summaryrefslogtreecommitdiff
path: root/mm/vmalloc.c
diff options
context:
space:
mode:
authorDaniel Axtens <dja@axtens.net>2019-11-30 17:54:50 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2019-12-01 12:59:05 -0800
commit3c5c3cfb9ef4da957e3357a2bd36f76ee34c0862 (patch)
treedaf683b5e335a6b2422b0121c62d6e1518e1dd04 /mm/vmalloc.c
parente36176be1c3920a487681e37158849b9f50189c4 (diff)
kasan: support backing vmalloc space with real shadow memory
Patch series "kasan: support backing vmalloc space with real shadow memory", v11. Currently, vmalloc space is backed by the early shadow page. This means that kasan is incompatible with VMAP_STACK. This series provides a mechanism to back vmalloc space with real, dynamically allocated memory. I have only wired up x86, because that's the only currently supported arch I can work with easily, but it's very easy to wire up other architectures, and it appears that there is some work-in-progress code to do this on arm64 and s390. This has been discussed before in the context of VMAP_STACK: - https://bugzilla.kernel.org/show_bug.cgi?id=202009 - https://lkml.org/lkml/2018/7/22/198 - https://lkml.org/lkml/2019/7/19/822 In terms of implementation details: Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=1) This is unfortunate but given that this is a debug feature only, not the end of the world. The benchmarks are also a stress-test for the vmalloc subsystem: they're not indicative of an overall 2x slowdown! This patch (of 4): Hook into vmalloc and vmap, and dynamically allocate real shadow memory to back the mappings. Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. To avoid the difficulties around swapping mappings around, this code expects that the part of the shadow region that covers the vmalloc space will not be covered by the early shadow page, but will be left unmapped. This will require changes in arch-specific code. This allows KASAN with VMAP_STACK, and may be helpful for architectures that do not have a separate module space (e.g. powerpc64, which I am currently working on). It also allows relaxing the module alignment back to PAGE_SIZE. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=3D1) This is unfortunate but given that this is a debug feature only, not the end of the world. The full benchmark results are: Performance No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 662004 11404956 17.23 19144610 28.92 1.68 full_fit_alloc_test 710950 12029752 16.92 13184651 18.55 1.10 long_busy_list_alloc_test 9431875 43990172 4.66 82970178 8.80 1.89 random_size_alloc_test 5033626 23061762 4.58 47158834 9.37 2.04 fix_align_alloc_test 1252514 15276910 12.20 31266116 24.96 2.05 random_size_align_alloc_te 1648501 14578321 8.84 25560052 15.51 1.75 align_shift_alloc_test 147 830 5.65 5692 38.72 6.86 pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12 Total Cycles 119240774314 763211341128 6.40 1390338696894 11.66 1.82 Sequential, 2 cpus No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 1423150 14276550 10.03 27733022 19.49 1.94 full_fit_alloc_test 1754219 14722640 8.39 15030786 8.57 1.02 long_busy_list_alloc_test 11451858 52154973 4.55 107016027 9.34 2.05 random_size_alloc_test 5989020 26735276 4.46 68885923 11.50 2.58 fix_align_alloc_test 2050976 20166900 9.83 50491675 24.62 2.50 random_size_align_alloc_te 2858229 17971700 6.29 38730225 13.55 2.16 align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08 pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43 Total Cycles 54181269392 308723699764 5.70 650772566394 12.01 2.11 fix_size_alloc_test 1420404 14289308 10.06 27790035 19.56 1.94 full_fit_alloc_test 1736145 14806234 8.53 15274301 8.80 1.03 long_busy_list_alloc_test 11404638 52270785 4.58 107550254 9.43 2.06 random_size_alloc_test 6017006 26650625 4.43 68696127 11.42 2.58 fix_align_alloc_test 2045504 20280985 9.91 50414862 24.65 2.49 random_size_align_alloc_te 2845338 17931018 6.30 38510276 13.53 2.15 align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57 pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10 Total Cycles 54040011688 309102805492 5.72 651325675652 12.05 2.11 [dja@axtens.net: fixups] Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009 Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net Signed-off-by: Mark Rutland <mark.rutland@arm.com> [shadow rework] Signed-off-by: Daniel Axtens <dja@axtens.net> Co-developed-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/vmalloc.c')
-rw-r--r--mm/vmalloc.c56
1 files changed, 48 insertions, 8 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 33e245ebe70c..4d3b3d60d893 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -683,7 +683,7 @@ insert_vmap_area_augment(struct vmap_area *va,
* free area is inserted. If VA has been merged, it is
* freed.
*/
-static __always_inline void
+static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area *va,
struct rb_root *root, struct list_head *head)
{
@@ -750,7 +750,10 @@ merge_or_add_vmap_area(struct vmap_area *va,
/* Free vmap_area object. */
kmem_cache_free(vmap_area_cachep, va);
- return;
+
+ /* Point to the new merged area. */
+ va = sibling;
+ merged = true;
}
}
@@ -759,6 +762,8 @@ insert:
link_va(va, root, parent, link, head);
augment_tree_propagate_from(va);
}
+
+ return va;
}
static __always_inline bool
@@ -1196,8 +1201,7 @@ static void free_vmap_area(struct vmap_area *va)
* Insert/Merge it back to the free tree/list.
*/
spin_lock(&free_vmap_area_lock);
- merge_or_add_vmap_area(va,
- &free_vmap_area_root, &free_vmap_area_list);
+ merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
spin_unlock(&free_vmap_area_lock);
}
@@ -1294,14 +1298,20 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
spin_lock(&free_vmap_area_lock);
llist_for_each_entry_safe(va, n_va, valist, purge_list) {
unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
+ unsigned long orig_start = va->va_start;
+ unsigned long orig_end = va->va_end;
/*
* Finally insert or merge lazily-freed area. It is
* detached and there is no need to "unlink" it from
* anything.
*/
- merge_or_add_vmap_area(va,
- &free_vmap_area_root, &free_vmap_area_list);
+ va = merge_or_add_vmap_area(va, &free_vmap_area_root,
+ &free_vmap_area_list);
+
+ if (is_vmalloc_or_module_addr((void *)orig_start))
+ kasan_release_vmalloc(orig_start, orig_end,
+ va->va_start, va->va_end);
atomic_long_sub(nr, &vmap_lazy_nr);
@@ -2090,6 +2100,22 @@ static struct vm_struct *__get_vm_area_node(unsigned long size,
setup_vmalloc_vm(area, va, flags, caller);
+ /*
+ * For KASAN, if we are in vmalloc space, we need to cover the shadow
+ * area with real memory. If we come here through VM_ALLOC, this is
+ * done by a higher level function that has access to the true size,
+ * which might not be a full page.
+ *
+ * We assume module space comes via VM_ALLOC path.
+ */
+ if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
+ if (kasan_populate_vmalloc(area->size, area)) {
+ unmap_vmap_area(va);
+ kfree(area);
+ return NULL;
+ }
+ }
+
return area;
}
@@ -2267,6 +2293,9 @@ static void __vunmap(const void *addr, int deallocate_pages)
debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
+ if (area->flags & VM_KASAN)
+ kasan_poison_vmalloc(area->addr, area->size);
+
vm_remove_mappings(area, deallocate_pages);
if (deallocate_pages) {
@@ -2519,6 +2548,11 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
if (!addr)
return NULL;
+ if (is_vmalloc_or_module_addr(area->addr)) {
+ if (kasan_populate_vmalloc(real_size, area))
+ return NULL;
+ }
+
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
* flag. It means that vm_struct is not fully initialized.
@@ -3400,6 +3434,12 @@ retry:
}
spin_unlock(&vmap_area_lock);
+ /* populate the shadow space outside of the lock */
+ for (area = 0; area < nr_vms; area++) {
+ /* assume success here */
+ kasan_populate_vmalloc(sizes[area], vms[area]);
+ }
+
kfree(vas);
return vms;
@@ -3411,8 +3451,8 @@ recovery:
* and when pcpu_get_vm_areas() is success.
*/
while (area--) {
- merge_or_add_vmap_area(vas[area],
- &free_vmap_area_root, &free_vmap_area_list);
+ merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
+ &free_vmap_area_list);
vas[area] = NULL;
}