summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-12-20 10:44:05 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2020-12-20 10:44:05 -0800
commit6a447b0e3151893f6d4a889956553c06d2e775c6 (patch)
tree0f0c149c03dd8c2e9a5fbe01d6de528b2724893e /kernel
parentf4a2f7866faaf89ea1595b136e01fcb336b46aab (diff)
parentd45f89f7437d0f2c8275b4434096164db106384d (diff)
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini: "Much x86 work was pushed out to 5.12, but ARM more than made up for it. ARM: - PSCI relay at EL2 when "protected KVM" is enabled - New exception injection code - Simplification of AArch32 system register handling - Fix PMU accesses when no PMU is enabled - Expose CSV3 on non-Meltdown hosts - Cache hierarchy discovery fixes - PV steal-time cleanups - Allow function pointers at EL2 - Various host EL2 entry cleanups - Simplification of the EL2 vector allocation s390: - memcg accouting for s390 specific parts of kvm and gmap - selftest for diag318 - new kvm_stat for when async_pf falls back to sync x86: - Tracepoints for the new pagetable code from 5.10 - Catch VFIO and KVM irqfd events before userspace - Reporting dirty pages to userspace with a ring buffer - SEV-ES host support - Nested VMX support for wait-for-SIPI activity state - New feature flag (AVX512 FP16) - New system ioctl to report Hyper-V-compatible paravirtualization features Generic: - Selftest improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits) KVM: SVM: fix 32-bit compilation KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting KVM: SVM: Provide support to launch and run an SEV-ES guest KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests KVM: SVM: Provide support for SEV-ES vCPU loading KVM: SVM: Provide support for SEV-ES vCPU creation/loading KVM: SVM: Update ASID allocation to support SEV-ES guests KVM: SVM: Set the encryption mask for the SVM host save area KVM: SVM: Add NMI support for an SEV-ES guest KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest KVM: SVM: Do not report support for SMM for an SEV-ES guest KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES KVM: SVM: Add support for CR8 write traps for an SEV-ES guest KVM: SVM: Add support for CR4 write traps for an SEV-ES guest KVM: SVM: Add support for CR0 write traps for an SEV-ES guest KVM: SVM: Add support for EFER write traps for an SEV-ES guest KVM: SVM: Support string IO operations for an SEV-ES guest KVM: SVM: Support MMIO for an SEV-ES guest KVM: SVM: Create trace events for VMGEXIT MSR protocol processing KVM: SVM: Create trace events for VMGEXIT processing ...
Diffstat (limited to 'kernel')
-rw-r--r--kernel/sched/wait.c17
1 files changed, 16 insertions, 1 deletions
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c
index 01f5d3020589..183cc6ae68a6 100644
--- a/kernel/sched/wait.c
+++ b/kernel/sched/wait.c
@@ -37,6 +37,17 @@ void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue
}
EXPORT_SYMBOL(add_wait_queue_exclusive);
+void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
+{
+ unsigned long flags;
+
+ wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
+ spin_lock_irqsave(&wq_head->lock, flags);
+ __add_wait_queue(wq_head, wq_entry);
+ spin_unlock_irqrestore(&wq_head->lock, flags);
+}
+EXPORT_SYMBOL_GPL(add_wait_queue_priority);
+
void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
@@ -57,7 +68,11 @@ EXPORT_SYMBOL(remove_wait_queue);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
+ * number) then we wake that number of exclusive tasks, and potentially all
+ * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
+ * the list and any non-exclusive tasks will be woken first. A priority task
+ * may be at the head of the list, and can consume the event without any other
+ * tasks being woken.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns