1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */
#include "ice_common.h"
#include "ice_ptp_hw.h"
#include "ice_ptp_consts.h"
#include "ice_cgu_regs.h"
/* Low level functions for interacting with and managing the device clock used
* for the Precision Time Protocol.
*
* The ice hardware represents the current time using three registers:
*
* GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
* +---------------+ +---------------+ +---------------+
* | 32 bits | | 32 bits | | 32 bits |
* +---------------+ +---------------+ +---------------+
*
* The registers are incremented every clock tick using a 40bit increment
* value defined over two registers:
*
* GLTSYN_INCVAL_H GLTSYN_INCVAL_L
* +---------------+ +---------------+
* | 8 bit s | | 32 bits |
* +---------------+ +---------------+
*
* The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
* registers every clock source tick. Depending on the specific device
* configuration, the clock source frequency could be one of a number of
* values.
*
* For E810 devices, the increment frequency is 812.5 MHz
*
* For E822 devices the clock can be derived from different sources, and the
* increment has an effective frequency of one of the following:
* - 823.4375 MHz
* - 783.36 MHz
* - 796.875 MHz
* - 816 MHz
* - 830.078125 MHz
* - 783.36 MHz
*
* The hardware captures timestamps in the PHY for incoming packets, and for
* outgoing packets on request. To support this, the PHY maintains a timer
* that matches the lower 64 bits of the global source timer.
*
* In order to ensure that the PHY timers and the source timer are equivalent,
* shadow registers are used to prepare the desired initial values. A special
* sync command is issued to trigger copying from the shadow registers into
* the appropriate source and PHY registers simultaneously.
*
* The driver supports devices which have different PHYs with subtly different
* mechanisms to program and control the timers. We divide the devices into
* families named after the first major device, E810 and similar devices, and
* E822 and similar devices.
*
* - E822 based devices have additional support for fine grained Vernier
* calibration which requires significant setup
* - The layout of timestamp data in the PHY register blocks is different
* - The way timer synchronization commands are issued is different.
*
* To support this, very low level functions have an e810 or e822 suffix
* indicating what type of device they work on. Higher level abstractions for
* tasks that can be done on both devices do not have the suffix and will
* correctly look up the appropriate low level function when running.
*
* Functions which only make sense on a single device family may not have
* a suitable generic implementation
*/
/**
* ice_get_ptp_src_clock_index - determine source clock index
* @hw: pointer to HW struct
*
* Determine the source clock index currently in use, based on device
* capabilities reported during initialization.
*/
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
{
return hw->func_caps.ts_func_info.tmr_index_assoc;
}
/**
* ice_ptp_read_src_incval - Read source timer increment value
* @hw: pointer to HW struct
*
* Read the increment value of the source timer and return it.
*/
static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
{
u32 lo, hi;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
}
/**
* ice_ptp_src_cmd - Prepare source timer for a timer command
* @hw: pointer to HW structure
* @cmd: Timer command
*
* Prepare the source timer for an upcoming timer sync command.
*/
static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
cmd_val = tmr_idx << SEL_CPK_SRC;
switch (cmd) {
case INIT_TIME:
cmd_val |= GLTSYN_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val |= GLTSYN_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val |= GLTSYN_CMD_ADJ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
break;
case READ_TIME:
cmd_val |= GLTSYN_CMD_READ_TIME;
break;
}
wr32(hw, GLTSYN_CMD, cmd_val);
}
/**
* ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
* @hw: pointer to HW struct
*
* Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
* write immediately. This triggers the hardware to begin executing all of the
* source and PHY timer commands synchronously.
*/
static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
{
wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
ice_flush(hw);
}
/* E822 family functions
*
* The following functions operate on the E822 family of devices.
*/
/**
* ice_fill_phy_msg_e822 - Fill message data for a PHY register access
* @msg: the PHY message buffer to fill in
* @port: the port to access
* @offset: the register offset
*/
static void
ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
{
int phy_port, phy, quadtype;
phy_port = port % ICE_PORTS_PER_PHY;
phy = port / ICE_PORTS_PER_PHY;
quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
if (quadtype == 0) {
msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
} else {
msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
}
if (phy == 0)
msg->dest_dev = rmn_0;
else if (phy == 1)
msg->dest_dev = rmn_1;
else
msg->dest_dev = rmn_2;
}
/**
* ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Checks if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_PAR_PCS_TX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
return true;
case P_REG_PAR_PCS_RX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
return true;
case P_REG_PAR_TX_TIME_L:
*high_addr = P_REG_PAR_TX_TIME_U;
return true;
case P_REG_PAR_RX_TIME_L:
*high_addr = P_REG_PAR_RX_TIME_U;
return true;
case P_REG_TOTAL_TX_OFFSET_L:
*high_addr = P_REG_TOTAL_TX_OFFSET_U;
return true;
case P_REG_TOTAL_RX_OFFSET_L:
*high_addr = P_REG_TOTAL_RX_OFFSET_U;
return true;
case P_REG_UIX66_10G_40G_L:
*high_addr = P_REG_UIX66_10G_40G_U;
return true;
case P_REG_UIX66_25G_100G_L:
*high_addr = P_REG_UIX66_25G_100G_U;
return true;
case P_REG_TX_CAPTURE_L:
*high_addr = P_REG_TX_CAPTURE_U;
return true;
case P_REG_RX_CAPTURE_L:
*high_addr = P_REG_RX_CAPTURE_U;
return true;
case P_REG_TX_TIMER_INC_PRE_L:
*high_addr = P_REG_TX_TIMER_INC_PRE_U;
return true;
case P_REG_RX_TIMER_INC_PRE_L:
*high_addr = P_REG_RX_TIMER_INC_PRE_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Checks if the provided low address is one of the known 40bit PHY values
* split into two registers with the lower 8 bits in the low register and the
* upper 32 bits in the high register. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_TIMETUS_L:
*high_addr = P_REG_TIMETUS_U;
return true;
case P_REG_PAR_RX_TUS_L:
*high_addr = P_REG_PAR_RX_TUS_U;
return true;
case P_REG_PAR_TX_TUS_L:
*high_addr = P_REG_PAR_TX_TUS_U;
return true;
case P_REG_PCS_RX_TUS_L:
*high_addr = P_REG_PCS_RX_TUS_U;
return true;
case P_REG_PCS_TX_TUS_L:
*high_addr = P_REG_PCS_TX_TUS_U;
return true;
case P_REG_DESK_PAR_RX_TUS_L:
*high_addr = P_REG_DESK_PAR_RX_TUS_U;
return true;
case P_REG_DESK_PAR_TX_TUS_L:
*high_addr = P_REG_DESK_PAR_TX_TUS_U;
return true;
case P_REG_DESK_PCS_RX_TUS_L:
*high_addr = P_REG_DESK_PCS_RX_TUS_U;
return true;
case P_REG_DESK_PCS_TX_TUS_L:
*high_addr = P_REG_DESK_PCS_TX_TUS_U;
return true;
default:
return false;
}
}
/**
* ice_read_phy_reg_e822 - Read a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @offset: PHY register offset to read
* @val: on return, the contents read from the PHY
*
* Read a PHY register for the given port over the device sideband queue.
*/
int
ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e822(&msg, port, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Reads the two registers associated with a 64bit value and returns it in the
* val pointer. The offset always specifies the lower register offset to use.
* The high offset is looked up. This function only operates on registers
* known to be two parts of a 64bit value.
*/
static int
ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
*val = (u64)high << 32 | low;
return 0;
}
/**
* ice_write_phy_reg_e822 - Write a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to write to
* @offset: PHY register offset to write
* @val: The value to write to the register
*
* Write a PHY register for the given port over the device sideband queue.
*/
int
ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e822(&msg, port, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Write the provided 40b value to the two associated registers by splitting
* it up into two chunks, the lower 8 bits and the upper 32 bits.
*/
static int
ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into a lower 8 bit
* register and an upper 32 bit register.
*/
if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = (u32)(val & P_REG_40B_LOW_M);
high = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Write the 64bit value to the two associated 32bit PHY registers. The offset
* is always specified as the lower register, and the high address is looked
* up. This function only operates on registers known to be two parts of
* a 64bit value.
*/
static int
ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = lower_32_bits(val);
high = upper_32_bits(val);
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_fill_quad_msg_e822 - Fill message data for quad register access
* @msg: the PHY message buffer to fill in
* @quad: the quad to access
* @offset: the register offset
*
* Fill a message buffer for accessing a register in a quad shared between
* multiple PHYs.
*/
static void
ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
{
u32 addr;
msg->dest_dev = rmn_0;
if ((quad % ICE_NUM_QUAD_TYPE) == 0)
addr = Q_0_BASE + offset;
else
addr = Q_1_BASE + offset;
msg->msg_addr_low = lower_16_bits(addr);
msg->msg_addr_high = upper_16_bits(addr);
}
/**
* ice_read_quad_reg_e822 - Read a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to read from
* @offset: quad register offset to read
* @val: on return, the contents read from the quad
*
* Read a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
if (quad >= ICE_MAX_QUAD)
return -EINVAL;
ice_fill_quad_msg_e822(&msg, quad, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_quad_reg_e822 - Write a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to write to
* @offset: quad register offset to write
* @val: The value to write to the register
*
* Write a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
if (quad >= ICE_MAX_QUAD)
return -EINVAL;
ice_fill_quad_msg_e822(&msg, quad, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated registers in the
* quad memory block that is shared between the internal PHYs of the E822
* family of devices.
*/
static int
ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E822 based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
return 0;
}
/**
* ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the PHY quad block that is
* shared between the internal PHYs on the E822 devices.
*/
static int
ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
{
u16 lo_addr, hi_addr;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_cgu_reg_e822 - Read a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to read
* @val: storage for register value read
*
* Read the contents of a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*/
static int
ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input cgu_msg;
int err;
cgu_msg.opcode = ice_sbq_msg_rd;
cgu_msg.dest_dev = cgu;
cgu_msg.msg_addr_low = addr;
cgu_msg.msg_addr_high = 0x0;
err = ice_sbq_rw_reg(hw, &cgu_msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
*val = cgu_msg.data;
return err;
}
/**
* ice_write_cgu_reg_e822 - Write a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to write
* @val: value to write into the register
*
* Write the specified value to a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*/
static int
ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input cgu_msg;
int err;
cgu_msg.opcode = ice_sbq_msg_wr;
cgu_msg.dest_dev = cgu;
cgu_msg.msg_addr_low = addr;
cgu_msg.msg_addr_high = 0x0;
cgu_msg.data = val;
err = ice_sbq_rw_reg(hw, &cgu_msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
return err;
}
/**
* ice_clk_freq_str - Convert time_ref_freq to string
* @clk_freq: Clock frequency
*
* Convert the specified TIME_REF clock frequency to a string.
*/
static const char *ice_clk_freq_str(u8 clk_freq)
{
switch ((enum ice_time_ref_freq)clk_freq) {
case ICE_TIME_REF_FREQ_25_000:
return "25 MHz";
case ICE_TIME_REF_FREQ_122_880:
return "122.88 MHz";
case ICE_TIME_REF_FREQ_125_000:
return "125 MHz";
case ICE_TIME_REF_FREQ_153_600:
return "153.6 MHz";
case ICE_TIME_REF_FREQ_156_250:
return "156.25 MHz";
case ICE_TIME_REF_FREQ_245_760:
return "245.76 MHz";
default:
return "Unknown";
}
}
/**
* ice_clk_src_str - Convert time_ref_src to string
* @clk_src: Clock source
*
* Convert the specified clock source to its string name.
*/
static const char *ice_clk_src_str(u8 clk_src)
{
switch ((enum ice_clk_src)clk_src) {
case ICE_CLK_SRC_TCX0:
return "TCX0";
case ICE_CLK_SRC_TIME_REF:
return "TIME_REF";
default:
return "Unknown";
}
}
/**
* ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCX0)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*/
static int
ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_bwm_lf bwm_lf;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCX0 &&
clk_freq != ICE_TIME_REF_FREQ_25_000) {
dev_warn(ice_hw_to_dev(hw),
"TCX0 only supports 25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.field.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.field.time_ref_sel),
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw24.field.ts_pll_enable) {
dw24.field.ts_pll_enable = 0;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
}
/* Set the frequency */
dw9.field.time_ref_freq_sel = clk_freq;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
dw19.field.tspll_ndivratio = 1;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
dw22.field.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
dw24.field.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw24.field.ts_pll_enable = 1;
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
if (!bwm_lf.field.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.field.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.field.time_ref_sel),
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
/**
* ice_init_cgu_e822 - Initialize CGU with settings from firmware
* @hw: pointer to the HW structure
*
* Initialize the Clock Generation Unit of the E822 device.
*/
static int ice_init_cgu_e822(struct ice_hw *hw)
{
struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
union tspll_cntr_bist_settings cntr_bist;
int err;
err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
&cntr_bist.val);
if (err)
return err;
/* Disable sticky lock detection so lock err reported is accurate */
cntr_bist.field.i_plllock_sel_0 = 0;
cntr_bist.field.i_plllock_sel_1 = 0;
err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
cntr_bist.val);
if (err)
return err;
/* Configure the CGU PLL using the parameters from the function
* capabilities.
*/
err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
if (err)
return err;
return 0;
}
/**
* ice_ptp_set_vernier_wl - Set the window length for vernier calibration
* @hw: pointer to the HW struct
*
* Set the window length used for the vernier port calibration process.
*/
static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
PTP_VERNIER_WL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform PHC initialization steps specific to E822 devices.
*/
static int ice_ptp_init_phc_e822(struct ice_hw *hw)
{
int err;
u32 regval;
/* Enable reading switch and PHY registers over the sideband queue */
#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
regval = rd32(hw, PF_SB_REM_DEV_CTL);
regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
PF_SB_REM_DEV_CTL_PHY0);
wr32(hw, PF_SB_REM_DEV_CTL, regval);
/* Initialize the Clock Generation Unit */
err = ice_init_cgu_e822(hw);
if (err)
return err;
/* Set window length for all the ports */
return ice_ptp_set_vernier_wl(hw);
}
/**
* ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*/
static int
ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
int err;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
/* Tx case */
err = ice_write_64b_phy_reg_e822(hw, port,
P_REG_TX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_64b_phy_reg_e822(hw, port,
P_REG_RX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port Tx and Rx clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*/
int
ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ADJ_TIME or ADJ_TIME_AT_TIME sync command.
*/
static int
ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock. We shift the provided adjustment in nanoseconds to
* calculate the appropriate adjustment to program into the PHY ports.
*/
if (adj > 0)
cycles = (s64)adj << 32;
else
cycles = -(((s64)-adj) << 32);
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an INIT_INCVAL command.
*/
static int
ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
{
int err;
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
incval);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_read_port_capture - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Note this has no equivalent for the E810 devices.
*/
static int
ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
(unsigned long long)*tx_ts);
/* Rx case */
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
(unsigned long long)*rx_ts);
return 0;
}
/**
* ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Note there is no equivalent of this operation on E810, as that device
* always handles all external PHYs internally.
*/
static int
ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, val;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
cmd_val = tmr_idx << SEL_PHY_SRC;
switch (cmd) {
case INIT_TIME:
cmd_val |= PHY_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val |= PHY_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val |= PHY_CMD_ADJ_TIME;
break;
case READ_TIME:
cmd_val |= PHY_CMD_READ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
break;
}
/* Tx case */
/* Read, modify, write */
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK;
val |= cmd_val;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
/* Read, modify, write */
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK;
val |= cmd_val;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
* @hw: pointer to the HW struct
* @cmd: timer command to prepare
*
* Prepare all ports connected to this device for an upcoming timer sync
* command.
*/
static int
ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u8 port;
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
int err;
err = ice_ptp_one_port_cmd(hw, port, cmd);
if (err)
return err;
}
return 0;
}
/* E822 Vernier calibration functions
*
* The following functions are used as part of the vernier calibration of
* a port. This calibration increases the precision of the timestamps on the
* port.
*/
/**
* ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
* @hw: pointer to HW struct
* @port: the port to read from
* @link_out: if non-NULL, holds link speed on success
* @fec_out: if non-NULL, holds FEC algorithm on success
*
* Read the serdes data for the PHY port and extract the link speed and FEC
* algorithm.
*/
static int
ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd *link_out,
enum ice_ptp_fec_mode *fec_out)
{
enum ice_ptp_link_spd link;
enum ice_ptp_fec_mode fec;
u32 serdes;
int err;
err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
return err;
}
/* Determine the FEC algorithm */
fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
serdes &= P_REG_LINK_SPEED_SERDES_M;
/* Determine the link speed */
if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
switch (serdes) {
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G_RS;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G_RS;
break;
case ICE_PTP_SERDES_100G:
link = ICE_PTP_LNK_SPD_100G_RS;
break;
default:
return -EIO;
}
} else {
switch (serdes) {
case ICE_PTP_SERDES_1G:
link = ICE_PTP_LNK_SPD_1G;
break;
case ICE_PTP_SERDES_10G:
link = ICE_PTP_LNK_SPD_10G;
break;
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G;
break;
case ICE_PTP_SERDES_40G:
link = ICE_PTP_LNK_SPD_40G;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G;
break;
default:
return -EIO;
}
}
if (link_out)
*link_out = link;
if (fec_out)
*fec_out = fec;
return 0;
}
/**
* ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
* @hw: pointer to HW struct
* @port: to configure the quad for
*/
static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
int err;
u32 val;
u8 quad;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
err);
return;
}
quad = port / ICE_PORTS_PER_QUAD;
err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
err);
return;
}
if (link_spd >= ICE_PTP_LNK_SPD_40G)
val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
else
val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
err);
return;
}
}
/**
* ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
* @hw: pointer to the HW structure
* @port: the port to configure
*
* Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
* hardware clock time units (TUs). That is, determine the number of TUs per
* serdes unit interval, and program the UIX registers with this conversion.
*
* This conversion is used as part of the calibration process when determining
* the additional error of a timestamp vs the real time of transmission or
* receipt of the packet.
*
* Hardware uses the number of TUs per 66 UIs, written to the UIX registers
* for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
*
* To calculate the conversion ratio, we use the following facts:
*
* a) the clock frequency in Hz (cycles per second)
* b) the number of TUs per cycle (the increment value of the clock)
* c) 1 second per 1 billion nanoseconds
* d) the duration of 66 UIs in nanoseconds
*
* Given these facts, we can use the following table to work out what ratios
* to multiply in order to get the number of TUs per 66 UIs:
*
* cycles | 1 second | incval (TUs) | nanoseconds
* -------+--------------+--------------+-------------
* second | 1 billion ns | cycle | 66 UIs
*
* To perform the multiplication using integers without too much loss of
* precision, we can take use the following equation:
*
* (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
*
* We scale up to using 6600 UI instead of 66 in order to avoid fractional
* nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
*
* The increment value has a maximum expected range of about 34 bits, while
* the frequency value is about 29 bits. Multiplying these values shouldn't
* overflow the 64 bits. However, we must then further multiply them again by
* the Serdes unit interval duration. To avoid overflow here, we split the
* overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
* a divide by 390,625,000. This does lose some precision, but avoids
* miscalculation due to arithmetic overflow.
*/
static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, uix;
int err;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second divided by 256 */
tu_per_sec = (cur_freq * clk_incval) >> 8;
#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
/* Program the 10Gb/40Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
err);
return err;
}
/* Program the 25Gb/100Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process. This depends on the link speed, as the PHY
* uses different markers depending on the speed.
*
* 1Gb/10Gb/25Gb:
* - Tx/Rx PAR/PCS markers
*
* 25Gb RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
*
* 40Gb/50Gb:
* - Tx/Rx PAR/PCS markers
* - Rx Deskew PAR/PCS markers
*
* 50G RS and 100GB RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
* - Rx Deskew PAR/PCS markers
* - Tx PAR/PCS markers
*
* To calculate the conversion, we use the PHC clock frequency (cycles per
* second), the increment value (TUs per cycle), and the related PHY clock
* frequency to calculate the TUs per unit of the PHY link clock. The
* following table shows how the units convert:
*
* cycles | TUs | second
* -------+-------+--------
* second | cycle | cycles
*
* For each conversion register, look up the appropriate frequency from the
* e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
* this to the appropriate register, preparing hardware to perform timestamp
* calibration to calculate the total Tx or Rx offset to adjust the timestamp
* in order to calibrate for the internal PHY delays.
*
* Note that the increment value ranges up to ~34 bits, and the clock
* frequency is ~29 bits, so multiplying them together should fit within the
* 64 bit arithmetic.
*/
static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per cycle of the PHC clock */
tu_per_sec = cur_freq * clk_incval;
/* For each PHY conversion register, look up the appropriate link
* speed frequency and determine the TUs per that clock's cycle time.
* Split this into a high and low value and then program the
* appropriate register. If that link speed does not use the
* associated register, write zeros to clear it instead.
*/
/* P_REG_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_pcs);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_pcs);
else
phy_tus = 0;
return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
phy_tus);
}
/**
* ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
* @hw: pointer to the HW struct
* @link_spd: the Link speed to calculate for
*
* Calculate the fixed offset due to known static latency data.
*/
static u64
ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Tx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
* adjust Tx timestamps by. This is calculated by combining some known static
* latency along with the Vernier offset computations done by hardware.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*/
static int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, val;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G ||
link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_PCS_TX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
}
/* For Tx, we only need to use the second Vernier offset for
* multi-lane link speeds with RS-FEC. The lanes will always be
* aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_TX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_cfg_fixed_tx_offset_e822 - Configure Tx offset for bypass mode
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Calculate and program the fixed Tx offset, and indicate that the offset is
* ready. This can be used when operating in bypass mode.
*/
static int
ice_phy_cfg_fixed_tx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
/* Program the fixed Tx offset into the P_REG_TOTAL_TX_OFFSET_L
* register, then indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*
* Note that this skips including the more precise offsets generated
* by the Vernier calibration.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
* @hw: pointer to the HW struct
* @port: the PHY port to adjust for
* @link_spd: the current link speed of the PHY
* @fec_mode: the current FEC mode of the PHY
* @pmd_adj: on return, the amount to adjust the Rx total offset by
*
* Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
* This varies by link speed and FEC mode. The value calculated accounts for
* various delays caused when receiving a packet.
*/
static int
ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd link_spd,
enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
{
u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
u8 pmd_align;
u32 val;
int err;
err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
err);
return err;
}
pmd_align = (u8)val;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* The PMD alignment adjustment measurement depends on the link speed,
* and whether FEC is enabled. For each link speed, the alignment
* adjustment is calculated by dividing a value by the length of
* a Time Unit in nanoseconds.
*
* 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
* 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 10G w/FEC: align * 0.1 * 32/33
* 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 25G w/FEC: align * 0.4 * 32/33
* 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 40G w/FEC: align * 0.1 * 32/33
* 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 50G w/FEC: align * 0.8 * 32/33
*
* For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
*
* To allow for calculating this value using integer arithmetic, we
* instead start with the number of TUs per second, (inverse of the
* length of a Time Unit in nanoseconds), multiply by a value based
* on the PMD alignment register, and then divide by the right value
* calculated based on the table above. To avoid integer overflow this
* division is broken up into a step of dividing by 125 first.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G) {
if (pmd_align == 4)
mult = 10;
else
mult = (pmd_align + 6) % 10;
} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
/* If Clause 74 FEC, always calculate PMD adjust */
if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
mult = pmd_align;
else
mult = 0;
} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
if (pmd_align < 17)
mult = pmd_align + 40;
else
mult = pmd_align;
} else {
ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
link_spd);
mult = 0;
}
/* In some cases, there's no need to adjust for the PMD alignment */
if (!mult) {
*pmd_adj = 0;
return 0;
}
/* Calculate the adjustment by multiplying TUs per second by the
* appropriate multiplier and divisor. To avoid overflow, we first
* divide by 125, and then handle remaining divisor based on the link
* speed pmd_adj_divisor value.
*/
adj = div_u64(tu_per_sec, 125);
adj *= mult;
adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
* cycle count is necessary.
*/
if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = (4 - rx_cycle) * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = rx_cycle * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
}
/* Return the calculated adjustment */
*pmd_adj = adj;
return 0;
}
/**
* ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
* @hw: pointer to HW struct
* @link_spd: The Link speed to calculate for
*
* Determine the fixed Rx latency for a given link speed.
*/
static u64
ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Rx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
* adjust Rx timestamps by. This combines calculations from the Vernier offset
* measurements taken in hardware with some data about known fixed delay as
* well as adjusting for multi-lane alignment delay.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*/
static int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, pmd, val;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_PCS_RX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
/* For Rx, all multi-lane link speeds include a second Vernier
* calibration, because the lanes might not be aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e822(hw, port,
P_REG_PAR_RX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* In addition, Rx must account for the PMD alignment */
err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
if (err)
return err;
/* For RS-FEC, this adjustment adds delay, but for other modes, it
* subtracts delay.
*/
if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
total_offset += pmd;
else
total_offset -= pmd;
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_phy_cfg_fixed_rx_offset_e822 - Configure fixed Rx offset for bypass mode
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Calculate and program the fixed Rx offset, and indicate that the offset is
* ready. This can be used when operating in bypass mode.
*/
static int
ice_phy_cfg_fixed_rx_offset_e822(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset;
int err;
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
/* Program the fixed Rx offset into the P_REG_TOTAL_RX_OFFSET_L
* register, then indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*
* Note that this skips including the more precise offsets generated
* by Vernier calibration.
*/
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
return 0;
}
/**
* ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
* timer values.
*/
static int
ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
u64 *phc_time)
{
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a READ_TIME capture command */
ice_ptp_src_cmd(hw, READ_TIME);
/* Prepare the PHY timer for a READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
if (err)
return err;
/* Issue the sync to start the READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw),
"PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, (unsigned long long)tx_time,
(unsigned long long)rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a READ_TIME command which triggers a simultaneous
* read of the PHY timer and PHC timer. Then we use the difference to
* calculate an appropriate 2s complement addition to add to the PHY timer in
* order to ensure it reads the same value as the primary PHC timer.
*/
static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
if (err)
goto err_unlock;
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, (unsigned long long)phy_time,
(unsigned long long)phc_time);
ice_ptp_unlock(hw);
return 0;
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_e822 - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*/
int
ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
u32 val;
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
if (err)
return err;
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
if (err)
return err;
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err)
return err;
val &= ~P_REG_PS_START_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
if (soft_reset) {
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_e822 - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
* @bypass: if true, start the PHY in bypass mode
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Bypass mode enables timestamps immediately without waiting for Vernier
* calibration to complete. Hardware will still continue taking Vernier
* measurements on Tx or Rx of packets, but they will not be applied to
* timestamps. Use ice_phy_exit_bypass_e822 to exit bypass mode once hardware
* has completed offset calculation.
*/
int
ice_start_phy_timer_e822(struct ice_hw *hw, u8 port, bool bypass)
{
u32 lo, hi, val;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_e822(hw, port, false);
if (err)
return err;
ice_phy_cfg_lane_e822(hw, port);
err = ice_phy_cfg_uix_e822(hw, port);
if (err)
return err;
err = ice_phy_cfg_parpcs_e822(hw, port);
if (err)
return err;
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
incval = (u64)hi << 32 | lo;
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err)
return err;
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_START_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
val |= P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_LOAD_OFFSET_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_e822(hw, port);
if (err)
return err;
if (bypass) {
val |= P_REG_PS_BYPASS_MODE_M;
/* Enter BYPASS mode, enabling timestamps immediately. */
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err)
return err;
/* Program the fixed Tx offset */
err = ice_phy_cfg_fixed_tx_offset_e822(hw, port);
if (err)
return err;
/* Program the fixed Rx offset */
err = ice_phy_cfg_fixed_rx_offset_e822(hw, port);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_phy_exit_bypass_e822 - Exit bypass mode, after vernier calculations
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* After hardware finishes vernier calculations for the Tx and Rx offset, this
* function can be used to exit bypass mode by updating the total Tx and Rx
* offsets, and then disabling bypass. This will enable hardware to include
* the more precise offset calibrations, increasing precision of the generated
* timestamps.
*
* This cannot be done until hardware has measured the offsets, which requires
* waiting until at least one packet has been sent and received by the device.
*/
int ice_phy_exit_bypass_e822(struct ice_hw *hw, u8 port)
{
int err;
u32 val;
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
ice_debug(hw, ICE_DBG_PTP, "Tx offset is not yet valid for port %u\n",
port);
return -EBUSY;
}
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
ice_debug(hw, ICE_DBG_PTP, "Rx offset is not yet valid for port %u\n",
port);
return -EBUSY;
}
err = ice_phy_cfg_tx_offset_e822(hw, port);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Tx offset for port %u, err %d\n",
port, err);
return err;
}
err = ice_phy_cfg_rx_offset_e822(hw, port);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Rx offset for port %u, err %d\n",
port, err);
return err;
}
/* Exit bypass mode now that the offset has been updated */
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read P_REG_PS for port %u, err %d\n",
port, err);
return err;
}
if (!(val & P_REG_PS_BYPASS_MODE_M))
ice_debug(hw, ICE_DBG_PTP, "Port %u not in bypass mode\n",
port);
val &= ~P_REG_PS_BYPASS_MODE_M;
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to disable bypass for port %u, err %d\n",
port, err);
return err;
}
dev_info(ice_hw_to_dev(hw), "Exiting bypass mode on PHY port %u\n",
port);
return 0;
}
/* E810 functions
*
* The following functions operate on the E810 series devices which use
* a separate external PHY.
*/
/**
* ice_read_phy_reg_e810 - Read register from external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to read from
* @val: On return, the value read from the PHY
*
* Read a register from the external PHY on the E810 device.
*/
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_rd;
msg.dest_dev = rmn_0;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_phy_reg_e810 - Write register on external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to writem to
* @val: the value to write to the PHY
*
* Write a value to a register of the external PHY on the E810 device.
*/
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_wr;
msg.dest_dev = rmn_0;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block of the external PHY
* on the E810 device.
*/
static int
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
{
u32 lo_addr, hi_addr, lo, hi;
int err;
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_read_phy_reg_e810(hw, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_phy_reg_e810(hw, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E810 devices, the timestamp is reported with the lower 32 bits
* in the low register, and the upper 8 bits in the high register.
*/
*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
return 0;
}
/**
* ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the timestamp block of the
* external PHY on the E810 device.
*/
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
{
u32 lo_addr, hi_addr;
int err;
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_write_phy_reg_e810(hw, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
* @hw: pointer to HW struct
*
* Enable the timesync PTP functionality for the external PHY connected to
* this function.
*/
int ice_ptp_init_phy_e810(struct ice_hw *hw)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
GLTSYN_ENA_TSYN_ENA_M);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
err);
return err;
}
/**
* ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E810-specific PTP hardware clock initialization steps.
*/
static int ice_ptp_init_phc_e810(struct ice_hw *hw)
{
/* Ensure synchronization delay is zero */
wr32(hw, GLTSYN_SYNC_DLAY, 0);
/* Initialize the PHY */
return ice_ptp_init_phy_e810(hw);
}
/**
* ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
* @hw: Board private structure
* @time: Time to initialize the PHY port clock to
*
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
* initial clock time. The time will not actually be programmed until the
* driver issues an INIT_TIME command.
*
* The time value is the upper 32 bits of the PHY timer, usually in units of
* nominal nanoseconds.
*/
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment value to program
*
* Prepare the PHY port for an atomic adjustment by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
* is completed by issuing an ADJ_TIME sync command.
*
* The adjustment value only contains the portion used for the upper 32bits of
* the PHY timer, usually in units of nominal nanoseconds. Negative
* adjustments are supported using 2s complement arithmetic.
*/
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Adjustments are represented as signed 2's complement values in
* nanoseconds. Sub-nanosecond adjustment is not supported.
*/
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Prepare the PHY port for a new increment value by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
* completed by issuing an INIT_INCVAL command.
*/
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
{
u32 high, low;
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
low = lower_32_bits(incval);
high = upper_32_bits(incval);
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
* @hw: pointer to HW struct
* @cmd: Command to be sent to the port
*
* Prepare the external PHYs connected to this device for a timer sync
* command.
*/
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, val;
int err;
switch (cmd) {
case INIT_TIME:
cmd_val = GLTSYN_CMD_INIT_TIME;
break;
case INIT_INCVAL:
cmd_val = GLTSYN_CMD_INIT_INCVAL;
break;
case ADJ_TIME:
cmd_val = GLTSYN_CMD_ADJ_TIME;
break;
case READ_TIME:
cmd_val = GLTSYN_CMD_READ_TIME;
break;
case ADJ_TIME_AT_TIME:
cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
break;
}
/* Read, modify, write */
err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
return err;
}
/* Modify necessary bits only and perform write */
val &= ~TS_CMD_MASK_E810;
val |= cmd_val;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
return err;
}
return 0;
}
/* Device agnostic functions
*
* The following functions implement shared behavior common to both E822 and
* E810 devices, possibly calling a device specific implementation where
* necessary.
*/
/**
* ice_ptp_lock - Acquire PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Acquire the global PTP hardware semaphore lock. Returns true if the lock
* was acquired, false otherwise.
*
* The PFTSYN_SEM register sets the busy bit on read, returning the previous
* value. If software sees the busy bit cleared, this means that this function
* acquired the lock (and the busy bit is now set). If software sees the busy
* bit set, it means that another function acquired the lock.
*
* Software must clear the busy bit with a write to release the lock for other
* functions when done.
*/
bool ice_ptp_lock(struct ice_hw *hw)
{
u32 hw_lock;
int i;
#define MAX_TRIES 5
for (i = 0; i < MAX_TRIES; i++) {
hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
if (!hw_lock)
break;
/* Somebody is holding the lock */
usleep_range(10000, 20000);
}
return !hw_lock;
}
/**
* ice_ptp_unlock - Release PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Release the global PTP hardware semaphore lock. This is done by writing to
* the PFTSYN_SEM register.
*/
void ice_ptp_unlock(struct ice_hw *hw)
{
wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
}
/**
* ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
* @hw: pointer to HW struct
* @cmd: the command to issue
*
* Prepare the source timer and PHY timers and then trigger the requested
* command. This causes the shadow registers previously written in preparation
* for the command to be synchronously applied to both the source and PHY
* timers.
*/
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
int err;
/* First, prepare the source timer */
ice_ptp_src_cmd(hw, cmd);
/* Next, prepare the ports */
if (ice_is_e810(hw))
err = ice_ptp_port_cmd_e810(hw, cmd);
else
err = ice_ptp_port_cmd_e822(hw, cmd);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
cmd, err);
return err;
}
/* Write the sync command register to drive both source and PHY timer
* commands synchronously
*/
ice_ptp_exec_tmr_cmd(hw);
return 0;
}
/**
* ice_ptp_init_time - Initialize device time to provided value
* @hw: pointer to HW struct
* @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
*
* Initialize the device to the specified time provided. This requires a three
* step process:
*
* 1) write the new init time to the source timer shadow registers
* 2) write the new init time to the PHY timer shadow registers
* 3) issue an init_time timer command to synchronously switch both the source
* and port timers to the new init time value at the next clock cycle.
*/
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Source timers */
wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
/* PHY timers */
/* Fill Rx and Tx ports and send msg to PHY */
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
else
err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, INIT_TIME);
}
/**
* ice_ptp_write_incval - Program PHC with new increment value
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program the PHC with a new increment value. This requires a three-step
* process:
*
* 1) Write the increment value to the source timer shadow registers
* 2) Write the increment value to the PHY timer shadow registers
* 3) Issue an INIT_INCVAL timer command to synchronously switch both the
* source and port timers to the new increment value at the next clock
* cycle.
*/
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Shadow Adjust */
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_incval_e810(hw, incval);
else
err = ice_ptp_prep_phy_incval_e822(hw, incval);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
}
/**
* ice_ptp_write_incval_locked - Program new incval while holding semaphore
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program a new PHC incval while holding the PTP semaphore.
*/
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
{
int err;
if (!ice_ptp_lock(hw))
return -EBUSY;
err = ice_ptp_write_incval(hw, incval);
ice_ptp_unlock(hw);
return err;
}
/**
* ice_ptp_adj_clock - Adjust PHC clock time atomically
* @hw: pointer to HW struct
* @adj: Adjustment in nanoseconds
*
* Perform an atomic adjustment of the PHC time by the specified number of
* nanoseconds. This requires a three-step process:
*
* 1) Write the adjustment to the source timer shadow registers
* 2) Write the adjustment to the PHY timer shadow registers
* 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
* both the source and port timers at the next clock cycle.
*/
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
* For an ADJ_TIME command, this set of registers represents the value
* to add to the clock time. It supports subtraction by interpreting
* the value as a 2's complement integer.
*/
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
if (ice_is_e810(hw))
err = ice_ptp_prep_phy_adj_e810(hw, adj);
else
err = ice_ptp_prep_phy_adj_e822(hw, adj);
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ADJ_TIME);
}
/**
* ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block. For E822 devices,
* the block is the quad to read from. For E810 devices, the block is the
* logical port to read from.
*/
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
{
if (ice_is_e810(hw))
return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
else
return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
}
/**
* ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp, resetting its valid bit, from the timestamp block. For
* E822 devices, the block is the quad to clear from. For E810 devices, the
* block is the logical port to clear from.
*/
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
{
if (ice_is_e810(hw))
return ice_clear_phy_tstamp_e810(hw, block, idx);
else
return ice_clear_phy_tstamp_e822(hw, block, idx);
}
/* E810T SMA functions
*
* The following functions operate specifically on E810T hardware and are used
* to access the extended GPIOs available.
*/
/**
* ice_get_pca9575_handle
* @hw: pointer to the hw struct
* @pca9575_handle: GPIO controller's handle
*
* Find and return the GPIO controller's handle in the netlist.
* When found - the value will be cached in the hw structure and following calls
* will return cached value
*/
static int
ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
int status;
u8 idx;
/* If handle was read previously return cached value */
if (hw->io_expander_handle) {
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/* If handle was not detected read it from the netlist */
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
/* Set node type to GPIO controller */
cmd->addr.topo_params.node_type_ctx =
(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
#define SW_PCA9575_SFP_TOPO_IDX 2
#define SW_PCA9575_QSFP_TOPO_IDX 1
/* Check if the SW IO expander controlling SMA exists in the netlist. */
if (hw->device_id == ICE_DEV_ID_E810C_SFP)
idx = SW_PCA9575_SFP_TOPO_IDX;
else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
idx = SW_PCA9575_QSFP_TOPO_IDX;
else
return -EOPNOTSUPP;
cmd->addr.topo_params.index = idx;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (status)
return -EOPNOTSUPP;
/* Verify if we found the right IO expander type */
if (desc.params.get_link_topo.node_part_num !=
ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
return -EOPNOTSUPP;
/* If present save the handle and return it */
hw->io_expander_handle =
le16_to_cpu(desc.params.get_link_topo.addr.handle);
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/**
* ice_read_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: pointer to data to be read from the GPIO controller
*
* Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
* PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
*data = 0;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
&pin, NULL);
if (status)
break;
*data |= (u8)(!pin) << i;
}
return status;
}
/**
* ice_write_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: data to be written to the GPIO controller
*
* Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
* of the PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
pin = !(data & (1 << i));
status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
pin, NULL);
if (status)
break;
}
return status;
}
/**
* ice_read_pca9575_reg_e810t
* @hw: pointer to the hw struct
* @offset: GPIO controller register offset
* @data: pointer to data to be read from the GPIO controller
*
* Read the register from the GPIO controller
*/
int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
{
struct ice_aqc_link_topo_addr link_topo;
__le16 addr;
u16 handle;
int err;
memset(&link_topo, 0, sizeof(link_topo));
err = ice_get_pca9575_handle(hw, &handle);
if (err)
return err;
link_topo.handle = cpu_to_le16(handle);
link_topo.topo_params.node_type_ctx =
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
addr = cpu_to_le16((u16)offset);
return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
}
/**
* ice_is_pca9575_present
* @hw: pointer to the hw struct
*
* Check if the SW IO expander is present in the netlist
*/
bool ice_is_pca9575_present(struct ice_hw *hw)
{
u16 handle = 0;
int status;
if (!ice_is_e810t(hw))
return false;
status = ice_get_pca9575_handle(hw, &handle);
return !status && handle;
}
/**
* ice_ptp_init_phc - Initialize PTP hardware clock
* @hw: pointer to the HW struct
*
* Perform the steps required to initialize the PTP hardware clock.
*/
int ice_ptp_init_phc(struct ice_hw *hw)
{
u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Enable source clocks */
wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
/* Clear event err indications for auxiliary pins */
(void)rd32(hw, GLTSYN_STAT(src_idx));
if (ice_is_e810(hw))
return ice_ptp_init_phc_e810(hw);
else
return ice_ptp_init_phc_e822(hw);
}
|