_READONLY, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1 }, \
}
#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \
_test_check) \
{ \
.name = SCAT2(ro_memslot, _access), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits}, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check) \
{ \
.name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.guest_test_check = { _test_check }, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1 }, \
}
#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits, \
_uffd_data_handler, _uffd_faults) \
{ \
.name = SCAT2(ro_memslot_uffd, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.pt_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_handler, \
.mmio_handler = _mmio_handler, \
.expected_events = { .mmio_exits = _mmio_exits, \
.uffd_faults = _uffd_faults }, \
}
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler, \
_uffd_faults) \
{ \
.name = SCAT2(ro_memslot_no_syndrome, _access), \
.data_memslot_flags = KVM_MEM_READONLY, \
.pt_memslot_flags = KVM_MEM_READONLY, \
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
.guest_prepare = { _PREPARE(_access) }, \
.guest_test = _access, \
.uffd_data_handler = _uffd_data_handler, \
.uffd_pt_handler = uffd_pt_handler, \
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
.expected_events = { .fail_vcpu_runs = 1, \
.uffd_faults = _uffd_faults }, \
}
static struct test_desc tests[] = {
/* Check that HW is setting the Access Flag (AF) (sanity checks). */
TEST_ACCESS(guest_read64, with_af, CMD_NONE),
TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_cas, with_af, CMD_NONE),
TEST_ACCESS(guest_write64, with_af, CMD_NONE),
TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
TEST_ACCESS(guest_exec, with_af, CMD_NONE),
/*
* Punch a hole in the data backing store, and then try multiple
* accesses: reads should rturn zeroes, and writes should
* re-populate the page. Moreover, the test also check that no
* exception was generated in the guest. Note that this
* reading/writing behavior is the same as reading/writing a
* punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
* userspace.
*/
TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
/*
* Punch holes in the data and PT backing stores and mark them for
* userfaultfd handling. This should result in 2 faults: the access
* on the data backing store, and its respective S1 page table walk
* (S1PTW).
*/
TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
/*
* Can't test guest_at with_af as it's IMPDEF whether the AF is set.
* The S1PTW fault should still be marked as a write.
*/
TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_no_handler, uffd_pt_handler, 1),
TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
uffd_data_handler, uffd_pt_handler, 2),
/*
* Try accesses when the data and PT memory regions are both
* tracked for dirty logging.
*/
TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
guest_check_no_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_ld_preidx, with_af,
guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
guest_check_no_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
/*
* Access when the data and PT memory regions are both marked for
* dirty logging and UFFD at the same time. The expected result is
* that writes should mark the dirty log and trigger a userfaultfd
* write fault. Reads/execs should result in a read userfaultfd
* fault, and nothing in the dirty log. Any S1PTW should result in
* a write in the dirty log and a userfaultfd write.
*/
TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
uffd_data_handler, 2,
guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
uffd_data_handler, 2,
guest_check_no_write_in_dirty_log,
guest_check_no_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
uffd_data_handler,
2, guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
uffd_data_handler, 2,
guest_check_no_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
uffd_data_handler,
2, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
uffd_data_handler, 2,
guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
uffd_data_handler,
2, guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
uffd_data_handler, 2,
guest_check_write_in_dirty_log,
guest_check_s1ptw_wr_in_dirty_log),
/*
* Access when both the PT and data regions are marked read-only
* (with KVM_MEM_READONLY). Writes with a syndrome result in an
* MMIO exit, writes with no syndrome (e.g., CAS) result in a
* failed vcpu run, and reads/execs with and without syndroms do
* not fault.
*/
TEST_RO_MEMSLOT(guest_read64, 0, 0),
TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
TEST_RO_MEMSLOT(guest_at, 0, 0),
TEST_RO_MEMSLOT(guest_exec, 0, 0),
TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
/*
* The PT and data regions are both read-only and marked
* for dirty logging at the same time. The expected result is that
* for writes there should be no write in the dirty log. The
* readonly handling is the same as if the memslot was not marked
* for dirty logging: writes with a syndrome result in an MMIO
* exit, and writes with no syndrome result in a failed vcpu run.
*/
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1, guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
guest_check_no_write_in_dirty_log),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
guest_check_no_write_in_dirty_log),
/*
* The PT and data regions are both read-only and punched with
* holes tracked with userfaultfd. The expected result is the
* union of both userfaultfd and read-only behaviors. For example,
* write accesses result in a userfaultfd write fault and an MMIO
* exit. Writes with no syndrome result in a failed vcpu run and
* no userfaultfd write fault. Reads result in userfaultfd getting
* triggered.
*/
TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
uffd_data_handler, 2),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
{ 0 }
};
static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
{
struct test_desc *t;
for (t = &tests[0]; t->name; t++) {
if (t->skip)
continue;
struct test_params p = {
.src_type = src_type,
.test_desc = t,
};
for_each_guest_mode(run_test, &p);
}
}
int main(int argc, char *argv[])
{
enum vm_mem_backing_src_type src_type;
int opt;
src_type = DEFAULT_VM_MEM_SRC;
while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
switch (opt) {
case 'm':
guest_modes_cmdline(optarg);
break;
case 's':
src_type = parse_backing_src_type(optarg);
break;
case 'h':
default:
help(argv[0]);
exit(0);
}
}
for_each_test_and_guest_mode(src_type);
return 0;
}
|