summaryrefslogtreecommitdiff
path: root/tools/perf/util/stat.c
blob: ec350604221736783df773d40e1ea66bb6983283 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <linux/err.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include "counts.h"
#include "cpumap.h"
#include "debug.h"
#include "header.h"
#include "stat.h"
#include "session.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "util/hashmap.h"
#include <linux/zalloc.h>

void update_stats(struct stats *stats, u64 val)
{
	double delta;

	stats->n++;
	delta = val - stats->mean;
	stats->mean += delta / stats->n;
	stats->M2 += delta*(val - stats->mean);

	if (val > stats->max)
		stats->max = val;

	if (val < stats->min)
		stats->min = val;
}

double avg_stats(struct stats *stats)
{
	return stats->mean;
}

/*
 * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
 *
 *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
 * s^2 = -------------------------------
 *                  n - 1
 *
 * http://en.wikipedia.org/wiki/Stddev
 *
 * The std dev of the mean is related to the std dev by:
 *
 *             s
 * s_mean = -------
 *          sqrt(n)
 *
 */
double stddev_stats(struct stats *stats)
{
	double variance, variance_mean;

	if (stats->n < 2)
		return 0.0;

	variance = stats->M2 / (stats->n - 1);
	variance_mean = variance / stats->n;

	return sqrt(variance_mean);
}

double rel_stddev_stats(double stddev, double avg)
{
	double pct = 0.0;

	if (avg)
		pct = 100.0 * stddev/avg;

	return pct;
}

static void evsel__reset_aggr_stats(struct evsel *evsel)
{
	struct perf_stat_evsel *ps = evsel->stats;
	struct perf_stat_aggr *aggr = ps->aggr;

	if (aggr)
		memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr);
}

static void evsel__reset_stat_priv(struct evsel *evsel)
{
	struct perf_stat_evsel *ps = evsel->stats;

	init_stats(&ps->res_stats);
	evsel__reset_aggr_stats(evsel);
}

static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr)
{
	struct perf_stat_evsel *ps = evsel->stats;

	if (ps == NULL)
		return 0;

	ps->nr_aggr = nr_aggr;
	ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr));
	if (ps->aggr == NULL)
		return -ENOMEM;

	return 0;
}

int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0)
			return -1;
	}
	return 0;
}

static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr)
{
	struct perf_stat_evsel *ps;

	ps = zalloc(sizeof(*ps));
	if (ps == NULL)
		return -ENOMEM;

	evsel->stats = ps;

	if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) {
		evsel->stats = NULL;
		free(ps);
		return -ENOMEM;
	}

	evsel__reset_stat_priv(evsel);
	return 0;
}

static void evsel__free_stat_priv(struct evsel *evsel)
{
	struct perf_stat_evsel *ps = evsel->stats;

	if (ps) {
		zfree(&ps->aggr);
		zfree(&ps->group_data);
	}
	zfree(&evsel->stats);
}

static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
{
	int cpu_map_nr = evsel__nr_cpus(evsel);
	int nthreads = perf_thread_map__nr(evsel->core.threads);
	struct perf_counts *counts;

	counts = perf_counts__new(cpu_map_nr, nthreads);
	if (counts)
		evsel->prev_raw_counts = counts;

	return counts ? 0 : -ENOMEM;
}

static void evsel__free_prev_raw_counts(struct evsel *evsel)
{
	perf_counts__delete(evsel->prev_raw_counts);
	evsel->prev_raw_counts = NULL;
}

static void evsel__reset_prev_raw_counts(struct evsel *evsel)
{
	if (evsel->prev_raw_counts)
		perf_counts__reset(evsel->prev_raw_counts);
}

static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw)
{
	if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 ||
	    evsel__alloc_counts(evsel) < 0 ||
	    (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
		return -ENOMEM;

	return 0;
}

int evlist__alloc_stats(struct perf_stat_config *config,
			struct evlist *evlist, bool alloc_raw)
{
	struct evsel *evsel;
	int nr_aggr = 0;

	if (config && config->aggr_map)
		nr_aggr = config->aggr_map->nr;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw))
			goto out_free;
	}

	return 0;

out_free:
	evlist__free_stats(evlist);
	return -1;
}

void evlist__free_stats(struct evlist *evlist)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel) {
		evsel__free_stat_priv(evsel);
		evsel__free_counts(evsel);
		evsel__free_prev_raw_counts(evsel);
	}
}

void evlist__reset_stats(struct evlist *evlist)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel) {
		evsel__reset_stat_priv(evsel);
		evsel__reset_counts(evsel);
	}
}

void evlist__reset_aggr_stats(struct evlist *evlist)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel)
		evsel__reset_aggr_stats(evsel);
}

void evlist__reset_prev_raw_counts(struct evlist *evlist)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel)
		evsel__reset_prev_raw_counts(evsel);
}

static void evsel__copy_prev_raw_counts(struct evsel *evsel)
{
	int idx, nthreads = perf_thread_map__nr(evsel->core.threads);

	for (int thread = 0; thread < nthreads; thread++) {
		perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
			*perf_counts(evsel->counts, idx, thread) =
				*perf_counts(evsel->prev_raw_counts, idx, thread);
		}
	}
}

void evlist__copy_prev_raw_counts(struct evlist *evlist)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel)
		evsel__copy_prev_raw_counts(evsel);
}

static void evsel__copy_res_stats(struct evsel *evsel)
{
	struct perf_stat_evsel *ps = evsel->stats;

	/*
	 * For GLOBAL aggregation mode, it updates the counts for each run
	 * in the evsel->stats.res_stats.  See perf_stat_process_counter().
	 */
	*ps->aggr[0].counts.values = avg_stats(&ps->res_stats);
}

void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist)
{
	struct evsel *evsel;

	if (config->aggr_mode != AGGR_GLOBAL)
		return;

	evlist__for_each_entry(evlist, evsel)
		evsel__copy_res_stats(evsel);
}

static size_t pkg_id_hash(long __key, void *ctx __maybe_unused)
{
	uint64_t *key = (uint64_t *) __key;

	return *key & 0xffffffff;
}

static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused)
{
	uint64_t *key1 = (uint64_t *) __key1;
	uint64_t *key2 = (uint64_t *) __key2;

	return *key1 == *key2;
}

static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
			 int cpu_map_idx, bool *skip)
{
	struct hashmap *mask = counter->per_pkg_mask;
	struct perf_cpu_map *cpus = evsel__cpus(counter);
	struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
	int s, d, ret = 0;
	uint64_t *key;

	*skip = false;

	if (!counter->per_pkg)
		return 0;

	if (perf_cpu_map__empty(cpus))
		return 0;

	if (!mask) {
		mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
		if (IS_ERR(mask))
			return -ENOMEM;

		counter->per_pkg_mask = mask;
	}

	/*
	 * we do not consider an event that has not run as a good
	 * instance to mark a package as used (skip=1). Otherwise
	 * we may run into a situation where the first CPU in a package
	 * is not running anything, yet the second is, and this function
	 * would mark the package as used after the first CPU and would
	 * not read the values from the second CPU.
	 */
	if (!(vals->run && vals->ena))
		return 0;

	s = cpu__get_socket_id(cpu);
	if (s < 0)
		return -1;

	/*
	 * On multi-die system, die_id > 0. On no-die system, die_id = 0.
	 * We use hashmap(socket, die) to check the used socket+die pair.
	 */
	d = cpu__get_die_id(cpu);
	if (d < 0)
		return -1;

	key = malloc(sizeof(*key));
	if (!key)
		return -ENOMEM;

	*key = (uint64_t)d << 32 | s;
	if (hashmap__find(mask, key, NULL)) {
		*skip = true;
		free(key);
	} else
		ret = hashmap__add(mask, key, 1);

	return ret;
}

static bool evsel__count_has_error(struct evsel *evsel,
				   struct perf_counts_values *count,
				   struct perf_stat_config *config)
{
	/* the evsel was failed already */
	if (evsel->err || evsel->counts->scaled == -1)
		return true;

	/* this is meaningful for CPU aggregation modes only */
	if (config->aggr_mode == AGGR_GLOBAL)
		return false;

	/* it's considered ok when it actually ran */
	if (count->ena != 0 && count->run != 0)
		return false;

	return true;
}

static int
process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
		       int cpu_map_idx, int thread,
		       struct perf_counts_values *count)
{
	struct perf_stat_evsel *ps = evsel->stats;
	static struct perf_counts_values zero;
	bool skip = false;

	if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
		pr_err("failed to read per-pkg counter\n");
		return -1;
	}

	if (skip)
		count = &zero;

	if (!evsel->snapshot)
		evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
	perf_counts_values__scale(count, config->scale, NULL);

	if (config->aggr_mode == AGGR_THREAD) {
		struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts;

		/*
		 * Skip value 0 when enabling --per-thread globally,
		 * otherwise too many 0 output.
		 */
		if (count->val == 0 && config->system_wide)
			return 0;

		ps->aggr[thread].nr++;

		aggr_counts->val += count->val;
		aggr_counts->ena += count->ena;
		aggr_counts->run += count->run;
		return 0;
	}

	if (ps->aggr) {
		struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
		struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu);
		struct perf_stat_aggr *ps_aggr;
		int i;

		for (i = 0; i < ps->nr_aggr; i++) {
			if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i]))
				continue;

			ps_aggr = &ps->aggr[i];
			ps_aggr->nr++;

			/*
			 * When any result is bad, make them all to give consistent output
			 * in interval mode.  But per-task counters can have 0 enabled time
			 * when some tasks are idle.
			 */
			if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) {
				ps_aggr->counts.val = 0;
				ps_aggr->counts.ena = 0;
				ps_aggr->counts.run = 0;
				ps_aggr->failed = true;
			}

			if (!ps_aggr->failed) {
				ps_aggr->counts.val += count->val;
				ps_aggr->counts.ena += count->ena;
				ps_aggr->counts.run += count->run;
			}
			break;
		}
	}

	return 0;
}

static int process_counter_maps(struct perf_stat_config *config,
				struct evsel *counter)
{
	int nthreads = perf_thread_map__nr(counter->core.threads);
	int ncpus = evsel__nr_cpus(counter);
	int idx, thread;

	for (thread = 0; thread < nthreads; thread++) {
		for (idx = 0; idx < ncpus; idx++) {
			if (process_counter_values(config, counter, idx, thread,
						   perf_counts(counter->counts, idx, thread)))
				return -1;
		}
	}

	return 0;
}

int perf_stat_process_counter(struct perf_stat_config *config,
			      struct evsel *counter)
{
	struct perf_stat_evsel *ps = counter->stats;
	u64 *count;
	int ret;

	if (counter->per_pkg)
		evsel__zero_per_pkg(counter);

	ret = process_counter_maps(config, counter);
	if (ret)
		return ret;

	if (config->aggr_mode != AGGR_GLOBAL)
		return 0;

	/*
	 * GLOBAL aggregation mode only has a single aggr counts,
	 * so we can use ps->aggr[0] as the actual output.
	 */
	count = ps->aggr[0].counts.values;
	update_stats(&ps->res_stats, *count);

	if (verbose > 0) {
		fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
			evsel__name(counter), count[0], count[1], count[2]);
	}

	return 0;
}

static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias)
{
	struct perf_stat_evsel *ps_a = evsel->stats;
	struct perf_stat_evsel *ps_b = alias->stats;
	int i;

	if (ps_a->aggr == NULL && ps_b->aggr == NULL)
		return 0;

	if (ps_a->nr_aggr != ps_b->nr_aggr) {
		pr_err("Unmatched aggregation mode between aliases\n");
		return -1;
	}

	for (i = 0; i < ps_a->nr_aggr; i++) {
		struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts;
		struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts;

		/* NB: don't increase aggr.nr for aliases */

		aggr_counts_a->val += aggr_counts_b->val;
		aggr_counts_a->ena += aggr_counts_b->ena;
		aggr_counts_a->run += aggr_counts_b->run;
	}

	return 0;
}
/* events should have the same name, scale, unit, cgroup but on different PMUs */
static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b)
{
	if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b)))
		return false;

	if (evsel_a->scale != evsel_b->scale)
		return false;

	if (evsel_a->cgrp != evsel_b->cgrp)
		return false;

	if (strcmp(evsel_a->unit, evsel_b->unit))
		return false;

	if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b))
		return false;

	return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name);
}

static void evsel__merge_aliases(struct evsel *evsel)
{
	struct evlist *evlist = evsel->evlist;
	struct evsel *alias;

	alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node);
	list_for_each_entry_continue(alias, &evlist->core.entries, core.node) {
		/* Merge the same events on different PMUs. */
		if (evsel__is_alias(evsel, alias)) {
			evsel__merge_aggr_counters(evsel, alias);
			alias->merged_stat = true;
		}
	}
}

static bool evsel__should_merge_hybrid(const struct evsel *evsel,
				       const struct perf_stat_config *config)
{
	return config->hybrid_merge && evsel__is_hybrid(evsel);
}

static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config)
{
	/* this evsel is already merged */
	if (evsel->merged_stat)
		return;

	if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config))
		evsel__merge_aliases(evsel);
}

/* merge the same uncore and hybrid events if requested */
void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist)
{
	struct evsel *evsel;

	if (config->no_merge)
		return;

	evlist__for_each_entry(evlist, evsel)
		evsel__merge_stats(evsel, config);
}

static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id)
{
	struct perf_stat_evsel *ps = evsel->stats;
	struct perf_counts_values counts = { 0, };
	struct aggr_cpu_id id;
	struct perf_cpu cpu;
	int idx;

	/* collect per-core counts */
	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
		struct perf_stat_aggr *aggr = &ps->aggr[idx];

		id = aggr_cpu_id__core(cpu, NULL);
		if (!aggr_cpu_id__equal(core_id, &id))
			continue;

		counts.val += aggr->counts.val;
		counts.ena += aggr->counts.ena;
		counts.run += aggr->counts.run;
	}

	/* update aggregated per-core counts for each CPU */
	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
		struct perf_stat_aggr *aggr = &ps->aggr[idx];

		id = aggr_cpu_id__core(cpu, NULL);
		if (!aggr_cpu_id__equal(core_id, &id))
			continue;

		aggr->counts.val = counts.val;
		aggr->counts.ena = counts.ena;
		aggr->counts.run = counts.run;

		aggr->used = true;
	}
}

/* we have an aggr_map for cpu, but want to aggregate the counters per-core */
static void evsel__process_percore(struct evsel *evsel)
{
	struct perf_stat_evsel *ps = evsel->stats;
	struct aggr_cpu_id core_id;
	struct perf_cpu cpu;
	int idx;

	if (!evsel->percore)
		return;

	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
		struct perf_stat_aggr *aggr = &ps->aggr[idx];

		if (aggr->used)
			continue;

		core_id = aggr_cpu_id__core(cpu, NULL);
		evsel__update_percore_stats(evsel, &core_id);
	}
}

/* process cpu stats on per-core events */
void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist)
{
	struct evsel *evsel;

	if (config->aggr_mode != AGGR_NONE)
		return;

	evlist__for_each_entry(evlist, evsel)
		evsel__process_percore(evsel);
}

int perf_event__process_stat_event(struct perf_session *session,
				   union perf_event *event)
{
	struct perf_counts_values count, *ptr;
	struct perf_record_stat *st = &event->stat;
	struct evsel *counter;
	int cpu_map_idx;

	count.val = st->val;
	count.ena = st->ena;
	count.run = st->run;

	counter = evlist__id2evsel(session->evlist, st->id);
	if (!counter) {
		pr_err("Failed to resolve counter for stat event.\n");
		return -EINVAL;
	}
	cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
	if (cpu_map_idx == -1) {
		pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
		return -EINVAL;
	}
	ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
	if (ptr == NULL) {
		pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
			st->cpu, st->thread, evsel__name(counter));
		return -EINVAL;
	}
	*ptr = count;
	counter->supported = true;
	return 0;
}

size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
{
	struct perf_record_stat *st = (struct perf_record_stat *)event;
	size_t ret;

	ret  = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
		       st->id, st->cpu, st->thread);
	ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
		       st->val, st->ena, st->run);

	return ret;
}

size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
{
	struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
	size_t ret;

	ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
		      rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");

	return ret;
}

size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
{
	struct perf_stat_config sc = {};
	size_t ret;

	perf_event__read_stat_config(&sc, &event->stat_config);

	ret  = fprintf(fp, "\n");
	ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
	ret += fprintf(fp, "... scale     %d\n", sc.scale);
	ret += fprintf(fp, "... interval  %u\n", sc.interval);

	return ret;
}

int create_perf_stat_counter(struct evsel *evsel,
			     struct perf_stat_config *config,
			     struct target *target,
			     int cpu_map_idx)
{
	struct perf_event_attr *attr = &evsel->core.attr;
	struct evsel *leader = evsel__leader(evsel);

	attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
			    PERF_FORMAT_TOTAL_TIME_RUNNING;

	/*
	 * The event is part of non trivial group, let's enable
	 * the group read (for leader) and ID retrieval for all
	 * members.
	 */
	if (leader->core.nr_members > 1)
		attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;

	attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);

	/*
	 * Some events get initialized with sample_(period/type) set,
	 * like tracepoints. Clear it up for counting.
	 */
	attr->sample_period = 0;

	if (config->identifier)
		attr->sample_type = PERF_SAMPLE_IDENTIFIER;

	if (config->all_user) {
		attr->exclude_kernel = 1;
		attr->exclude_user   = 0;
	}

	if (config->all_kernel) {
		attr->exclude_kernel = 0;
		attr->exclude_user   = 1;
	}

	/*
	 * Disabling all counters initially, they will be enabled
	 * either manually by us or by kernel via enable_on_exec
	 * set later.
	 */
	if (evsel__is_group_leader(evsel)) {
		attr->disabled = 1;

		if (target__enable_on_exec(target))
			attr->enable_on_exec = 1;
	}

	if (target__has_cpu(target) && !target__has_per_thread(target))
		return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);

	return evsel__open_per_thread(evsel, evsel->core.threads);
}