diff options
author | David S. Miller <davem@davemloft.net> | 2019-11-16 18:47:31 -0800 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2019-11-16 21:51:42 -0800 |
commit | 19b7e21c55c81713c4011278143006af9f232504 (patch) | |
tree | e1312ccebbc23ee6b6928d1d02d644a15d695b67 /Documentation | |
parent | 1e8795b1b20d2721620165434cdcf427ecd2ba85 (diff) | |
parent | 1d4c79ed324ad780cfc3ad38364ba1fd585dd2a8 (diff) |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Lots of overlapping changes and parallel additions, stuff
like that.
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-devices-system-cpu | 2 | ||||
-rw-r--r-- | Documentation/admin-guide/hw-vuln/index.rst | 2 | ||||
-rw-r--r-- | Documentation/admin-guide/hw-vuln/multihit.rst | 163 | ||||
-rw-r--r-- | Documentation/admin-guide/hw-vuln/tsx_async_abort.rst | 276 | ||||
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 92 | ||||
-rw-r--r-- | Documentation/x86/index.rst | 1 | ||||
-rw-r--r-- | Documentation/x86/tsx_async_abort.rst | 117 |
7 files changed, 653 insertions, 0 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu index 06d0931119cc..fc20cde63d1e 100644 --- a/Documentation/ABI/testing/sysfs-devices-system-cpu +++ b/Documentation/ABI/testing/sysfs-devices-system-cpu @@ -486,6 +486,8 @@ What: /sys/devices/system/cpu/vulnerabilities /sys/devices/system/cpu/vulnerabilities/spec_store_bypass /sys/devices/system/cpu/vulnerabilities/l1tf /sys/devices/system/cpu/vulnerabilities/mds + /sys/devices/system/cpu/vulnerabilities/tsx_async_abort + /sys/devices/system/cpu/vulnerabilities/itlb_multihit Date: January 2018 Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org> Description: Information about CPU vulnerabilities diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst index 49311f3da6f2..0795e3c2643f 100644 --- a/Documentation/admin-guide/hw-vuln/index.rst +++ b/Documentation/admin-guide/hw-vuln/index.rst @@ -12,3 +12,5 @@ are configurable at compile, boot or run time. spectre l1tf mds + tsx_async_abort + multihit.rst diff --git a/Documentation/admin-guide/hw-vuln/multihit.rst b/Documentation/admin-guide/hw-vuln/multihit.rst new file mode 100644 index 000000000000..ba9988d8bce5 --- /dev/null +++ b/Documentation/admin-guide/hw-vuln/multihit.rst @@ -0,0 +1,163 @@ +iTLB multihit +============= + +iTLB multihit is an erratum where some processors may incur a machine check +error, possibly resulting in an unrecoverable CPU lockup, when an +instruction fetch hits multiple entries in the instruction TLB. This can +occur when the page size is changed along with either the physical address +or cache type. A malicious guest running on a virtualized system can +exploit this erratum to perform a denial of service attack. + + +Affected processors +------------------- + +Variations of this erratum are present on most Intel Core and Xeon processor +models. The erratum is not present on: + + - non-Intel processors + + - Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont) + + - Intel processors that have the PSCHANGE_MC_NO bit set in the + IA32_ARCH_CAPABILITIES MSR. + + +Related CVEs +------------ + +The following CVE entry is related to this issue: + + ============== ================================================= + CVE-2018-12207 Machine Check Error Avoidance on Page Size Change + ============== ================================================= + + +Problem +------- + +Privileged software, including OS and virtual machine managers (VMM), are in +charge of memory management. A key component in memory management is the control +of the page tables. Modern processors use virtual memory, a technique that creates +the illusion of a very large memory for processors. This virtual space is split +into pages of a given size. Page tables translate virtual addresses to physical +addresses. + +To reduce latency when performing a virtual to physical address translation, +processors include a structure, called TLB, that caches recent translations. +There are separate TLBs for instruction (iTLB) and data (dTLB). + +Under this errata, instructions are fetched from a linear address translated +using a 4 KB translation cached in the iTLB. Privileged software modifies the +paging structure so that the same linear address using large page size (2 MB, 4 +MB, 1 GB) with a different physical address or memory type. After the page +structure modification but before the software invalidates any iTLB entries for +the linear address, a code fetch that happens on the same linear address may +cause a machine-check error which can result in a system hang or shutdown. + + +Attack scenarios +---------------- + +Attacks against the iTLB multihit erratum can be mounted from malicious +guests in a virtualized system. + + +iTLB multihit system information +-------------------------------- + +The Linux kernel provides a sysfs interface to enumerate the current iTLB +multihit status of the system:whether the system is vulnerable and which +mitigations are active. The relevant sysfs file is: + +/sys/devices/system/cpu/vulnerabilities/itlb_multihit + +The possible values in this file are: + +.. list-table:: + + * - Not affected + - The processor is not vulnerable. + * - KVM: Mitigation: Split huge pages + - Software changes mitigate this issue. + * - KVM: Vulnerable + - The processor is vulnerable, but no mitigation enabled + + +Enumeration of the erratum +-------------------------------- + +A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr +and will be set on CPU's which are mitigated against this issue. + + ======================================= =========== =============================== + IA32_ARCH_CAPABILITIES MSR Not present Possibly vulnerable,check model + IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '0' Likely vulnerable,check model + IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '1' Not vulnerable + ======================================= =========== =============================== + + +Mitigation mechanism +------------------------- + +This erratum can be mitigated by restricting the use of large page sizes to +non-executable pages. This forces all iTLB entries to be 4K, and removes +the possibility of multiple hits. + +In order to mitigate the vulnerability, KVM initially marks all huge pages +as non-executable. If the guest attempts to execute in one of those pages, +the page is broken down into 4K pages, which are then marked executable. + +If EPT is disabled or not available on the host, KVM is in control of TLB +flushes and the problematic situation cannot happen. However, the shadow +EPT paging mechanism used by nested virtualization is vulnerable, because +the nested guest can trigger multiple iTLB hits by modifying its own +(non-nested) page tables. For simplicity, KVM will make large pages +non-executable in all shadow paging modes. + +Mitigation control on the kernel command line and KVM - module parameter +------------------------------------------------------------------------ + +The KVM hypervisor mitigation mechanism for marking huge pages as +non-executable can be controlled with a module parameter "nx_huge_pages=". +The kernel command line allows to control the iTLB multihit mitigations at +boot time with the option "kvm.nx_huge_pages=". + +The valid arguments for these options are: + + ========== ================================================================ + force Mitigation is enabled. In this case, the mitigation implements + non-executable huge pages in Linux kernel KVM module. All huge + pages in the EPT are marked as non-executable. + If a guest attempts to execute in one of those pages, the page is + broken down into 4K pages, which are then marked executable. + + off Mitigation is disabled. + + auto Enable mitigation only if the platform is affected and the kernel + was not booted with the "mitigations=off" command line parameter. + This is the default option. + ========== ================================================================ + + +Mitigation selection guide +-------------------------- + +1. No virtualization in use +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + The system is protected by the kernel unconditionally and no further + action is required. + +2. Virtualization with trusted guests +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + If the guest comes from a trusted source, you may assume that the guest will + not attempt to maliciously exploit these errata and no further action is + required. + +3. Virtualization with untrusted guests +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + If the guest comes from an untrusted source, the guest host kernel will need + to apply iTLB multihit mitigation via the kernel command line or kvm + module parameter. diff --git a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst new file mode 100644 index 000000000000..fddbd7579c53 --- /dev/null +++ b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst @@ -0,0 +1,276 @@ +.. SPDX-License-Identifier: GPL-2.0 + +TAA - TSX Asynchronous Abort +====================================== + +TAA is a hardware vulnerability that allows unprivileged speculative access to +data which is available in various CPU internal buffers by using asynchronous +aborts within an Intel TSX transactional region. + +Affected processors +------------------- + +This vulnerability only affects Intel processors that support Intel +Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8) +is 0 in the IA32_ARCH_CAPABILITIES MSR. On processors where the MDS_NO bit +(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations +also mitigate against TAA. + +Whether a processor is affected or not can be read out from the TAA +vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`. + +Related CVEs +------------ + +The following CVE entry is related to this TAA issue: + + ============== ===== =================================================== + CVE-2019-11135 TAA TSX Asynchronous Abort (TAA) condition on some + microprocessors utilizing speculative execution may + allow an authenticated user to potentially enable + information disclosure via a side channel with + local access. + ============== ===== =================================================== + +Problem +------- + +When performing store, load or L1 refill operations, processors write +data into temporary microarchitectural structures (buffers). The data in +those buffers can be forwarded to load operations as an optimization. + +Intel TSX is an extension to the x86 instruction set architecture that adds +hardware transactional memory support to improve performance of multi-threaded +software. TSX lets the processor expose and exploit concurrency hidden in an +application due to dynamically avoiding unnecessary synchronization. + +TSX supports atomic memory transactions that are either committed (success) or +aborted. During an abort, operations that happened within the transactional region +are rolled back. An asynchronous abort takes place, among other options, when a +different thread accesses a cache line that is also used within the transactional +region when that access might lead to a data race. + +Immediately after an uncompleted asynchronous abort, certain speculatively +executed loads may read data from those internal buffers and pass it to dependent +operations. This can be then used to infer the value via a cache side channel +attack. + +Because the buffers are potentially shared between Hyper-Threads cross +Hyper-Thread attacks are possible. + +The victim of a malicious actor does not need to make use of TSX. Only the +attacker needs to begin a TSX transaction and raise an asynchronous abort +which in turn potenitally leaks data stored in the buffers. + +More detailed technical information is available in the TAA specific x86 +architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`. + + +Attack scenarios +---------------- + +Attacks against the TAA vulnerability can be implemented from unprivileged +applications running on hosts or guests. + +As for MDS, the attacker has no control over the memory addresses that can +be leaked. Only the victim is responsible for bringing data to the CPU. As +a result, the malicious actor has to sample as much data as possible and +then postprocess it to try to infer any useful information from it. + +A potential attacker only has read access to the data. Also, there is no direct +privilege escalation by using this technique. + + +.. _tsx_async_abort_sys_info: + +TAA system information +----------------------- + +The Linux kernel provides a sysfs interface to enumerate the current TAA status +of mitigated systems. The relevant sysfs file is: + +/sys/devices/system/cpu/vulnerabilities/tsx_async_abort + +The possible values in this file are: + +.. list-table:: + + * - 'Vulnerable' + - The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied. + * - 'Vulnerable: Clear CPU buffers attempted, no microcode' + - The system tries to clear the buffers but the microcode might not support the operation. + * - 'Mitigation: Clear CPU buffers' + - The microcode has been updated to clear the buffers. TSX is still enabled. + * - 'Mitigation: TSX disabled' + - TSX is disabled. + * - 'Not affected' + - The CPU is not affected by this issue. + +.. _ucode_needed: + +Best effort mitigation mode +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If the processor is vulnerable, but the availability of the microcode-based +mitigation mechanism is not advertised via CPUID the kernel selects a best +effort mitigation mode. This mode invokes the mitigation instructions +without a guarantee that they clear the CPU buffers. + +This is done to address virtualization scenarios where the host has the +microcode update applied, but the hypervisor is not yet updated to expose the +CPUID to the guest. If the host has updated microcode the protection takes +effect; otherwise a few CPU cycles are wasted pointlessly. + +The state in the tsx_async_abort sysfs file reflects this situation +accordingly. + + +Mitigation mechanism +-------------------- + +The kernel detects the affected CPUs and the presence of the microcode which is +required. If a CPU is affected and the microcode is available, then the kernel +enables the mitigation by default. + + +The mitigation can be controlled at boot time via a kernel command line option. +See :ref:`taa_mitigation_control_command_line`. + +.. _virt_mechanism: + +Virtualization mitigation +^^^^^^^^^^^^^^^^^^^^^^^^^ + +Affected systems where the host has TAA microcode and TAA is mitigated by +having disabled TSX previously, are not vulnerable regardless of the status +of the VMs. + +In all other cases, if the host either does not have the TAA microcode or +the kernel is not mitigated, the system might be vulnerable. + + +.. _taa_mitigation_control_command_line: + +Mitigation control on the kernel command line +--------------------------------------------- + +The kernel command line allows to control the TAA mitigations at boot time with +the option "tsx_async_abort=". The valid arguments for this option are: + + ============ ============================================================= + off This option disables the TAA mitigation on affected platforms. + If the system has TSX enabled (see next parameter) and the CPU + is affected, the system is vulnerable. + + full TAA mitigation is enabled. If TSX is enabled, on an affected + system it will clear CPU buffers on ring transitions. On + systems which are MDS-affected and deploy MDS mitigation, + TAA is also mitigated. Specifying this option on those + systems will have no effect. + + full,nosmt The same as tsx_async_abort=full, with SMT disabled on + vulnerable CPUs that have TSX enabled. This is the complete + mitigation. When TSX is disabled, SMT is not disabled because + CPU is not vulnerable to cross-thread TAA attacks. + ============ ============================================================= + +Not specifying this option is equivalent to "tsx_async_abort=full". + +The kernel command line also allows to control the TSX feature using the +parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used +to control the TSX feature and the enumeration of the TSX feature bits (RTM +and HLE) in CPUID. + +The valid options are: + + ============ ============================================================= + off Disables TSX on the system. + + Note that this option takes effect only on newer CPUs which are + not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 + and which get the new IA32_TSX_CTRL MSR through a microcode + update. This new MSR allows for the reliable deactivation of + the TSX functionality. + + on Enables TSX. + + Although there are mitigations for all known security + vulnerabilities, TSX has been known to be an accelerator for + several previous speculation-related CVEs, and so there may be + unknown security risks associated with leaving it enabled. + + auto Disables TSX if X86_BUG_TAA is present, otherwise enables TSX + on the system. + ============ ============================================================= + +Not specifying this option is equivalent to "tsx=off". + +The following combinations of the "tsx_async_abort" and "tsx" are possible. For +affected platforms tsx=auto is equivalent to tsx=off and the result will be: + + ========= ========================== ========================================= + tsx=on tsx_async_abort=full The system will use VERW to clear CPU + buffers. Cross-thread attacks are still + possible on SMT machines. + tsx=on tsx_async_abort=full,nosmt As above, cross-thread attacks on SMT + mitigated. + tsx=on tsx_async_abort=off The system is vulnerable. + tsx=off tsx_async_abort=full TSX might be disabled if microcode + provides a TSX control MSR. If so, + system is not vulnerable. + tsx=off tsx_async_abort=full,nosmt Ditto + tsx=off tsx_async_abort=off ditto + ========= ========================== ========================================= + + +For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU +buffers. For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0) +"tsx" command line argument has no effect. + +For the affected platforms below table indicates the mitigation status for the +combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO +and TSX_CTRL_MSR. + + ======= ========= ============= ======================================== + MDS_NO MD_CLEAR TSX_CTRL_MSR Status + ======= ========= ============= ======================================== + 0 0 0 Vulnerable (needs microcode) + 0 1 0 MDS and TAA mitigated via VERW + 1 1 0 MDS fixed, TAA vulnerable if TSX enabled + because MD_CLEAR has no meaning and + VERW is not guaranteed to clear buffers + 1 X 1 MDS fixed, TAA can be mitigated by + VERW or TSX_CTRL_MSR + ======= ========= ============= ======================================== + +Mitigation selection guide +-------------------------- + +1. Trusted userspace and guests +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If all user space applications are from a trusted source and do not execute +untrusted code which is supplied externally, then the mitigation can be +disabled. The same applies to virtualized environments with trusted guests. + + +2. Untrusted userspace and guests +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If there are untrusted applications or guests on the system, enabling TSX +might allow a malicious actor to leak data from the host or from other +processes running on the same physical core. + +If the microcode is available and the TSX is disabled on the host, attacks +are prevented in a virtualized environment as well, even if the VMs do not +explicitly enable the mitigation. + + +.. _taa_default_mitigations: + +Default mitigations +------------------- + +The kernel's default action for vulnerable processors is: + + - Deploy TSX disable mitigation (tsx_async_abort=full tsx=off). diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index a84a83f8881e..8dee8f68fe15 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -2055,6 +2055,25 @@ KVM MMU at runtime. Default is 0 (off) + kvm.nx_huge_pages= + [KVM] Controls the software workaround for the + X86_BUG_ITLB_MULTIHIT bug. + force : Always deploy workaround. + off : Never deploy workaround. + auto : Deploy workaround based on the presence of + X86_BUG_ITLB_MULTIHIT. + + Default is 'auto'. + + If the software workaround is enabled for the host, + guests do need not to enable it for nested guests. + + kvm.nx_huge_pages_recovery_ratio= + [KVM] Controls how many 4KiB pages are periodically zapped + back to huge pages. 0 disables the recovery, otherwise if + the value is N KVM will zap 1/Nth of the 4KiB pages every + minute. The default is 60. + kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. Default is 1 (enabled) @@ -2636,6 +2655,13 @@ ssbd=force-off [ARM64] l1tf=off [X86] mds=off [X86] + tsx_async_abort=off [X86] + kvm.nx_huge_pages=off [X86] + + Exceptions: + This does not have any effect on + kvm.nx_huge_pages when + kvm.nx_huge_pages=force. auto (default) Mitigate all CPU vulnerabilities, but leave SMT @@ -2651,6 +2677,7 @@ be fully mitigated, even if it means losing SMT. Equivalent to: l1tf=flush,nosmt [X86] mds=full,nosmt [X86] + tsx_async_abort=full,nosmt [X86] mminit_loglevel= [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this @@ -4848,6 +4875,71 @@ interruptions from clocksource watchdog are not acceptable). + tsx= [X86] Control Transactional Synchronization + Extensions (TSX) feature in Intel processors that + support TSX control. + + This parameter controls the TSX feature. The options are: + + on - Enable TSX on the system. Although there are + mitigations for all known security vulnerabilities, + TSX has been known to be an accelerator for + several previous speculation-related CVEs, and + so there may be unknown security risks associated + with leaving it enabled. + + off - Disable TSX on the system. (Note that this + option takes effect only on newer CPUs which are + not vulnerable to MDS, i.e., have + MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get + the new IA32_TSX_CTRL MSR through a microcode + update. This new MSR allows for the reliable + deactivation of the TSX functionality.) + + auto - Disable TSX if X86_BUG_TAA is present, + otherwise enable TSX on the system. + + Not specifying this option is equivalent to tsx=off. + + See Documentation/admin-guide/hw-vuln/tsx_async_abort.rst + for more details. + + tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async + Abort (TAA) vulnerability. + + Similar to Micro-architectural Data Sampling (MDS) + certain CPUs that support Transactional + Synchronization Extensions (TSX) are vulnerable to an + exploit against CPU internal buffers which can forward + information to a disclosure gadget under certain + conditions. + + In vulnerable processors, the speculatively forwarded + data can be used in a cache side channel attack, to + access data to which the attacker does not have direct + access. + + This parameter controls the TAA mitigation. The + options are: + + full - Enable TAA mitigation on vulnerable CPUs + if TSX is enabled. + + full,nosmt - Enable TAA mitigation and disable SMT on + vulnerable CPUs. If TSX is disabled, SMT + is not disabled because CPU is not + vulnerable to cross-thread TAA attacks. + off - Unconditionally disable TAA mitigation + + Not specifying this option is equivalent to + tsx_async_abort=full. On CPUs which are MDS affected + and deploy MDS mitigation, TAA mitigation is not + required and doesn't provide any additional + mitigation. + + For details see: + Documentation/admin-guide/hw-vuln/tsx_async_abort.rst + turbografx.map[2|3]= [HW,JOY] TurboGraFX parallel port interface Format: diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst index af64c4bb4447..a8de2fbc1caa 100644 --- a/Documentation/x86/index.rst +++ b/Documentation/x86/index.rst @@ -27,6 +27,7 @@ x86-specific Documentation mds microcode resctrl_ui + tsx_async_abort usb-legacy-support i386/index x86_64/index diff --git a/Documentation/x86/tsx_async_abort.rst b/Documentation/x86/tsx_async_abort.rst new file mode 100644 index 000000000000..583ddc185ba2 --- /dev/null +++ b/Documentation/x86/tsx_async_abort.rst @@ -0,0 +1,117 @@ +.. SPDX-License-Identifier: GPL-2.0 + +TSX Async Abort (TAA) mitigation +================================ + +.. _tsx_async_abort: + +Overview +-------- + +TSX Async Abort (TAA) is a side channel attack on internal buffers in some +Intel processors similar to Microachitectural Data Sampling (MDS). In this +case certain loads may speculatively pass invalid data to dependent operations +when an asynchronous abort condition is pending in a Transactional +Synchronization Extensions (TSX) transaction. This includes loads with no +fault or assist condition. Such loads may speculatively expose stale data from +the same uarch data structures as in MDS, with same scope of exposure i.e. +same-thread and cross-thread. This issue affects all current processors that +support TSX. + +Mitigation strategy +------------------- + +a) TSX disable - one of the mitigations is to disable TSX. A new MSR +IA32_TSX_CTRL will be available in future and current processors after +microcode update which can be used to disable TSX. In addition, it +controls the enumeration of the TSX feature bits (RTM and HLE) in CPUID. + +b) Clear CPU buffers - similar to MDS, clearing the CPU buffers mitigates this +vulnerability. More details on this approach can be found in +:ref:`Documentation/admin-guide/hw-vuln/mds.rst <mds>`. + +Kernel internal mitigation modes +-------------------------------- + + ============= ============================================================ + off Mitigation is disabled. Either the CPU is not affected or + tsx_async_abort=off is supplied on the kernel command line. + + tsx disabled Mitigation is enabled. TSX feature is disabled by default at + bootup on processors that support TSX control. + + verw Mitigation is enabled. CPU is affected and MD_CLEAR is + advertised in CPUID. + + ucode needed Mitigation is enabled. CPU is affected and MD_CLEAR is not + advertised in CPUID. That is mainly for virtualization + scenarios where the host has the updated microcode but the + hypervisor does not expose MD_CLEAR in CPUID. It's a best + effort approach without guarantee. + ============= ============================================================ + +If the CPU is affected and the "tsx_async_abort" kernel command line parameter is +not provided then the kernel selects an appropriate mitigation depending on the +status of RTM and MD_CLEAR CPUID bits. + +Below tables indicate the impact of tsx=on|off|auto cmdline options on state of +TAA mitigation, VERW behavior and TSX feature for various combinations of +MSR_IA32_ARCH_CAPABILITIES bits. + +1. "tsx=off" + +========= ========= ============ ============ ============== =================== ====================== +MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=off +---------------------------------- ------------------------------------------------------------------------- +TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation + after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full +========= ========= ============ ============ ============== =================== ====================== + 0 0 0 HW default Yes Same as MDS Same as MDS + 0 0 1 Invalid case Invalid case Invalid case Invalid case + 0 1 0 HW default No Need ucode update Need ucode update + 0 1 1 Disabled Yes TSX disabled TSX disabled + 1 X 1 Disabled X None needed None needed +========= ========= ============ ============ ============== =================== ====================== + +2. "tsx=on" + +========= ========= ============ ============ ============== =================== ====================== +MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=on +---------------------------------- ------------------------------------------------------------------------- +TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation + after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full +========= ========= ============ ============ ============== =================== ====================== + 0 0 0 HW default Yes Same as MDS Same as MDS + 0 0 1 Invalid case Invalid case Invalid case Invalid case + 0 1 0 HW default No Need ucode update Need ucode update + 0 1 1 Enabled Yes None Same as MDS + 1 X 1 Enabled X None needed None needed +========= ========= ============ ============ ============== =================== ====================== + +3. "tsx=auto" + +========= ========= ============ ============ ============== =================== ====================== +MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=auto +---------------------------------- ------------------------------------------------------------------------- +TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation + after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full +========= ========= ============ ============ ============== =================== ====================== + 0 0 0 HW default Yes Same as MDS Same as MDS + 0 0 1 Invalid case Invalid case Invalid case Invalid case + 0 1 0 HW default No Need ucode update Need ucode update + 0 1 1 Disabled Yes TSX disabled TSX disabled + 1 X 1 Enabled X None needed None needed +========= ========= ============ ============ ============== =================== ====================== + +In the tables, TSX_CTRL_MSR is a new bit in MSR_IA32_ARCH_CAPABILITIES that +indicates whether MSR_IA32_TSX_CTRL is supported. + +There are two control bits in IA32_TSX_CTRL MSR: + + Bit 0: When set it disables the Restricted Transactional Memory (RTM) + sub-feature of TSX (will force all transactions to abort on the + XBEGIN instruction). + + Bit 1: When set it disables the enumeration of the RTM and HLE feature + (i.e. it will make CPUID(EAX=7).EBX{bit4} and + CPUID(EAX=7).EBX{bit11} read as 0). |