summaryrefslogtreecommitdiff
path: root/drivers/ptp/ptp_dfl_tod.c
blob: f699d541b3603fdc41f9e729be2035e709f03f71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// SPDX-License-Identifier: GPL-2.0-only
/*
 * DFL device driver for Time-of-Day (ToD) private feature
 *
 * Copyright (C) 2023 Intel Corporation
 */

#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dfl.h>
#include <linux/gcd.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/spinlock.h>
#include <linux/units.h>

#define FME_FEATURE_ID_TOD		0x22

/* ToD clock register space. */
#define TOD_CLK_FREQ			0x038

/*
 * The read sequence of ToD timestamp registers: TOD_NANOSEC, TOD_SECONDSL and
 * TOD_SECONDSH, because there is a hardware snapshot whenever the TOD_NANOSEC
 * register is read.
 *
 * The ToD IP requires writing registers in the reverse order to the read sequence.
 * The timestamp is corrected when the TOD_NANOSEC register is written, so the
 * sequence of write TOD registers: TOD_SECONDSH, TOD_SECONDSL and TOD_NANOSEC.
 */
#define TOD_SECONDSH			0x100
#define TOD_SECONDSL			0x104
#define TOD_NANOSEC			0x108
#define TOD_PERIOD			0x110
#define TOD_ADJUST_PERIOD		0x114
#define TOD_ADJUST_COUNT		0x118
#define TOD_DRIFT_ADJUST		0x11c
#define TOD_DRIFT_ADJUST_RATE		0x120
#define PERIOD_FRAC_OFFSET		16
#define SECONDS_MSB			GENMASK_ULL(47, 32)
#define SECONDS_LSB			GENMASK_ULL(31, 0)
#define TOD_SECONDSH_SEC_MSB		GENMASK_ULL(15, 0)

#define CAL_SECONDS(m, l)		((FIELD_GET(TOD_SECONDSH_SEC_MSB, (m)) << 32) | (l))

#define TOD_PERIOD_MASK		GENMASK_ULL(19, 0)
#define TOD_PERIOD_MAX			FIELD_MAX(TOD_PERIOD_MASK)
#define TOD_PERIOD_MIN			0
#define TOD_DRIFT_ADJUST_MASK		GENMASK_ULL(15, 0)
#define TOD_DRIFT_ADJUST_FNS_MAX	FIELD_MAX(TOD_DRIFT_ADJUST_MASK)
#define TOD_DRIFT_ADJUST_RATE_MAX	TOD_DRIFT_ADJUST_FNS_MAX
#define TOD_ADJUST_COUNT_MASK		GENMASK_ULL(19, 0)
#define TOD_ADJUST_COUNT_MAX		FIELD_MAX(TOD_ADJUST_COUNT_MASK)
#define TOD_ADJUST_INTERVAL_US		10
#define TOD_ADJUST_MS			\
		(((TOD_PERIOD_MAX >> 16) + 1) * (TOD_ADJUST_COUNT_MAX + 1))
#define TOD_ADJUST_MS_MAX		(TOD_ADJUST_MS / MICRO)
#define TOD_ADJUST_MAX_US		(TOD_ADJUST_MS_MAX * USEC_PER_MSEC)
#define TOD_MAX_ADJ			(500 * MEGA)

struct dfl_tod {
	struct ptp_clock_info ptp_clock_ops;
	struct device *dev;
	struct ptp_clock *ptp_clock;

	/* ToD Clock address space */
	void __iomem *tod_ctrl;

	/* ToD clock registers protection */
	spinlock_t tod_lock;
};

/*
 * A fine ToD HW clock offset adjustment. To perform the fine offset adjustment, the
 * adjust_period and adjust_count argument are used to update the TOD_ADJUST_PERIOD
 * and TOD_ADJUST_COUNT register for in hardware. The dt->tod_lock spinlock must be
 * held when calling this function.
 */
static int fine_adjust_tod_clock(struct dfl_tod *dt, u32 adjust_period,
				 u32 adjust_count)
{
	void __iomem *base = dt->tod_ctrl;
	u32 val;

	writel(adjust_period, base + TOD_ADJUST_PERIOD);
	writel(adjust_count, base + TOD_ADJUST_COUNT);

	/* Wait for present offset adjustment update to complete */
	return readl_poll_timeout_atomic(base + TOD_ADJUST_COUNT, val, !val, TOD_ADJUST_INTERVAL_US,
				  TOD_ADJUST_MAX_US);
}

/*
 * A coarse ToD HW clock offset adjustment. The coarse time adjustment performs by
 * adding or subtracting the delta value from the current ToD HW clock time.
 */
static int coarse_adjust_tod_clock(struct dfl_tod *dt, s64 delta)
{
	u32 seconds_msb, seconds_lsb, nanosec;
	void __iomem *base = dt->tod_ctrl;
	u64 seconds, now;

	if (delta == 0)
		return 0;

	nanosec = readl(base + TOD_NANOSEC);
	seconds_lsb = readl(base + TOD_SECONDSL);
	seconds_msb = readl(base + TOD_SECONDSH);

	/* Calculate new time */
	seconds = CAL_SECONDS(seconds_msb, seconds_lsb);
	now = seconds * NSEC_PER_SEC + nanosec + delta;

	seconds = div_u64_rem(now, NSEC_PER_SEC, &nanosec);
	seconds_msb = FIELD_GET(SECONDS_MSB, seconds);
	seconds_lsb = FIELD_GET(SECONDS_LSB, seconds);

	writel(seconds_msb, base + TOD_SECONDSH);
	writel(seconds_lsb, base + TOD_SECONDSL);
	writel(nanosec, base + TOD_NANOSEC);

	return 0;
}

static int dfl_tod_adjust_fine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
	u32 tod_period, tod_rem, tod_drift_adjust_fns, tod_drift_adjust_rate;
	void __iomem *base = dt->tod_ctrl;
	unsigned long flags, rate;
	u64 ppb;

	/* Get the clock rate from clock frequency register offset */
	rate = readl(base + TOD_CLK_FREQ);

	/* add GIGA as nominal ppb */
	ppb = scaled_ppm_to_ppb(scaled_ppm) + GIGA;

	tod_period = div_u64_rem(ppb << PERIOD_FRAC_OFFSET, rate, &tod_rem);
	if (tod_period > TOD_PERIOD_MAX)
		return -ERANGE;

	/*
	 * The drift of ToD adjusted periodically by adding a drift_adjust_fns
	 * correction value every drift_adjust_rate count of clock cycles.
	 */
	tod_drift_adjust_fns = tod_rem / gcd(tod_rem, rate);
	tod_drift_adjust_rate = rate / gcd(tod_rem, rate);

	while ((tod_drift_adjust_fns > TOD_DRIFT_ADJUST_FNS_MAX) ||
	       (tod_drift_adjust_rate > TOD_DRIFT_ADJUST_RATE_MAX)) {
		tod_drift_adjust_fns >>= 1;
		tod_drift_adjust_rate >>= 1;
	}

	if (tod_drift_adjust_fns == 0)
		tod_drift_adjust_rate = 0;

	spin_lock_irqsave(&dt->tod_lock, flags);
	writel(tod_period, base + TOD_PERIOD);
	writel(0, base + TOD_ADJUST_PERIOD);
	writel(0, base + TOD_ADJUST_COUNT);
	writel(tod_drift_adjust_fns, base + TOD_DRIFT_ADJUST);
	writel(tod_drift_adjust_rate, base + TOD_DRIFT_ADJUST_RATE);
	spin_unlock_irqrestore(&dt->tod_lock, flags);

	return 0;
}

static int dfl_tod_adjust_time(struct ptp_clock_info *ptp, s64 delta)
{
	struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
	u32 period, diff, rem, rem_period, adj_period;
	void __iomem *base = dt->tod_ctrl;
	unsigned long flags;
	bool neg_adj;
	u64 count;
	int ret;

	neg_adj = delta < 0;
	if (neg_adj)
		delta = -delta;

	spin_lock_irqsave(&dt->tod_lock, flags);

	/*
	 * Get the maximum possible value of the Period register offset
	 * adjustment in nanoseconds scale. This depends on the current
	 * Period register setting and the maximum and minimum possible
	 * values of the Period register.
	 */
	period = readl(base + TOD_PERIOD);

	if (neg_adj) {
		diff = (period - TOD_PERIOD_MIN) >> PERIOD_FRAC_OFFSET;
		adj_period = period - (diff << PERIOD_FRAC_OFFSET);
		count = div_u64_rem(delta, diff, &rem);
		rem_period = period - (rem << PERIOD_FRAC_OFFSET);
	} else {
		diff = (TOD_PERIOD_MAX - period) >> PERIOD_FRAC_OFFSET;
		adj_period = period + (diff << PERIOD_FRAC_OFFSET);
		count = div_u64_rem(delta, diff, &rem);
		rem_period = period + (rem << PERIOD_FRAC_OFFSET);
	}

	ret = 0;

	if (count > TOD_ADJUST_COUNT_MAX) {
		ret = coarse_adjust_tod_clock(dt, delta);
	} else {
		/* Adjust the period by count cycles to adjust the time */
		if (count)
			ret = fine_adjust_tod_clock(dt, adj_period, count);

		/* If there is a remainder, adjust the period for an additional cycle */
		if (rem)
			ret = fine_adjust_tod_clock(dt, rem_period, 1);
	}

	spin_unlock_irqrestore(&dt->tod_lock, flags);

	return ret;
}

static int dfl_tod_get_timex(struct ptp_clock_info *ptp, struct timespec64 *ts,
			     struct ptp_system_timestamp *sts)
{
	struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
	u32 seconds_msb, seconds_lsb, nanosec;
	void __iomem *base = dt->tod_ctrl;
	unsigned long flags;
	u64 seconds;

	spin_lock_irqsave(&dt->tod_lock, flags);
	ptp_read_system_prets(sts);
	nanosec = readl(base + TOD_NANOSEC);
	seconds_lsb = readl(base + TOD_SECONDSL);
	seconds_msb = readl(base + TOD_SECONDSH);
	ptp_read_system_postts(sts);
	spin_unlock_irqrestore(&dt->tod_lock, flags);

	seconds = CAL_SECONDS(seconds_msb, seconds_lsb);

	ts->tv_nsec = nanosec;
	ts->tv_sec = seconds;

	return 0;
}

static int dfl_tod_set_time(struct ptp_clock_info *ptp,
			    const struct timespec64 *ts)
{
	struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops);
	u32 seconds_msb = FIELD_GET(SECONDS_MSB, ts->tv_sec);
	u32 seconds_lsb = FIELD_GET(SECONDS_LSB, ts->tv_sec);
	u32 nanosec = FIELD_GET(SECONDS_LSB, ts->tv_nsec);
	void __iomem *base = dt->tod_ctrl;
	unsigned long flags;

	spin_lock_irqsave(&dt->tod_lock, flags);
	writel(seconds_msb, base + TOD_SECONDSH);
	writel(seconds_lsb, base + TOD_SECONDSL);
	writel(nanosec, base + TOD_NANOSEC);
	spin_unlock_irqrestore(&dt->tod_lock, flags);

	return 0;
}

static struct ptp_clock_info dfl_tod_clock_ops = {
	.owner = THIS_MODULE,
	.name = "dfl_tod",
	.max_adj = TOD_MAX_ADJ,
	.adjfine = dfl_tod_adjust_fine,
	.adjtime = dfl_tod_adjust_time,
	.gettimex64 = dfl_tod_get_timex,
	.settime64 = dfl_tod_set_time,
};

static int dfl_tod_probe(struct dfl_device *ddev)
{
	struct device *dev = &ddev->dev;
	struct dfl_tod *dt;

	dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL);
	if (!dt)
		return -ENOMEM;

	dt->tod_ctrl = devm_ioremap_resource(dev, &ddev->mmio_res);
	if (IS_ERR(dt->tod_ctrl))
		return PTR_ERR(dt->tod_ctrl);

	dt->dev = dev;
	spin_lock_init(&dt->tod_lock);
	dev_set_drvdata(dev, dt);

	dt->ptp_clock_ops = dfl_tod_clock_ops;

	dt->ptp_clock = ptp_clock_register(&dt->ptp_clock_ops, dev);
	if (IS_ERR(dt->ptp_clock))
		return dev_err_probe(dt->dev, PTR_ERR(dt->ptp_clock),
				     "Unable to register PTP clock\n");

	return 0;
}

static void dfl_tod_remove(struct dfl_device *ddev)
{
	struct dfl_tod *dt = dev_get_drvdata(&ddev->dev);

	ptp_clock_unregister(dt->ptp_clock);
}

static const struct dfl_device_id dfl_tod_ids[] = {
	{ FME_ID, FME_FEATURE_ID_TOD },
	{ }
};
MODULE_DEVICE_TABLE(dfl, dfl_tod_ids);

static struct dfl_driver dfl_tod_driver = {
	.drv = {
		.name = "dfl-tod",
	},
	.id_table = dfl_tod_ids,
	.probe = dfl_tod_probe,
	.remove = dfl_tod_remove,
};
module_dfl_driver(dfl_tod_driver);

MODULE_DESCRIPTION("FPGA DFL ToD driver");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");