diff options
author | Joao Martins <joao.m.martins@oracle.com> | 2023-10-24 14:51:02 +0100 |
---|---|---|
committer | Jason Gunthorpe <jgg@nvidia.com> | 2023-10-24 11:58:43 -0300 |
commit | 421a511a293fe1c73b37f6147c6676c4ee6efa04 (patch) | |
tree | f2524ad66f722e8d3195f509f58f5b96ddef9d6e /drivers/iommu/amd/io_pgtable.c | |
parent | 134288158a415cd863b1c32c7dcddc0a1dc32aab (diff) |
iommu/amd: Access/Dirty bit support in IOPTEs
IOMMU advertises Access/Dirty bits if the extended feature register reports
it. Relevant AMD IOMMU SDM ref[0] "1.3.8 Enhanced Support for Access and
Dirty Bits"
To enable it set the DTE flag in bits 7 and 8 to enable access, or
access+dirty. With that, the IOMMU starts marking the D and A flags on
every Memory Request or ATS translation request. It is on the VMM side to
steer whether to enable dirty tracking or not, rather than wrongly doing in
IOMMU. Relevant AMD IOMMU SDM ref [0], "Table 7. Device Table Entry (DTE)
Field Definitions" particularly the entry "HAD".
To actually toggle on and off it's relatively simple as it's setting 2 bits
on DTE and flush the device DTE cache.
To get what's dirtied use existing AMD io-pgtable support, by walking the
pagetables over each IOVA, with fetch_pte(). The IOTLB flushing is left to
the caller (much like unmap), and iommu_dirty_bitmap_record() is the one
adding page-ranges to invalidate. This allows caller to batch the flush
over a big span of IOVA space, without the iommu wondering about when to
flush.
Worthwhile sections from AMD IOMMU SDM:
"2.2.3.1 Host Access Support"
"2.2.3.2 Host Dirty Support"
For details on how IOMMU hardware updates the dirty bit see, and expects
from its consequent clearing by CPU:
"2.2.7.4 Updating Accessed and Dirty Bits in the Guest Address Tables"
"2.2.7.5 Clearing Accessed and Dirty Bits"
Quoting the SDM:
"The setting of accessed and dirty status bits in the page tables is
visible to both the CPU and the peripheral when sharing guest page tables.
The IOMMU interlocked operations to update A and D bits must be 64-bit
operations and naturally aligned on a 64-bit boundary"
.. and for the IOMMU update sequence to Dirty bit, essentially is states:
1. Decodes the read and write intent from the memory access.
2. If P=0 in the page descriptor, fail the access.
3. Compare the A & D bits in the descriptor with the read and write
intent in the request.
4. If the A or D bits need to be updated in the descriptor:
* Start atomic operation.
* Read the descriptor as a 64-bit access.
* If the descriptor no longer appears to require an update, release the
atomic lock with
no further action and continue to step 5.
* Calculate the new A & D bits.
* Write the descriptor as a 64-bit access.
* End atomic operation.
5. Continue to the next stage of translation or to the memory access.
Access/Dirty bits readout also need to consider the non-default page-sizes
(aka replicated PTEs as mentined by manual), as AMD supports all powers of
two (except 512G) page sizes.
Select IOMMUFD_DRIVER only if IOMMUFD is enabled considering that IOMMU
dirty tracking requires IOMMUFD.
Link: https://lore.kernel.org/r/20231024135109.73787-12-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Diffstat (limited to 'drivers/iommu/amd/io_pgtable.c')
-rw-r--r-- | drivers/iommu/amd/io_pgtable.c | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/drivers/iommu/amd/io_pgtable.c b/drivers/iommu/amd/io_pgtable.c index 2892aa1b4dc1..6c0621f6f572 100644 --- a/drivers/iommu/amd/io_pgtable.c +++ b/drivers/iommu/amd/io_pgtable.c @@ -486,6 +486,73 @@ static phys_addr_t iommu_v1_iova_to_phys(struct io_pgtable_ops *ops, unsigned lo return (__pte & ~offset_mask) | (iova & offset_mask); } +static bool pte_test_and_clear_dirty(u64 *ptep, unsigned long size, + unsigned long flags) +{ + bool test_only = flags & IOMMU_DIRTY_NO_CLEAR; + bool dirty = false; + int i, count; + + /* + * 2.2.3.2 Host Dirty Support + * When a non-default page size is used , software must OR the + * Dirty bits in all of the replicated host PTEs used to map + * the page. The IOMMU does not guarantee the Dirty bits are + * set in all of the replicated PTEs. Any portion of the page + * may have been written even if the Dirty bit is set in only + * one of the replicated PTEs. + */ + count = PAGE_SIZE_PTE_COUNT(size); + for (i = 0; i < count && test_only; i++) { + if (test_bit(IOMMU_PTE_HD_BIT, (unsigned long *)&ptep[i])) { + dirty = true; + break; + } + } + + for (i = 0; i < count && !test_only; i++) { + if (test_and_clear_bit(IOMMU_PTE_HD_BIT, + (unsigned long *)&ptep[i])) { + dirty = true; + } + } + + return dirty; +} + +static int iommu_v1_read_and_clear_dirty(struct io_pgtable_ops *ops, + unsigned long iova, size_t size, + unsigned long flags, + struct iommu_dirty_bitmap *dirty) +{ + struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops); + unsigned long end = iova + size - 1; + + do { + unsigned long pgsize = 0; + u64 *ptep, pte; + + ptep = fetch_pte(pgtable, iova, &pgsize); + if (ptep) + pte = READ_ONCE(*ptep); + if (!ptep || !IOMMU_PTE_PRESENT(pte)) { + pgsize = pgsize ?: PTE_LEVEL_PAGE_SIZE(0); + iova += pgsize; + continue; + } + + /* + * Mark the whole IOVA range as dirty even if only one of + * the replicated PTEs were marked dirty. + */ + if (pte_test_and_clear_dirty(ptep, pgsize, flags)) + iommu_dirty_bitmap_record(dirty, iova, pgsize); + iova += pgsize; + } while (iova < end); + + return 0; +} + /* * ---------------------------------------------------- */ @@ -527,6 +594,7 @@ static struct io_pgtable *v1_alloc_pgtable(struct io_pgtable_cfg *cfg, void *coo pgtable->iop.ops.map_pages = iommu_v1_map_pages; pgtable->iop.ops.unmap_pages = iommu_v1_unmap_pages; pgtable->iop.ops.iova_to_phys = iommu_v1_iova_to_phys; + pgtable->iop.ops.read_and_clear_dirty = iommu_v1_read_and_clear_dirty; return &pgtable->iop; } |