summaryrefslogtreecommitdiff
path: root/samples/kprobes/kretprobe_example.c
blob: 228321ecb16168e1a61311dda0e7deb783d5dd9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// SPDX-License-Identifier: GPL-2.0-only
/*
 * kretprobe_example.c
 *
 * Here's a sample kernel module showing the use of return probes to
 * report the return value and total time taken for probed function
 * to run.
 *
 * usage: insmod kretprobe_example.ko func=<func_name>
 *
 * If no func_name is specified, kernel_clone is instrumented
 *
 * For more information on theory of operation of kretprobes, see
 * Documentation/trace/kprobes.rst
 *
 * Build and insert the kernel module as done in the kprobe example.
 * You will see the trace data in /var/log/messages and on the console
 * whenever the probed function returns. (Some messages may be suppressed
 * if syslogd is configured to eliminate duplicate messages.)
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/ktime.h>
#include <linux/limits.h>
#include <linux/sched.h>

static char func_name[NAME_MAX] = "kernel_clone";
module_param_string(func, func_name, NAME_MAX, S_IRUGO);
MODULE_PARM_DESC(func, "Function to kretprobe; this module will report the"
			" function's execution time");

/* per-instance private data */
struct my_data {
	ktime_t entry_stamp;
};

/* Here we use the entry_hanlder to timestamp function entry */
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
	struct my_data *data;

	if (!current->mm)
		return 1;	/* Skip kernel threads */

	data = (struct my_data *)ri->data;
	data->entry_stamp = ktime_get();
	return 0;
}
NOKPROBE_SYMBOL(entry_handler);

/*
 * Return-probe handler: Log the return value and duration. Duration may turn
 * out to be zero consistently, depending upon the granularity of time
 * accounting on the platform.
 */
static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
	unsigned long retval = regs_return_value(regs);
	struct my_data *data = (struct my_data *)ri->data;
	s64 delta;
	ktime_t now;

	now = ktime_get();
	delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
	pr_info("%s returned %lu and took %lld ns to execute\n",
			func_name, retval, (long long)delta);
	return 0;
}
NOKPROBE_SYMBOL(ret_handler);

static struct kretprobe my_kretprobe = {
	.handler		= ret_handler,
	.entry_handler		= entry_handler,
	.data_size		= sizeof(struct my_data),
	/* Probe up to 20 instances concurrently. */
	.maxactive		= 20,
};

static int __init kretprobe_init(void)
{
	int ret;

	my_kretprobe.kp.symbol_name = func_name;
	ret = register_kretprobe(&my_kretprobe);
	if (ret < 0) {
		pr_err("register_kretprobe failed, returned %d\n", ret);
		return ret;
	}
	pr_info("Planted return probe at %s: %p\n",
			my_kretprobe.kp.symbol_name, my_kretprobe.kp.addr);
	return 0;
}

static void __exit kretprobe_exit(void)
{
	unregister_kretprobe(&my_kretprobe);
	pr_info("kretprobe at %p unregistered\n", my_kretprobe.kp.addr);

	/* nmissed > 0 suggests that maxactive was set too low. */
	pr_info("Missed probing %d instances of %s\n",
		my_kretprobe.nmissed, my_kretprobe.kp.symbol_name);
}

module_init(kretprobe_init)
module_exit(kretprobe_exit)
MODULE_LICENSE("GPL");