diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-06 08:14:05 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-03-06 08:14:05 -0800 |
commit | 45802da05e666a81b421422d3e302930c0e24e77 (patch) | |
tree | feca43796693395bb2912c59768dc809022e7583 /include/linux/sched.h | |
parent | 203b6609e0ede49eb0b97008b1150c69e9d2ffd3 (diff) | |
parent | ad01423aedaa7c6dd62d560b73a3cb39e6da3901 (diff) |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- refcount conversions
- Solve the rq->leaf_cfs_rq_list can of worms for real.
- improve power-aware scheduling
- add sysctl knob for Energy Aware Scheduling
- documentation updates
- misc other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
kthread: Do not use TIMER_IRQSAFE
kthread: Convert worker lock to raw spinlock
sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
sched/fair: Remove unused 'sd' parameter from select_idle_smt()
sched/wait: Use freezable_schedule() when possible
sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
sched/fair: Explain LLC nohz kick condition
sched/fair: Simplify nohz_balancer_kick()
sched/topology: Fix percpu data types in struct sd_data & struct s_data
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
sched/fair: Fix O(nr_cgroups) in the load balancing path
sched/fair: Optimize update_blocked_averages()
sched/fair: Fix insertion in rq->leaf_cfs_rq_list
sched/fair: Add tmp_alone_branch assertion
sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
sched/fair: Update scale invariance of PELT
sched/fair: Move the rq_of() helper function
sched/core: Convert task_struct.stack_refcount to refcount_t
...
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r-- | include/linux/sched.h | 33 |
1 files changed, 12 insertions, 21 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index 89ddece0b003..903ef29b62c3 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -21,6 +21,7 @@ #include <linux/seccomp.h> #include <linux/nodemask.h> #include <linux/rcupdate.h> +#include <linux/refcount.h> #include <linux/resource.h> #include <linux/latencytop.h> #include <linux/sched/prio.h> @@ -356,12 +357,6 @@ struct util_est { * For cfs_rq, it is the aggregated load_avg of all runnable and * blocked sched_entities. * - * load_avg may also take frequency scaling into account: - * - * load_avg = runnable% * scale_load_down(load) * freq% - * - * where freq% is the CPU frequency normalized to the highest frequency. - * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE @@ -370,17 +365,14 @@ struct util_est { * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable * and blocked sched_entities. * - * util_avg may also factor frequency scaling and CPU capacity scaling: - * - * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% - * - * where freq% is the same as above, and capacity% is the CPU capacity - * normalized to the greatest capacity (due to uarch differences, etc). + * load_avg and util_avg don't direcly factor frequency scaling and CPU + * capacity scaling. The scaling is done through the rq_clock_pelt that + * is used for computing those signals (see update_rq_clock_pelt()) * - * N.B., the above ratios (runnable%, running%, freq%, and capacity%) - * themselves are in the range of [0, 1]. To do fixed point arithmetics, - * we therefore scale them to as large a range as necessary. This is for - * example reflected by util_avg's SCHED_CAPACITY_SCALE. + * N.B., the above ratios (runnable% and running%) themselves are in the + * range of [0, 1]. To do fixed point arithmetics, we therefore scale them + * to as large a range as necessary. This is for example reflected by + * util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * @@ -607,7 +599,7 @@ struct task_struct { randomized_struct_fields_start void *stack; - atomic_t usage; + refcount_t usage; /* Per task flags (PF_*), defined further below: */ unsigned int flags; unsigned int ptrace; @@ -1187,7 +1179,7 @@ struct task_struct { #endif #ifdef CONFIG_THREAD_INFO_IN_TASK /* A live task holds one reference: */ - atomic_t stack_refcount; + refcount_t stack_refcount; #endif #ifdef CONFIG_LIVEPATCH int patch_state; @@ -1403,7 +1395,6 @@ extern struct pid *cad_pid; #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ -#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ @@ -1753,9 +1744,9 @@ static __always_inline bool need_resched(void) static inline unsigned int task_cpu(const struct task_struct *p) { #ifdef CONFIG_THREAD_INFO_IN_TASK - return p->cpu; + return READ_ONCE(p->cpu); #else - return task_thread_info(p)->cpu; + return READ_ONCE(task_thread_info(p)->cpu); #endif } |