summaryrefslogtreecommitdiff
path: root/crypto/ecc.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/ecc.c')
-rw-r--r--crypto/ecc.c417
1 files changed, 402 insertions, 15 deletions
diff --git a/crypto/ecc.c b/crypto/ecc.c
index ed1237115066..dfe114bc0c4a 100644
--- a/crypto/ecc.c
+++ b/crypto/ecc.c
@@ -1,6 +1,6 @@
/*
- * Copyright (c) 2013, Kenneth MacKay
- * All rights reserved.
+ * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
@@ -24,12 +24,15 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/swab.h>
#include <linux/fips.h>
#include <crypto/ecdh.h>
#include <crypto/rng.h>
+#include <asm/unaligned.h>
+#include <linux/ratelimit.h>
#include "ecc.h"
#include "ecc_curve_defs.h"
@@ -112,7 +115,7 @@ static void vli_clear(u64 *vli, unsigned int ndigits)
}
/* Returns true if vli == 0, false otherwise. */
-static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
+bool vli_is_zero(const u64 *vli, unsigned int ndigits)
{
int i;
@@ -123,6 +126,7 @@ static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
return true;
}
+EXPORT_SYMBOL(vli_is_zero);
/* Returns nonzero if bit bit of vli is set. */
static u64 vli_test_bit(const u64 *vli, unsigned int bit)
@@ -130,6 +134,11 @@ static u64 vli_test_bit(const u64 *vli, unsigned int bit)
return (vli[bit / 64] & ((u64)1 << (bit % 64)));
}
+static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
+{
+ return vli_test_bit(vli, ndigits * 64 - 1);
+}
+
/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
{
@@ -161,6 +170,27 @@ static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
return ((num_digits - 1) * 64 + i);
}
+/* Set dest from unaligned bit string src. */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
+}
+EXPORT_SYMBOL(vli_from_be64);
+
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
+{
+ int i;
+ const u64 *from = src;
+
+ for (i = 0; i < ndigits; i++)
+ dest[i] = get_unaligned_le64(&from[i]);
+}
+EXPORT_SYMBOL(vli_from_le64);
+
/* Sets dest = src. */
static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
{
@@ -171,7 +201,7 @@ static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
}
/* Returns sign of left - right. */
-static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
+int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
{
int i;
@@ -184,6 +214,7 @@ static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
return 0;
}
+EXPORT_SYMBOL(vli_cmp);
/* Computes result = in << c, returning carry. Can modify in place
* (if result == in). 0 < shift < 64.
@@ -239,8 +270,30 @@ static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
return carry;
}
+/* Computes result = left + right, returning carry. Can modify in place. */
+static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 carry = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 sum;
+
+ sum = left[i] + carry;
+ if (sum != left[i])
+ carry = (sum < left[i]);
+ else
+ carry = !!carry;
+
+ result[i] = sum;
+ }
+
+ return carry;
+}
+
/* Computes result = left - right, returning borrow. Can modify in place. */
-static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
+u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
{
u64 borrow = 0;
@@ -258,9 +311,37 @@ static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
return borrow;
}
+EXPORT_SYMBOL(vli_sub);
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+static u64 vli_usub(u64 *result, const u64 *left, u64 right,
+ unsigned int ndigits)
+{
+ u64 borrow = right;
+ int i;
+
+ for (i = 0; i < ndigits; i++) {
+ u64 diff;
+
+ diff = left[i] - borrow;
+ if (diff != left[i])
+ borrow = (diff > left[i]);
+
+ result[i] = diff;
+ }
+
+ return borrow;
+}
static uint128_t mul_64_64(u64 left, u64 right)
{
+ uint128_t result;
+#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
+ unsigned __int128 m = (unsigned __int128)left * right;
+
+ result.m_low = m;
+ result.m_high = m >> 64;
+#else
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
@@ -269,7 +350,6 @@ static uint128_t mul_64_64(u64 left, u64 right)
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
- uint128_t result;
m2 += (m0 >> 32);
m2 += m1;
@@ -280,7 +360,7 @@ static uint128_t mul_64_64(u64 left, u64 right)
result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
result.m_high = m3 + (m2 >> 32);
-
+#endif
return result;
}
@@ -330,6 +410,28 @@ static void vli_mult(u64 *result, const u64 *left, const u64 *right,
result[ndigits * 2 - 1] = r01.m_low;
}
+/* Compute product = left * right, for a small right value. */
+static void vli_umult(u64 *result, const u64 *left, u32 right,
+ unsigned int ndigits)
+{
+ uint128_t r01 = { 0 };
+ unsigned int k;
+
+ for (k = 0; k < ndigits; k++) {
+ uint128_t product;
+
+ product = mul_64_64(left[k], right);
+ r01 = add_128_128(r01, product);
+ /* no carry */
+ result[k] = r01.m_low;
+ r01.m_low = r01.m_high;
+ r01.m_high = 0;
+ }
+ result[k] = r01.m_low;
+ for (++k; k < ndigits * 2; k++)
+ result[k] = 0;
+}
+
static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
{
uint128_t r01 = { 0, 0 };
@@ -402,6 +504,170 @@ static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
vli_add(result, result, mod, ndigits);
}
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^k-c, for small c (note the minus sign)
+ *
+ * References:
+ * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
+ * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
+ * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
+ */
+static void vli_mmod_special(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c = -mod[0];
+ u64 t[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+
+ vli_set(r, product, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits)) {
+ vli_umult(t, r + ndigits, c, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ vli_add(r, r, t, ndigits * 2);
+ }
+ vli_set(t, mod, ndigits);
+ vli_clear(t + ndigits, ndigits);
+ while (vli_cmp(r, t, ndigits * 2) >= 0)
+ vli_sub(r, r, t, ndigits * 2);
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
+ * where k-1 does not fit into qword boundary by -1 bit (such as 255).
+
+ * References (loosely based on):
+ * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
+ * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
+ * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
+ *
+ * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
+ * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
+ * Algorithm 10.25 Fast reduction for special form moduli
+ */
+static void vli_mmod_special2(u64 *result, const u64 *product,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 c2 = mod[0] * 2;
+ u64 q[ECC_MAX_DIGITS];
+ u64 r[ECC_MAX_DIGITS * 2];
+ u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
+ int carry; /* last bit that doesn't fit into q */
+ int i;
+
+ vli_set(m, mod, ndigits);
+ vli_clear(m + ndigits, ndigits);
+
+ vli_set(r, product, ndigits);
+ /* q and carry are top bits */
+ vli_set(q, product + ndigits, ndigits);
+ vli_clear(r + ndigits, ndigits);
+ carry = vli_is_negative(r, ndigits);
+ if (carry)
+ r[ndigits - 1] &= (1ull << 63) - 1;
+ for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
+ u64 qc[ECC_MAX_DIGITS * 2];
+
+ vli_umult(qc, q, c2, ndigits);
+ if (carry)
+ vli_uadd(qc, qc, mod[0], ndigits * 2);
+ vli_set(q, qc + ndigits, ndigits);
+ vli_clear(qc + ndigits, ndigits);
+ carry = vli_is_negative(qc, ndigits);
+ if (carry)
+ qc[ndigits - 1] &= (1ull << 63) - 1;
+ if (i & 1)
+ vli_sub(r, r, qc, ndigits * 2);
+ else
+ vli_add(r, r, qc, ndigits * 2);
+ }
+ while (vli_is_negative(r, ndigits * 2))
+ vli_add(r, r, m, ndigits * 2);
+ while (vli_cmp(r, m, ndigits * 2) >= 0)
+ vli_sub(r, r, m, ndigits * 2);
+
+ vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod, where product is 2N words long.
+ * Reference: Ken MacKay's micro-ecc.
+ * Currently only designed to work for curve_p or curve_n.
+ */
+static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 mod_m[2 * ECC_MAX_DIGITS];
+ u64 tmp[2 * ECC_MAX_DIGITS];
+ u64 *v[2] = { tmp, product };
+ u64 carry = 0;
+ unsigned int i;
+ /* Shift mod so its highest set bit is at the maximum position. */
+ int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
+ int word_shift = shift / 64;
+ int bit_shift = shift % 64;
+
+ vli_clear(mod_m, word_shift);
+ if (bit_shift > 0) {
+ for (i = 0; i < ndigits; ++i) {
+ mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
+ carry = mod[i] >> (64 - bit_shift);
+ }
+ } else
+ vli_set(mod_m + word_shift, mod, ndigits);
+
+ for (i = 1; shift >= 0; --shift) {
+ u64 borrow = 0;
+ unsigned int j;
+
+ for (j = 0; j < ndigits * 2; ++j) {
+ u64 diff = v[i][j] - mod_m[j] - borrow;
+
+ if (diff != v[i][j])
+ borrow = (diff > v[i][j]);
+ v[1 - i][j] = diff;
+ }
+ i = !(i ^ borrow); /* Swap the index if there was no borrow */
+ vli_rshift1(mod_m, ndigits);
+ mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
+ vli_rshift1(mod_m + ndigits, ndigits);
+ }
+ vli_set(result, v[i], ndigits);
+}
+
+/* Computes result = product % mod using Barrett's reduction with precomputed
+ * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
+ * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
+ * boundary.
+ *
+ * Reference:
+ * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
+ * 2.4.1 Barrett's algorithm. Algorithm 2.5.
+ */
+static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
+ unsigned int ndigits)
+{
+ u64 q[ECC_MAX_DIGITS * 2];
+ u64 r[ECC_MAX_DIGITS * 2];
+ const u64 *mu = mod + ndigits;
+
+ vli_mult(q, product + ndigits, mu, ndigits);
+ if (mu[ndigits])
+ vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
+ vli_mult(r, mod, q + ndigits, ndigits);
+ vli_sub(r, product, r, ndigits * 2);
+ while (!vli_is_zero(r + ndigits, ndigits) ||
+ vli_cmp(r, mod, ndigits) != -1) {
+ u64 carry;
+
+ carry = vli_sub(r, r, mod, ndigits);
+ vli_usub(r + ndigits, r + ndigits, carry, ndigits);
+ }
+ vli_set(result, r, ndigits);
+}
+
/* Computes p_result = p_product % curve_p.
* See algorithm 5 and 6 from
* http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
@@ -509,14 +775,33 @@ static void vli_mmod_fast_256(u64 *result, const u64 *product,
}
}
-/* Computes result = product % curve_prime
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
-*/
+/* Computes result = product % curve_prime for different curve_primes.
+ *
+ * Note that curve_primes are distinguished just by heuristic check and
+ * not by complete conformance check.
+ */
static bool vli_mmod_fast(u64 *result, u64 *product,
const u64 *curve_prime, unsigned int ndigits)
{
u64 tmp[2 * ECC_MAX_DIGITS];
+ /* Currently, both NIST primes have -1 in lowest qword. */
+ if (curve_prime[0] != -1ull) {
+ /* Try to handle Pseudo-Marsenne primes. */
+ if (curve_prime[ndigits - 1] == -1ull) {
+ vli_mmod_special(result, product, curve_prime,
+ ndigits);
+ return true;
+ } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
+ curve_prime[ndigits - 2] == 0) {
+ vli_mmod_special2(result, product, curve_prime,
+ ndigits);
+ return true;
+ }
+ vli_mmod_barrett(result, product, curve_prime, ndigits);
+ return true;
+ }
+
switch (ndigits) {
case 3:
vli_mmod_fast_192(result, product, curve_prime, tmp);
@@ -525,13 +810,26 @@ static bool vli_mmod_fast(u64 *result, u64 *product,
vli_mmod_fast_256(result, product, curve_prime, tmp);
break;
default:
- pr_err("unsupports digits size!\n");
+ pr_err_ratelimited("ecc: unsupported digits size!\n");
return false;
}
return true;
}
+/* Computes result = (left * right) % mod.
+ * Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+ const u64 *mod, unsigned int ndigits)
+{
+ u64 product[ECC_MAX_DIGITS * 2];
+
+ vli_mult(product, left, right, ndigits);
+ vli_mmod_slow(result, product, mod, ndigits);
+}
+EXPORT_SYMBOL(vli_mod_mult_slow);
+
/* Computes result = (left * right) % curve_prime. */
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
const u64 *curve_prime, unsigned int ndigits)
@@ -557,7 +855,7 @@ static void vli_mod_square_fast(u64 *result, const u64 *left,
* See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
* https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
*/
-static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
+void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
unsigned int ndigits)
{
u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
@@ -630,6 +928,7 @@ static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
vli_set(result, u, ndigits);
}
+EXPORT_SYMBOL(vli_mod_inv);
/* ------ Point operations ------ */
@@ -903,6 +1202,85 @@ static void ecc_point_mult(struct ecc_point *result,
vli_set(result->y, ry[0], ndigits);
}
+/* Computes R = P + Q mod p */
+static void ecc_point_add(const struct ecc_point *result,
+ const struct ecc_point *p, const struct ecc_point *q,
+ const struct ecc_curve *curve)
+{
+ u64 z[ECC_MAX_DIGITS];
+ u64 px[ECC_MAX_DIGITS];
+ u64 py[ECC_MAX_DIGITS];
+ unsigned int ndigits = curve->g.ndigits;
+
+ vli_set(result->x, q->x, ndigits);
+ vli_set(result->y, q->y, ndigits);
+ vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
+ vli_set(px, p->x, ndigits);
+ vli_set(py, p->y, ndigits);
+ xycz_add(px, py, result->x, result->y, curve->p, ndigits);
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(result->x, result->y, z, curve->p, ndigits);
+}
+
+/* Computes R = u1P + u2Q mod p using Shamir's trick.
+ * Based on: Kenneth MacKay's micro-ecc (2014).
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+ const u64 *u1, const struct ecc_point *p,
+ const u64 *u2, const struct ecc_point *q,
+ const struct ecc_curve *curve)
+{
+ u64 z[ECC_MAX_DIGITS];
+ u64 sump[2][ECC_MAX_DIGITS];
+ u64 *rx = result->x;
+ u64 *ry = result->y;
+ unsigned int ndigits = curve->g.ndigits;
+ unsigned int num_bits;
+ struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
+ const struct ecc_point *points[4];
+ const struct ecc_point *point;
+ unsigned int idx;
+ int i;
+
+ ecc_point_add(&sum, p, q, curve);
+ points[0] = NULL;
+ points[1] = p;
+ points[2] = q;
+ points[3] = &sum;
+
+ num_bits = max(vli_num_bits(u1, ndigits),
+ vli_num_bits(u2, ndigits));
+ i = num_bits - 1;
+ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
+ point = points[idx];
+
+ vli_set(rx, point->x, ndigits);
+ vli_set(ry, point->y, ndigits);
+ vli_clear(z + 1, ndigits - 1);
+ z[0] = 1;
+
+ for (--i; i >= 0; i--) {
+ ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits);
+ idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
+ point = points[idx];
+ if (point) {
+ u64 tx[ECC_MAX_DIGITS];
+ u64 ty[ECC_MAX_DIGITS];
+ u64 tz[ECC_MAX_DIGITS];
+
+ vli_set(tx, point->x, ndigits);
+ vli_set(ty, point->y, ndigits);
+ apply_z(tx, ty, z, curve->p, ndigits);
+ vli_mod_sub(tz, rx, tx, curve->p, ndigits);
+ xycz_add(tx, ty, rx, ry, curve->p, ndigits);
+ vli_mod_mult_fast(z, z, tz, curve->p, ndigits);
+ }
+ }
+ vli_mod_inv(z, z, curve->p, ndigits);
+ apply_z(rx, ry, z, curve->p, ndigits);
+}
+EXPORT_SYMBOL(ecc_point_mult_shamir);
+
static inline void ecc_swap_digits(const u64 *in, u64 *out,
unsigned int ndigits)
{
@@ -948,6 +1326,7 @@ int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
return __ecc_is_key_valid(curve, private_key, ndigits);
}
+EXPORT_SYMBOL(ecc_is_key_valid);
/*
* ECC private keys are generated using the method of extra random bits,
@@ -1000,6 +1379,7 @@ int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
return 0;
}
+EXPORT_SYMBOL(ecc_gen_privkey);
int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
const u64 *private_key, u64 *public_key)
@@ -1036,13 +1416,17 @@ err_free_point:
out:
return ret;
}
+EXPORT_SYMBOL(ecc_make_pub_key);
/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
-static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
- struct ecc_point *pk)
+int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
+ struct ecc_point *pk)
{
u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
+ if (WARN_ON(pk->ndigits != curve->g.ndigits))
+ return -EINVAL;
+
/* Check 1: Verify key is not the zero point. */
if (ecc_point_is_zero(pk))
return -EINVAL;
@@ -1064,8 +1448,8 @@ static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
return -EINVAL;
return 0;
-
}
+EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
const u64 *private_key, const u64 *public_key,
@@ -1121,3 +1505,6 @@ err_alloc_product:
out:
return ret;
}
+EXPORT_SYMBOL(crypto_ecdh_shared_secret);
+
+MODULE_LICENSE("Dual BSD/GPL");