summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/tdp_mmu.c
blob: f06802289c1fc47b84c6c60c6339cdd35d7cc614 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// SPDX-License-Identifier: GPL-2.0

#include "mmu.h"
#include "mmu_internal.h"
#include "mmutrace.h"
#include "tdp_iter.h"
#include "tdp_mmu.h"
#include "spte.h"

static bool __read_mostly tdp_mmu_enabled = false;

static bool is_tdp_mmu_enabled(void)
{
#ifdef CONFIG_X86_64
	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
#else
	return false;
#endif /* CONFIG_X86_64 */
}

/* Initializes the TDP MMU for the VM, if enabled. */
void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
{
	if (!is_tdp_mmu_enabled())
		return;

	/* This should not be changed for the lifetime of the VM. */
	kvm->arch.tdp_mmu_enabled = true;

	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
}

void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
{
	if (!kvm->arch.tdp_mmu_enabled)
		return;

	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
}

#define for_each_tdp_mmu_root(_kvm, _root)			    \
	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)

bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
{
	struct kvm_mmu_page *sp;

	sp = to_shadow_page(hpa);

	return sp->tdp_mmu_page && sp->root_count;
}

static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			  gfn_t start, gfn_t end);

void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
{
	gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);

	lockdep_assert_held(&kvm->mmu_lock);

	WARN_ON(root->root_count);
	WARN_ON(!root->tdp_mmu_page);

	list_del(&root->link);

	zap_gfn_range(kvm, root, 0, max_gfn);

	free_page((unsigned long)root->spt);
	kmem_cache_free(mmu_page_header_cache, root);
}

static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
						   int level)
{
	union kvm_mmu_page_role role;

	role = vcpu->arch.mmu->mmu_role.base;
	role.level = level;
	role.direct = true;
	role.gpte_is_8_bytes = true;
	role.access = ACC_ALL;

	return role;
}

static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
					       int level)
{
	struct kvm_mmu_page *sp;

	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);

	sp->role.word = page_role_for_level(vcpu, level).word;
	sp->gfn = gfn;
	sp->tdp_mmu_page = true;

	return sp;
}

static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_page_role role;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_mmu_page *root;

	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);

	spin_lock(&kvm->mmu_lock);

	/* Check for an existing root before allocating a new one. */
	for_each_tdp_mmu_root(kvm, root) {
		if (root->role.word == role.word) {
			kvm_mmu_get_root(kvm, root);
			spin_unlock(&kvm->mmu_lock);
			return root;
		}
	}

	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
	root->root_count = 1;

	list_add(&root->link, &kvm->arch.tdp_mmu_roots);

	spin_unlock(&kvm->mmu_lock);

	return root;
}

hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *root;

	root = get_tdp_mmu_vcpu_root(vcpu);
	if (!root)
		return INVALID_PAGE;

	return __pa(root->spt);
}

static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level);

static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
{
	return sp->role.smm ? 1 : 0;
}

/**
 * handle_changed_spte - handle bookkeeping associated with an SPTE change
 * @kvm: kvm instance
 * @as_id: the address space of the paging structure the SPTE was a part of
 * @gfn: the base GFN that was mapped by the SPTE
 * @old_spte: The value of the SPTE before the change
 * @new_spte: The value of the SPTE after the change
 * @level: the level of the PT the SPTE is part of in the paging structure
 *
 * Handle bookkeeping that might result from the modification of a SPTE.
 * This function must be called for all TDP SPTE modifications.
 */
static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level)
{
	bool was_present = is_shadow_present_pte(old_spte);
	bool is_present = is_shadow_present_pte(new_spte);
	bool was_leaf = was_present && is_last_spte(old_spte, level);
	bool is_leaf = is_present && is_last_spte(new_spte, level);
	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
	u64 *pt;
	struct kvm_mmu_page *sp;
	u64 old_child_spte;
	int i;

	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
	WARN_ON(level < PG_LEVEL_4K);
	WARN_ON(gfn % KVM_PAGES_PER_HPAGE(level));

	/*
	 * If this warning were to trigger it would indicate that there was a
	 * missing MMU notifier or a race with some notifier handler.
	 * A present, leaf SPTE should never be directly replaced with another
	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
	 * should be zapping the SPTE before the main MM's page table is
	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
	 * thread before replacement.
	 */
	if (was_leaf && is_leaf && pfn_changed) {
		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
		       "SPTE with another present leaf SPTE mapping a\n"
		       "different PFN!\n"
		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
		       as_id, gfn, old_spte, new_spte, level);

		/*
		 * Crash the host to prevent error propagation and guest data
		 * courruption.
		 */
		BUG();
	}

	if (old_spte == new_spte)
		return;

	/*
	 * The only times a SPTE should be changed from a non-present to
	 * non-present state is when an MMIO entry is installed/modified/
	 * removed. In that case, there is nothing to do here.
	 */
	if (!was_present && !is_present) {
		/*
		 * If this change does not involve a MMIO SPTE, it is
		 * unexpected. Log the change, though it should not impact the
		 * guest since both the former and current SPTEs are nonpresent.
		 */
		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
			       "should not be replaced with another,\n"
			       "different nonpresent SPTE, unless one or both\n"
			       "are MMIO SPTEs.\n"
			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
			       as_id, gfn, old_spte, new_spte, level);
		return;
	}


	if (was_leaf && is_dirty_spte(old_spte) &&
	    (!is_dirty_spte(new_spte) || pfn_changed))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));

	/*
	 * Recursively handle child PTs if the change removed a subtree from
	 * the paging structure.
	 */
	if (was_present && !was_leaf && (pfn_changed || !is_present)) {
		pt = spte_to_child_pt(old_spte, level);
		sp = sptep_to_sp(pt);

		list_del(&sp->link);

		for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
			old_child_spte = READ_ONCE(*(pt + i));
			WRITE_ONCE(*(pt + i), 0);
			handle_changed_spte(kvm, as_id,
				gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
				old_child_spte, 0, level - 1);
		}

		kvm_flush_remote_tlbs_with_address(kvm, gfn,
						   KVM_PAGES_PER_HPAGE(level));

		free_page((unsigned long)pt);
		kmem_cache_free(mmu_page_header_cache, sp);
	}
}

static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level)
{
	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
}

static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
				    u64 new_spte)
{
	u64 *root_pt = tdp_iter_root_pt(iter);
	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
	int as_id = kvm_mmu_page_as_id(root);

	*iter->sptep = new_spte;

	handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
			    iter->level);
}

#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)

#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
			 _mmu->shadow_root_level, _start, _end)

/*
 * Flush the TLB if the process should drop kvm->mmu_lock.
 * Return whether the caller still needs to flush the tlb.
 */
static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
{
	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
		kvm_flush_remote_tlbs(kvm);
		cond_resched_lock(&kvm->mmu_lock);
		tdp_iter_refresh_walk(iter);
		return false;
	} else {
		return true;
	}
}

/*
 * Tears down the mappings for the range of gfns, [start, end), and frees the
 * non-root pages mapping GFNs strictly within that range. Returns true if
 * SPTEs have been cleared and a TLB flush is needed before releasing the
 * MMU lock.
 */
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			  gfn_t start, gfn_t end)
{
	struct tdp_iter iter;
	bool flush_needed = false;

	tdp_root_for_each_pte(iter, root, start, end) {
		if (!is_shadow_present_pte(iter.old_spte))
			continue;

		/*
		 * If this is a non-last-level SPTE that covers a larger range
		 * than should be zapped, continue, and zap the mappings at a
		 * lower level.
		 */
		if ((iter.gfn < start ||
		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
		    !is_last_spte(iter.old_spte, iter.level))
			continue;

		tdp_mmu_set_spte(kvm, &iter, 0);

		flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
	}
	return flush_needed;
}

/*
 * Tears down the mappings for the range of gfns, [start, end), and frees the
 * non-root pages mapping GFNs strictly within that range. Returns true if
 * SPTEs have been cleared and a TLB flush is needed before releasing the
 * MMU lock.
 */
bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
{
	struct kvm_mmu_page *root;
	bool flush = false;

	for_each_tdp_mmu_root(kvm, root) {
		/*
		 * Take a reference on the root so that it cannot be freed if
		 * this thread releases the MMU lock and yields in this loop.
		 */
		kvm_mmu_get_root(kvm, root);

		flush |= zap_gfn_range(kvm, root, start, end);

		kvm_mmu_put_root(kvm, root);
	}

	return flush;
}

void kvm_tdp_mmu_zap_all(struct kvm *kvm)
{
	gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
	bool flush;

	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}

/*
 * Installs a last-level SPTE to handle a TDP page fault.
 * (NPT/EPT violation/misconfiguration)
 */
static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
					  int map_writable,
					  struct tdp_iter *iter,
					  kvm_pfn_t pfn, bool prefault)
{
	u64 new_spte;
	int ret = 0;
	int make_spte_ret = 0;

	if (unlikely(is_noslot_pfn(pfn))) {
		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
		trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
	} else
		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
					 pfn, iter->old_spte, prefault, true,
					 map_writable, !shadow_accessed_mask,
					 &new_spte);

	if (new_spte == iter->old_spte)
		ret = RET_PF_SPURIOUS;
	else
		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);

	/*
	 * If the page fault was caused by a write but the page is write
	 * protected, emulation is needed. If the emulation was skipped,
	 * the vCPU would have the same fault again.
	 */
	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
		if (write)
			ret = RET_PF_EMULATE;
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
	}

	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
	if (unlikely(is_mmio_spte(new_spte)))
		ret = RET_PF_EMULATE;

	trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
	if (!prefault)
		vcpu->stat.pf_fixed++;

	return ret;
}

/*
 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
 * page tables and SPTEs to translate the faulting guest physical address.
 */
int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		    int map_writable, int max_level, kvm_pfn_t pfn,
		    bool prefault)
{
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	struct tdp_iter iter;
	struct kvm_mmu_page *sp;
	u64 *child_pt;
	u64 new_spte;
	int ret;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int level;
	int req_level;

	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
		return RET_PF_RETRY;
	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
		return RET_PF_RETRY;

	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);

	trace_kvm_mmu_spte_requested(gpa, level, pfn);
	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
		if (nx_huge_page_workaround_enabled)
			disallowed_hugepage_adjust(iter.old_spte, gfn,
						   iter.level, &pfn, &level);

		if (iter.level == level)
			break;

		/*
		 * If there is an SPTE mapping a large page at a higher level
		 * than the target, that SPTE must be cleared and replaced
		 * with a non-leaf SPTE.
		 */
		if (is_shadow_present_pte(iter.old_spte) &&
		    is_large_pte(iter.old_spte)) {
			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);

			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
					KVM_PAGES_PER_HPAGE(iter.level));

			/*
			 * The iter must explicitly re-read the spte here
			 * because the new value informs the !present
			 * path below.
			 */
			iter.old_spte = READ_ONCE(*iter.sptep);
		}

		if (!is_shadow_present_pte(iter.old_spte)) {
			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
			child_pt = sp->spt;
			clear_page(child_pt);
			new_spte = make_nonleaf_spte(child_pt,
						     !shadow_accessed_mask);

			trace_kvm_mmu_get_page(sp, true);
			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
		}
	}

	if (WARN_ON(iter.level != level))
		return RET_PF_RETRY;

	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
					      pfn, prefault);

	return ret;
}