summaryrefslogtreecommitdiff
path: root/arch/s390/mm/vmem.c
blob: 5b22c6e24528aa2d7a359d9a29182088738975c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
// SPDX-License-Identifier: GPL-2.0
/*
 *    Copyright IBM Corp. 2006
 */

#include <linux/memory_hotplug.h>
#include <linux/memblock.h>
#include <linux/kasan.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <asm/cacheflush.h>
#include <asm/nospec-branch.h>
#include <asm/pgalloc.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/set_memory.h>

static DEFINE_MUTEX(vmem_mutex);

static void __ref *vmem_alloc_pages(unsigned int order)
{
	unsigned long size = PAGE_SIZE << order;

	if (slab_is_available())
		return (void *)__get_free_pages(GFP_KERNEL, order);
	return memblock_alloc(size, size);
}

static void vmem_free_pages(unsigned long addr, int order)
{
	/* We don't expect boot memory to be removed ever. */
	if (!slab_is_available() ||
	    WARN_ON_ONCE(PageReserved(virt_to_page(addr))))
		return;
	free_pages(addr, order);
}

void *vmem_crst_alloc(unsigned long val)
{
	unsigned long *table;

	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
	if (table)
		crst_table_init(table, val);
	return table;
}

pte_t __ref *vmem_pte_alloc(void)
{
	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
	pte_t *pte;

	if (slab_is_available())
		pte = (pte_t *) page_table_alloc(&init_mm);
	else
		pte = (pte_t *) memblock_alloc(size, size);
	if (!pte)
		return NULL;
	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
	return pte;
}

static void vmem_pte_free(unsigned long *table)
{
	/* We don't expect boot memory to be removed ever. */
	if (!slab_is_available() ||
	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
		return;
	page_table_free(&init_mm, table);
}

#define PAGE_UNUSED 0xFD

/*
 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
 * from unused_sub_pmd_start to next PMD_SIZE boundary.
 */
static unsigned long unused_sub_pmd_start;

static void vmemmap_flush_unused_sub_pmd(void)
{
	if (!unused_sub_pmd_start)
		return;
	memset((void *)unused_sub_pmd_start, PAGE_UNUSED,
	       ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start);
	unused_sub_pmd_start = 0;
}

static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end)
{
	/*
	 * As we expect to add in the same granularity as we remove, it's
	 * sufficient to mark only some piece used to block the memmap page from
	 * getting removed (just in case the memmap never gets initialized,
	 * e.g., because the memory block never gets onlined).
	 */
	memset((void *)start, 0, sizeof(struct page));
}

static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
{
	/*
	 * We only optimize if the new used range directly follows the
	 * previously unused range (esp., when populating consecutive sections).
	 */
	if (unused_sub_pmd_start == start) {
		unused_sub_pmd_start = end;
		if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE)))
			unused_sub_pmd_start = 0;
		return;
	}
	vmemmap_flush_unused_sub_pmd();
	vmemmap_mark_sub_pmd_used(start, end);
}

static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
{
	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);

	vmemmap_flush_unused_sub_pmd();

	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
	vmemmap_mark_sub_pmd_used(start, end);

	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
	if (!IS_ALIGNED(start, PMD_SIZE))
		memset((void *)page, PAGE_UNUSED, start - page);
	/*
	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
	 * consecutive sections. Remember for the last added PMD the last
	 * unused range in the populated PMD.
	 */
	if (!IS_ALIGNED(end, PMD_SIZE))
		unused_sub_pmd_start = end;
}

/* Returns true if the PMD is completely unused and can be freed. */
static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
{
	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);

	vmemmap_flush_unused_sub_pmd();
	memset((void *)start, PAGE_UNUSED, end - start);
	return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE);
}

/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
				  unsigned long end, bool add, bool direct)
{
	unsigned long prot, pages = 0;
	int ret = -ENOMEM;
	pte_t *pte;

	prot = pgprot_val(PAGE_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_PAGE_NOEXEC;

	pte = pte_offset_kernel(pmd, addr);
	for (; addr < end; addr += PAGE_SIZE, pte++) {
		if (!add) {
			if (pte_none(*pte))
				continue;
			if (!direct)
				vmem_free_pages((unsigned long) pfn_to_virt(pte_pfn(*pte)), 0);
			pte_clear(&init_mm, addr, pte);
		} else if (pte_none(*pte)) {
			if (!direct) {
				void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);

				if (!new_page)
					goto out;
				set_pte(pte, __pte(__pa(new_page) | prot));
			} else {
				set_pte(pte, __pte(__pa(addr) | prot));
			}
		} else {
			continue;
		}
		pages++;
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
	return ret;
}

static void try_free_pte_table(pmd_t *pmd, unsigned long start)
{
	pte_t *pte;
	int i;

	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
	pte = pte_offset_kernel(pmd, start);
	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
		if (!pte_none(*pte))
			return;
	}
	vmem_pte_free((unsigned long *) pmd_deref(*pmd));
	pmd_clear(pmd);
}

/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
				  unsigned long end, bool add, bool direct)
{
	unsigned long next, prot, pages = 0;
	int ret = -ENOMEM;
	pmd_t *pmd;
	pte_t *pte;

	prot = pgprot_val(SEGMENT_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_SEGMENT_ENTRY_NOEXEC;

	pmd = pmd_offset(pud, addr);
	for (; addr < end; addr = next, pmd++) {
		next = pmd_addr_end(addr, end);
		if (!add) {
			if (pmd_none(*pmd))
				continue;
			if (pmd_large(*pmd)) {
				if (IS_ALIGNED(addr, PMD_SIZE) &&
				    IS_ALIGNED(next, PMD_SIZE)) {
					if (!direct)
						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
					pmd_clear(pmd);
					pages++;
				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
					pmd_clear(pmd);
				}
				continue;
			}
		} else if (pmd_none(*pmd)) {
			if (IS_ALIGNED(addr, PMD_SIZE) &&
			    IS_ALIGNED(next, PMD_SIZE) &&
			    MACHINE_HAS_EDAT1 && direct &&
			    !debug_pagealloc_enabled()) {
				set_pmd(pmd, __pmd(__pa(addr) | prot));
				pages++;
				continue;
			} else if (!direct && MACHINE_HAS_EDAT1) {
				void *new_page;

				/*
				 * Use 1MB frames for vmemmap if available. We
				 * always use large frames even if they are only
				 * partially used. Otherwise we would have also
				 * page tables since vmemmap_populate gets
				 * called for each section separately.
				 */
				new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE);
				if (new_page) {
					set_pmd(pmd, __pmd(__pa(new_page) | prot));
					if (!IS_ALIGNED(addr, PMD_SIZE) ||
					    !IS_ALIGNED(next, PMD_SIZE)) {
						vmemmap_use_new_sub_pmd(addr, next);
					}
					continue;
				}
			}
			pte = vmem_pte_alloc();
			if (!pte)
				goto out;
			pmd_populate(&init_mm, pmd, pte);
		} else if (pmd_large(*pmd)) {
			if (!direct)
				vmemmap_use_sub_pmd(addr, next);
			continue;
		}
		ret = modify_pte_table(pmd, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pte_table(pmd, addr & PMD_MASK);
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
	return ret;
}

static void try_free_pmd_table(pud_t *pud, unsigned long start)
{
	const unsigned long end = start + PUD_SIZE;
	pmd_t *pmd;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;

	pmd = pmd_offset(pud, start);
	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
		if (!pmd_none(*pmd))
			return;
	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER);
	pud_clear(pud);
}

static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
			    bool add, bool direct)
{
	unsigned long next, prot, pages = 0;
	int ret = -ENOMEM;
	pud_t *pud;
	pmd_t *pmd;

	prot = pgprot_val(REGION3_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_REGION_ENTRY_NOEXEC;
	pud = pud_offset(p4d, addr);
	for (; addr < end; addr = next, pud++) {
		next = pud_addr_end(addr, end);
		if (!add) {
			if (pud_none(*pud))
				continue;
			if (pud_large(*pud)) {
				if (IS_ALIGNED(addr, PUD_SIZE) &&
				    IS_ALIGNED(next, PUD_SIZE)) {
					pud_clear(pud);
					pages++;
				}
				continue;
			}
		} else if (pud_none(*pud)) {
			if (IS_ALIGNED(addr, PUD_SIZE) &&
			    IS_ALIGNED(next, PUD_SIZE) &&
			    MACHINE_HAS_EDAT2 && direct &&
			    !debug_pagealloc_enabled()) {
				set_pud(pud, __pud(__pa(addr) | prot));
				pages++;
				continue;
			}
			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
			if (!pmd)
				goto out;
			pud_populate(&init_mm, pud, pmd);
		} else if (pud_large(*pud)) {
			continue;
		}
		ret = modify_pmd_table(pud, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pmd_table(pud, addr & PUD_MASK);
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
	return ret;
}

static void try_free_pud_table(p4d_t *p4d, unsigned long start)
{
	const unsigned long end = start + P4D_SIZE;
	pud_t *pud;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;

	pud = pud_offset(p4d, start);
	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
		if (!pud_none(*pud))
			return;
	}
	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER);
	p4d_clear(p4d);
}

static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
			    bool add, bool direct)
{
	unsigned long next;
	int ret = -ENOMEM;
	p4d_t *p4d;
	pud_t *pud;

	p4d = p4d_offset(pgd, addr);
	for (; addr < end; addr = next, p4d++) {
		next = p4d_addr_end(addr, end);
		if (!add) {
			if (p4d_none(*p4d))
				continue;
		} else if (p4d_none(*p4d)) {
			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
			if (!pud)
				goto out;
			p4d_populate(&init_mm, p4d, pud);
		}
		ret = modify_pud_table(p4d, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pud_table(p4d, addr & P4D_MASK);
	}
	ret = 0;
out:
	return ret;
}

static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
{
	const unsigned long end = start + PGDIR_SIZE;
	p4d_t *p4d;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;

	p4d = p4d_offset(pgd, start);
	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
		if (!p4d_none(*p4d))
			return;
	}
	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER);
	pgd_clear(pgd);
}

static int modify_pagetable(unsigned long start, unsigned long end, bool add,
			    bool direct)
{
	unsigned long addr, next;
	int ret = -ENOMEM;
	pgd_t *pgd;
	p4d_t *p4d;

	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
		return -EINVAL;
	for (addr = start; addr < end; addr = next) {
		next = pgd_addr_end(addr, end);
		pgd = pgd_offset_k(addr);

		if (!add) {
			if (pgd_none(*pgd))
				continue;
		} else if (pgd_none(*pgd)) {
			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
			if (!p4d)
				goto out;
			pgd_populate(&init_mm, pgd, p4d);
		}
		ret = modify_p4d_table(pgd, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_p4d_table(pgd, addr & PGDIR_MASK);
	}
	ret = 0;
out:
	if (!add)
		flush_tlb_kernel_range(start, end);
	return ret;
}

static int add_pagetable(unsigned long start, unsigned long end, bool direct)
{
	return modify_pagetable(start, end, true, direct);
}

static int remove_pagetable(unsigned long start, unsigned long end, bool direct)
{
	return modify_pagetable(start, end, false, direct);
}

/*
 * Add a physical memory range to the 1:1 mapping.
 */
static int vmem_add_range(unsigned long start, unsigned long size)
{
	return add_pagetable(start, start + size, true);
}

/*
 * Remove a physical memory range from the 1:1 mapping.
 */
static void vmem_remove_range(unsigned long start, unsigned long size)
{
	remove_pagetable(start, start + size, true);
}

/*
 * Add a backed mem_map array to the virtual mem_map array.
 */
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
			       struct vmem_altmap *altmap)
{
	int ret;

	mutex_lock(&vmem_mutex);
	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
	ret = add_pagetable(start, end, false);
	if (ret)
		remove_pagetable(start, end, false);
	mutex_unlock(&vmem_mutex);
	return ret;
}

void vmemmap_free(unsigned long start, unsigned long end,
		  struct vmem_altmap *altmap)
{
	mutex_lock(&vmem_mutex);
	remove_pagetable(start, end, false);
	mutex_unlock(&vmem_mutex);
}

void vmem_remove_mapping(unsigned long start, unsigned long size)
{
	mutex_lock(&vmem_mutex);
	vmem_remove_range(start, size);
	mutex_unlock(&vmem_mutex);
}

struct range arch_get_mappable_range(void)
{
	struct range mhp_range;

	mhp_range.start = 0;
	mhp_range.end =  VMEM_MAX_PHYS - 1;
	return mhp_range;
}

int vmem_add_mapping(unsigned long start, unsigned long size)
{
	struct range range = arch_get_mappable_range();
	int ret;

	if (start < range.start ||
	    start + size > range.end + 1 ||
	    start + size < start)
		return -ERANGE;

	mutex_lock(&vmem_mutex);
	ret = vmem_add_range(start, size);
	if (ret)
		vmem_remove_range(start, size);
	mutex_unlock(&vmem_mutex);
	return ret;
}

/*
 * Allocate new or return existing page-table entry, but do not map it
 * to any physical address. If missing, allocate segment- and region-
 * table entries along. Meeting a large segment- or region-table entry
 * while traversing is an error, since the function is expected to be
 * called against virtual regions reserverd for 4KB mappings only.
 */
pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc)
{
	pte_t *ptep = NULL;
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd)) {
		if (!alloc)
			goto out;
		p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
		if (!p4d)
			goto out;
		pgd_populate(&init_mm, pgd, p4d);
	}
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d)) {
		if (!alloc)
			goto out;
		pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
		if (!pud)
			goto out;
		p4d_populate(&init_mm, p4d, pud);
	}
	pud = pud_offset(p4d, addr);
	if (pud_none(*pud)) {
		if (!alloc)
			goto out;
		pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
		if (!pmd)
			goto out;
		pud_populate(&init_mm, pud, pmd);
	} else if (WARN_ON_ONCE(pud_large(*pud))) {
		goto out;
	}
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		if (!alloc)
			goto out;
		pte = vmem_pte_alloc();
		if (!pte)
			goto out;
		pmd_populate(&init_mm, pmd, pte);
	} else if (WARN_ON_ONCE(pmd_large(*pmd))) {
		goto out;
	}
	ptep = pte_offset_kernel(pmd, addr);
out:
	return ptep;
}

int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc)
{
	pte_t *ptep, pte;

	if (!IS_ALIGNED(addr, PAGE_SIZE))
		return -EINVAL;
	ptep = vmem_get_alloc_pte(addr, alloc);
	if (!ptep)
		return -ENOMEM;
	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
	pte = mk_pte_phys(phys, prot);
	set_pte(ptep, pte);
	return 0;
}

int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot)
{
	int rc;

	mutex_lock(&vmem_mutex);
	rc = __vmem_map_4k_page(addr, phys, prot, true);
	mutex_unlock(&vmem_mutex);
	return rc;
}

void vmem_unmap_4k_page(unsigned long addr)
{
	pte_t *ptep;

	mutex_lock(&vmem_mutex);
	ptep = virt_to_kpte(addr);
	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
	pte_clear(&init_mm, addr, ptep);
	mutex_unlock(&vmem_mutex);
}

static int __init memblock_region_cmp(const void *a, const void *b)
{
	const struct memblock_region *r1 = a;
	const struct memblock_region *r2 = b;

	if (r1->base < r2->base)
		return -1;
	if (r1->base > r2->base)
		return 1;
	return 0;
}

static void __init memblock_region_swap(void *a, void *b, int size)
{
	swap(*(struct memblock_region *)a, *(struct memblock_region *)b);
}

#ifdef CONFIG_KASAN
#define __sha(x)	((unsigned long)kasan_mem_to_shadow((void *)x))
#endif
/*
 * map whole physical memory to virtual memory (identity mapping)
 * we reserve enough space in the vmalloc area for vmemmap to hotplug
 * additional memory segments.
 */
void __init vmem_map_init(void)
{
	struct memblock_region memory_rwx_regions[] = {
		{
			.base	= 0,
			.size	= sizeof(struct lowcore),
			.flags	= MEMBLOCK_NONE,
#ifdef CONFIG_NUMA
			.nid	= NUMA_NO_NODE,
#endif
		},
		{
			.base	= __pa(_stext),
			.size	= _etext - _stext,
			.flags	= MEMBLOCK_NONE,
#ifdef CONFIG_NUMA
			.nid	= NUMA_NO_NODE,
#endif
		},
		{
			.base	= __pa(_sinittext),
			.size	= _einittext - _sinittext,
			.flags	= MEMBLOCK_NONE,
#ifdef CONFIG_NUMA
			.nid	= NUMA_NO_NODE,
#endif
		},
		{
			.base	= __stext_amode31,
			.size	= __etext_amode31 - __stext_amode31,
			.flags	= MEMBLOCK_NONE,
#ifdef CONFIG_NUMA
			.nid	= NUMA_NO_NODE,
#endif
		},
	};
	struct memblock_type memory_rwx = {
		.regions	= memory_rwx_regions,
		.cnt		= ARRAY_SIZE(memory_rwx_regions),
		.max		= ARRAY_SIZE(memory_rwx_regions),
	};
	phys_addr_t base, end;
	u64 i;

	/*
	 * Set RW+NX attribute on all memory, except regions enumerated with
	 * memory_rwx exclude type. These regions need different attributes,
	 * which are enforced afterwards.
	 *
	 * __for_each_mem_range() iterate and exclude types should be sorted.
	 * The relative location of _stext and _sinittext is hardcoded in the
	 * linker script. However a location of __stext_amode31 and the kernel
	 * image itself are chosen dynamically. Thus, sort the exclude type.
	 */
	sort(&memory_rwx_regions,
	     ARRAY_SIZE(memory_rwx_regions), sizeof(memory_rwx_regions[0]),
	     memblock_region_cmp, memblock_region_swap);
	__for_each_mem_range(i, &memblock.memory, &memory_rwx,
			     NUMA_NO_NODE, MEMBLOCK_NONE, &base, &end, NULL) {
		set_memory_rwnx((unsigned long)__va(base),
				(end - base) >> PAGE_SHIFT);
	}

#ifdef CONFIG_KASAN
	for_each_mem_range(i, &base, &end) {
		set_memory_rwnx(__sha(base),
				(__sha(end) - __sha(base)) >> PAGE_SHIFT);
	}
#endif
	set_memory_rox((unsigned long)_stext,
		       (unsigned long)(_etext - _stext) >> PAGE_SHIFT);
	set_memory_ro((unsigned long)_etext,
		      (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT);
	set_memory_rox((unsigned long)_sinittext,
		       (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT);
	set_memory_rox(__stext_amode31,
		       (__etext_amode31 - __stext_amode31) >> PAGE_SHIFT);

	/* lowcore must be executable for LPSWE */
	if (static_key_enabled(&cpu_has_bear))
		set_memory_nx(0, 1);
	set_memory_nx(PAGE_SIZE, 1);

	pr_info("Write protected kernel read-only data: %luk\n",
		(unsigned long)(__end_rodata - _stext) >> 10);
}