diff options
Diffstat (limited to 'include/linux/seqlock.h')
-rw-r--r-- | include/linux/seqlock.h | 425 |
1 files changed, 348 insertions, 77 deletions
diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h index 4c1456008d89..85fb3ac93ffb 100644 --- a/include/linux/seqlock.h +++ b/include/linux/seqlock.h @@ -75,6 +75,10 @@ static inline void __seqcount_init(seqcount_t *s, const char *name, # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } \ +/** + * seqcount_init() - runtime initializer for seqcount_t + * @s: Pointer to the seqcount_t instance + */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ @@ -98,13 +102,15 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s) # define seqcount_lockdep_reader_access(x) #endif -#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)} - +/** + * SEQCNT_ZERO() - static initializer for seqcount_t + * @name: Name of the seqcount_t instance + */ +#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /** - * __read_seqcount_begin - begin a seq-read critical section (without barrier) - * @s: pointer to seqcount_t - * Returns: count to be passed to read_seqcount_retry + * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier + * @s: Pointer to seqcount_t * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is @@ -113,6 +119,8 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s) * * Use carefully, only in critical code, and comment how the barrier is * provided. + * + * Return: count to be passed to read_seqcount_retry() */ static inline unsigned __read_seqcount_begin(const seqcount_t *s) { @@ -129,13 +137,10 @@ repeat: } /** - * raw_read_seqcount_begin - start seq-read critical section w/o lockdep - * @s: pointer to seqcount_t - * Returns: count to be passed to read_seqcount_retry + * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep + * @s: Pointer to seqcount_t * - * raw_read_seqcount_begin opens a read critical section of the given - * seqcount, but without any lockdep checking. Validity of the critical - * section is tested by checking read_seqcount_retry function. + * Return: count to be passed to read_seqcount_retry() */ static inline unsigned raw_read_seqcount_begin(const seqcount_t *s) { @@ -145,13 +150,10 @@ static inline unsigned raw_read_seqcount_begin(const seqcount_t *s) } /** - * read_seqcount_begin - begin a seq-read critical section - * @s: pointer to seqcount_t - * Returns: count to be passed to read_seqcount_retry + * read_seqcount_begin() - begin a seqcount_t read critical section + * @s: Pointer to seqcount_t * - * read_seqcount_begin opens a read critical section of the given seqcount. - * Validity of the critical section is tested by checking read_seqcount_retry - * function. + * Return: count to be passed to read_seqcount_retry() */ static inline unsigned read_seqcount_begin(const seqcount_t *s) { @@ -160,13 +162,15 @@ static inline unsigned read_seqcount_begin(const seqcount_t *s) } /** - * raw_read_seqcount - Read the raw seqcount - * @s: pointer to seqcount_t - * Returns: count to be passed to read_seqcount_retry + * raw_read_seqcount() - read the raw seqcount_t counter value + * @s: Pointer to seqcount_t * * raw_read_seqcount opens a read critical section of the given - * seqcount without any lockdep checking and without checking or - * masking the LSB. Calling code is responsible for handling that. + * seqcount_t, without any lockdep checking, and without checking or + * masking the sequence counter LSB. Calling code is responsible for + * handling that. + * + * Return: count to be passed to read_seqcount_retry() */ static inline unsigned raw_read_seqcount(const seqcount_t *s) { @@ -177,18 +181,21 @@ static inline unsigned raw_read_seqcount(const seqcount_t *s) } /** - * raw_seqcount_begin - begin a seq-read critical section - * @s: pointer to seqcount_t - * Returns: count to be passed to read_seqcount_retry + * raw_seqcount_begin() - begin a seqcount_t read critical section w/o + * lockdep and w/o counter stabilization + * @s: Pointer to seqcount_t * - * raw_seqcount_begin opens a read critical section of the given seqcount. - * Validity of the critical section is tested by checking read_seqcount_retry - * function. + * raw_seqcount_begin opens a read critical section of the given + * seqcount_t. Unlike read_seqcount_begin(), this function will not wait + * for the count to stabilize. If a writer is active when it begins, it + * will fail the read_seqcount_retry() at the end of the read critical + * section instead of stabilizing at the beginning of it. * - * Unlike read_seqcount_begin(), this function will not wait for the count - * to stabilize. If a writer is active when we begin, we will fail the - * read_seqcount_retry() instead of stabilizing at the beginning of the - * critical section. + * Use this only in special kernel hot paths where the read section is + * small and has a high probability of success through other external + * means. It will save a single branching instruction. + * + * Return: count to be passed to read_seqcount_retry() */ static inline unsigned raw_seqcount_begin(const seqcount_t *s) { @@ -199,10 +206,9 @@ static inline unsigned raw_seqcount_begin(const seqcount_t *s) } /** - * __read_seqcount_retry - end a seq-read critical section (without barrier) - * @s: pointer to seqcount_t - * @start: count, from read_seqcount_begin - * Returns: 1 if retry is required, else 0 + * __read_seqcount_retry() - end a seqcount_t read section w/o barrier + * @s: Pointer to seqcount_t + * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is @@ -211,6 +217,8 @@ static inline unsigned raw_seqcount_begin(const seqcount_t *s) * * Use carefully, only in critical code, and comment how the barrier is * provided. + * + * Return: true if a read section retry is required, else false */ static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start) { @@ -219,14 +227,15 @@ static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start) } /** - * read_seqcount_retry - end a seq-read critical section - * @s: pointer to seqcount_t - * @start: count, from read_seqcount_begin - * Returns: 1 if retry is required, else 0 + * read_seqcount_retry() - end a seqcount_t read critical section + * @s: Pointer to seqcount_t + * @start: count, from read_seqcount_begin() * - * read_seqcount_retry closes a read critical section of the given seqcount. - * If the critical section was invalid, it must be ignored (and typically - * retried). + * read_seqcount_retry closes the read critical section of given + * seqcount_t. If the critical section was invalid, it must be ignored + * (and typically retried). + * + * Return: true if a read section retry is required, else false */ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start) { @@ -234,6 +243,10 @@ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start) return __read_seqcount_retry(s, start); } +/** + * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep + * @s: Pointer to seqcount_t + */ static inline void raw_write_seqcount_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); @@ -241,6 +254,10 @@ static inline void raw_write_seqcount_begin(seqcount_t *s) smp_wmb(); } +/** + * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep + * @s: Pointer to seqcount_t + */ static inline void raw_write_seqcount_end(seqcount_t *s) { smp_wmb(); @@ -248,17 +265,42 @@ static inline void raw_write_seqcount_end(seqcount_t *s) kcsan_nestable_atomic_end(); } +/** + * write_seqcount_begin_nested() - start a seqcount_t write section with + * custom lockdep nesting level + * @s: Pointer to seqcount_t + * @subclass: lockdep nesting level + * + * See Documentation/locking/lockdep-design.rst + */ static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass) { raw_write_seqcount_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); } +/** + * write_seqcount_begin() - start a seqcount_t write side critical section + * @s: Pointer to seqcount_t + * + * write_seqcount_begin opens a write side critical section of the given + * seqcount_t. + * + * Context: seqcount_t write side critical sections must be serialized and + * non-preemptible. If readers can be invoked from hardirq or softirq + * context, interrupts or bottom halves must be respectively disabled. + */ static inline void write_seqcount_begin(seqcount_t *s) { write_seqcount_begin_nested(s, 0); } +/** + * write_seqcount_end() - end a seqcount_t write side critical section + * @s: Pointer to seqcount_t + * + * The write section must've been opened with write_seqcount_begin(). + */ static inline void write_seqcount_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); @@ -266,12 +308,12 @@ static inline void write_seqcount_end(seqcount_t *s) } /** - * raw_write_seqcount_barrier - do a seq write barrier - * @s: pointer to seqcount_t + * raw_write_seqcount_barrier() - do a seqcount_t write barrier + * @s: Pointer to seqcount_t * - * This can be used to provide an ordering guarantee instead of the - * usual consistency guarantee. It is one wmb cheaper, because we can - * collapse the two back-to-back wmb()s. + * This can be used to provide an ordering guarantee instead of the usual + * consistency guarantee. It is one wmb cheaper, because it can collapse + * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads @@ -316,11 +358,12 @@ static inline void raw_write_seqcount_barrier(seqcount_t *s) } /** - * write_seqcount_invalidate - invalidate in-progress read-side seq operations - * @s: pointer to seqcount_t + * write_seqcount_invalidate() - invalidate in-progress seqcount_t read + * side operations + * @s: Pointer to seqcount_t * - * After write_seqcount_invalidate, no read-side seq operations will complete - * successfully and see data older than this. + * After write_seqcount_invalidate, no seqcount_t read side operations + * will complete successfully and see data older than this. */ static inline void write_seqcount_invalidate(seqcount_t *s) { @@ -330,6 +373,21 @@ static inline void write_seqcount_invalidate(seqcount_t *s) kcsan_nestable_atomic_end(); } +/** + * raw_read_seqcount_latch() - pick even/odd seqcount_t latch data copy + * @s: Pointer to seqcount_t + * + * Use seqcount_t latching to switch between two storage places protected + * by a sequence counter. Doing so allows having interruptible, preemptible, + * seqcount_t write side critical sections. + * + * Check raw_write_seqcount_latch() for more details and a full reader and + * writer usage example. + * + * Return: sequence counter raw value. Use the lowest bit as an index for + * picking which data copy to read. The full counter value must then be + * checked with read_seqcount_retry(). + */ static inline int raw_read_seqcount_latch(seqcount_t *s) { /* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */ @@ -338,8 +396,8 @@ static inline int raw_read_seqcount_latch(seqcount_t *s) } /** - * raw_write_seqcount_latch - redirect readers to even/odd copy - * @s: pointer to seqcount_t + * raw_write_seqcount_latch() - redirect readers to even/odd copy + * @s: Pointer to seqcount_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never @@ -446,17 +504,28 @@ typedef struct { .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } -#define seqlock_init(x) \ +/** + * seqlock_init() - dynamic initializer for seqlock_t + * @sl: Pointer to the seqlock_t instance + */ +#define seqlock_init(sl) \ do { \ - seqcount_init(&(x)->seqcount); \ - spin_lock_init(&(x)->lock); \ + seqcount_init(&(sl)->seqcount); \ + spin_lock_init(&(sl)->lock); \ } while (0) -#define DEFINE_SEQLOCK(x) \ - seqlock_t x = __SEQLOCK_UNLOCKED(x) +/** + * DEFINE_SEQLOCK() - Define a statically allocated seqlock_t + * @sl: Name of the seqlock_t instance + */ +#define DEFINE_SEQLOCK(sl) \ + seqlock_t sl = __SEQLOCK_UNLOCKED(sl) -/* - * Read side functions for starting and finalizing a read side section. +/** + * read_seqbegin() - start a seqlock_t read side critical section + * @sl: Pointer to seqlock_t + * + * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { @@ -467,6 +536,17 @@ static inline unsigned read_seqbegin(const seqlock_t *sl) return ret; } +/** + * read_seqretry() - end a seqlock_t read side section + * @sl: Pointer to seqlock_t + * @start: count, from read_seqbegin() + * + * read_seqretry closes the read side critical section of given seqlock_t. + * If the critical section was invalid, it must be ignored (and typically + * retried). + * + * Return: true if a read section retry is required, else false + */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* @@ -478,10 +558,18 @@ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) return read_seqcount_retry(&sl->seqcount, start); } -/* - * Lock out other writers and update the count. - * Acts like a normal spin_lock/unlock. - * Don't need preempt_disable() because that is in the spin_lock already. +/** + * write_seqlock() - start a seqlock_t write side critical section + * @sl: Pointer to seqlock_t + * + * write_seqlock opens a write side critical section for the given + * seqlock_t. It also implicitly acquires the spinlock_t embedded inside + * that sequential lock. All seqlock_t write side sections are thus + * automatically serialized and non-preemptible. + * + * Context: if the seqlock_t read section, or other write side critical + * sections, can be invoked from hardirq or softirq contexts, use the + * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { @@ -489,30 +577,66 @@ static inline void write_seqlock(seqlock_t *sl) write_seqcount_begin(&sl->seqcount); } +/** + * write_sequnlock() - end a seqlock_t write side critical section + * @sl: Pointer to seqlock_t + * + * write_sequnlock closes the (serialized and non-preemptible) write side + * critical section of given seqlock_t. + */ static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); spin_unlock(&sl->lock); } +/** + * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section + * @sl: Pointer to seqlock_t + * + * _bh variant of write_seqlock(). Use only if the read side section, or + * other write side sections, can be invoked from softirq contexts. + */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_begin(&sl->seqcount); } +/** + * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section + * @sl: Pointer to seqlock_t + * + * write_sequnlock_bh closes the serialized, non-preemptible, and + * softirqs-disabled, seqlock_t write side critical section opened with + * write_seqlock_bh(). + */ static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); spin_unlock_bh(&sl->lock); } +/** + * write_seqlock_irq() - start a non-interruptible seqlock_t write section + * @sl: Pointer to seqlock_t + * + * _irq variant of write_seqlock(). Use only if the read side section, or + * other write sections, can be invoked from hardirq contexts. + */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_begin(&sl->seqcount); } +/** + * write_sequnlock_irq() - end a non-interruptible seqlock_t write section + * @sl: Pointer to seqlock_t + * + * write_sequnlock_irq closes the serialized and non-interruptible + * seqlock_t write side section opened with write_seqlock_irq(). + */ static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_end(&sl->seqcount); @@ -528,9 +652,28 @@ static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) return flags; } +/** + * write_seqlock_irqsave() - start a non-interruptible seqlock_t write + * section + * @lock: Pointer to seqlock_t + * @flags: Stack-allocated storage for saving caller's local interrupt + * state, to be passed to write_sequnlock_irqrestore(). + * + * _irqsave variant of write_seqlock(). Use it only if the read side + * section, or other write sections, can be invoked from hardirq context. + */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) +/** + * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write + * section + * @sl: Pointer to seqlock_t + * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() + * + * write_sequnlock_irqrestore closes the serialized and non-interruptible + * seqlock_t write section previously opened with write_seqlock_irqsave(). + */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { @@ -538,36 +681,79 @@ write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) spin_unlock_irqrestore(&sl->lock, flags); } -/* - * A locking reader exclusively locks out other writers and locking readers, - * but doesn't update the sequence number. Acts like a normal spin_lock/unlock. - * Don't need preempt_disable() because that is in the spin_lock already. +/** + * read_seqlock_excl() - begin a seqlock_t locking reader section + * @sl: Pointer to seqlock_t + * + * read_seqlock_excl opens a seqlock_t locking reader critical section. A + * locking reader exclusively locks out *both* other writers *and* other + * locking readers, but it does not update the embedded sequence number. + * + * Locking readers act like a normal spin_lock()/spin_unlock(). + * + * Context: if the seqlock_t write section, *or other read sections*, can + * be invoked from hardirq or softirq contexts, use the _irqsave or _bh + * variant of this function instead. + * + * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } +/** + * read_sequnlock_excl() - end a seqlock_t locking reader critical section + * @sl: Pointer to seqlock_t + */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } +/** + * read_seqlock_excl_bh() - start a seqlock_t locking reader section with + * softirqs disabled + * @sl: Pointer to seqlock_t + * + * _bh variant of read_seqlock_excl(). Use this variant only if the + * seqlock_t write side section, *or other read sections*, can be invoked + * from softirq contexts. + */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } +/** + * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking + * reader section + * @sl: Pointer to seqlock_t + */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } +/** + * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking + * reader section + * @sl: Pointer to seqlock_t + * + * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t + * write side section, *or other read sections*, can be invoked from a + * hardirq context. + */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } +/** + * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t + * locking reader section + * @sl: Pointer to seqlock_t + */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); @@ -581,9 +767,26 @@ static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) return flags; } +/** + * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t + * locking reader section + * @lock: Pointer to seqlock_t + * @flags: Stack-allocated storage for saving caller's local interrupt + * state, to be passed to read_sequnlock_excl_irqrestore(). + * + * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t + * write side section, *or other read sections*, can be invoked from a + * hardirq context. + */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) +/** + * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t + * locking reader section + * @sl: Pointer to seqlock_t + * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() + */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { @@ -591,14 +794,35 @@ read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) } /** - * read_seqbegin_or_lock - begin a sequence number check or locking block - * @lock: sequence lock - * @seq : sequence number to be checked - * - * First try it once optimistically without taking the lock. If that fails, - * take the lock. The sequence number is also used as a marker for deciding - * whether to be a reader (even) or writer (odd). - * N.B. seq must be initialized to an even number to begin with. + * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader + * @lock: Pointer to seqlock_t + * @seq : Marker and return parameter. If the passed value is even, the + * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). + * If the passed value is odd, the reader will become a *locking* reader + * as in read_seqlock_excl(). In the first call to this function, the + * caller *must* initialize and pass an even value to @seq; this way, a + * lockless read can be optimistically tried first. + * + * read_seqbegin_or_lock is an API designed to optimistically try a normal + * lockless seqlock_t read section first. If an odd counter is found, the + * lockless read trial has failed, and the next read iteration transforms + * itself into a full seqlock_t locking reader. + * + * This is typically used to avoid seqlock_t lockless readers starvation + * (too much retry loops) in the case of a sharp spike in write side + * activity. + * + * Context: if the seqlock_t write section, *or other read sections*, can + * be invoked from hardirq or softirq contexts, use the _irqsave or _bh + * variant of this function instead. + * + * Check Documentation/locking/seqlock.rst for template example code. + * + * Return: the encountered sequence counter value, through the @seq + * parameter, which is overloaded as a return parameter. This returned + * value must be checked with need_seqretry(). If the read section need to + * be retried, this returned value must also be passed as the @seq + * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { @@ -608,17 +832,52 @@ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) read_seqlock_excl(lock); } +/** + * need_seqretry() - validate seqlock_t "locking or lockless" read section + * @lock: Pointer to seqlock_t + * @seq: sequence count, from read_seqbegin_or_lock() + * + * Return: true if a read section retry is required, false otherwise + */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } +/** + * done_seqretry() - end seqlock_t "locking or lockless" reader section + * @lock: Pointer to seqlock_t + * @seq: count, from read_seqbegin_or_lock() + * + * done_seqretry finishes the seqlock_t read side critical section started + * with read_seqbegin_or_lock() and validated by need_seqretry(). + */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } +/** + * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or + * a non-interruptible locking reader + * @lock: Pointer to seqlock_t + * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). + * + * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if + * the seqlock_t write section, *or other read sections*, can be invoked + * from hardirq context. + * + * Note: Interrupts will be disabled only for "locking reader" mode. + * + * Return: + * + * 1. The saved local interrupts state in case of a locking reader, to + * be passed to done_seqretry_irqrestore(). + * + * 2. The encountered sequence counter value, returned through @seq + * overloaded as a return parameter. Check read_seqbegin_or_lock(). + */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { @@ -632,6 +891,18 @@ read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) return flags; } +/** + * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a + * non-interruptible locking reader section + * @lock: Pointer to seqlock_t + * @seq: Count, from read_seqbegin_or_lock_irqsave() + * @flags: Caller's saved local interrupt state in case of a locking + * reader, also from read_seqbegin_or_lock_irqsave() + * + * This is the _irqrestore variant of done_seqretry(). The read section + * must've been opened with read_seqbegin_or_lock_irqsave(), and validated + * by need_seqretry(). + */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { |