summaryrefslogtreecommitdiff
path: root/include/linux/hugetlb.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-08-17 19:50:16 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2024-08-17 19:50:16 -0700
commitc3f2d783a459980eafd24c5af94ccd56a615961f (patch)
treea4c25eb4b94110ba42efdeb6f67c1f65c5c77add /include/linux/hugetlb.h
parent810996a36309a56a39b406d9ad2903115714228f (diff)
parent2e6506e1c4eed2676a8412231046f31e10e240da (diff)
Merge tag 'mm-hotfixes-stable-2024-08-17-19-34' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton: "16 hotfixes. All except one are for MM. 10 of these are cc:stable and the others pertain to post-6.10 issues. As usual with these merges, singletons and doubletons all over the place, no identifiable-by-me theme. Please see the lovingly curated changelogs to get the skinny" * tag 'mm-hotfixes-stable-2024-08-17-19-34' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm/migrate: fix deadlock in migrate_pages_batch() on large folios alloc_tag: mark pages reserved during CMA activation as not tagged alloc_tag: introduce clear_page_tag_ref() helper function crash: fix riscv64 crash memory reserve dead loop selftests: memfd_secret: don't build memfd_secret test on unsupported arches mm: fix endless reclaim on machines with unaccepted memory selftests/mm: compaction_test: fix off by one in check_compaction() mm/numa: no task_numa_fault() call if PMD is changed mm/numa: no task_numa_fault() call if PTE is changed mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0 mm/memory-failure: use raw_spinlock_t in struct memory_failure_cpu mm: don't account memmap per-node mm: add system wide stats items category mm: don't account memmap on failure mm/hugetlb: fix hugetlb vs. core-mm PT locking mseal: fix is_madv_discard()
Diffstat (limited to 'include/linux/hugetlb.h')
-rw-r--r--include/linux/hugetlb.h33
1 files changed, 30 insertions, 3 deletions
diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h
index c9bf68c239a0..45bf05ad5c53 100644
--- a/include/linux/hugetlb.h
+++ b/include/linux/hugetlb.h
@@ -944,10 +944,37 @@ static inline bool htlb_allow_alloc_fallback(int reason)
static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
- if (huge_page_size(h) == PMD_SIZE)
+ const unsigned long size = huge_page_size(h);
+
+ VM_WARN_ON(size == PAGE_SIZE);
+
+ /*
+ * hugetlb must use the exact same PT locks as core-mm page table
+ * walkers would. When modifying a PTE table, hugetlb must take the
+ * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
+ * PT lock etc.
+ *
+ * The expectation is that any hugetlb folio smaller than a PMD is
+ * always mapped into a single PTE table and that any hugetlb folio
+ * smaller than a PUD (but at least as big as a PMD) is always mapped
+ * into a single PMD table.
+ *
+ * If that does not hold for an architecture, then that architecture
+ * must disable split PT locks such that all *_lockptr() functions
+ * will give us the same result: the per-MM PT lock.
+ *
+ * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
+ * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
+ * and core-mm would use pmd_lockptr(). However, in such configurations
+ * split PMD locks are disabled -- they don't make sense on a single
+ * PGDIR page table -- and the end result is the same.
+ */
+ if (size >= PUD_SIZE)
+ return pud_lockptr(mm, (pud_t *) pte);
+ else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
return pmd_lockptr(mm, (pmd_t *) pte);
- VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
- return &mm->page_table_lock;
+ /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
+ return ptep_lockptr(mm, pte);
}
#ifndef hugepages_supported