summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-05-11 10:44:22 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2017-05-11 10:44:22 -0700
commit9786e34e0a6055dbd1b46e16dfa791ac2b3da289 (patch)
tree0151608bdb134bec3a59748f40c67324798a224e /drivers/mtd/nand
parent791a9a666d1afe2603bcb2c6a4852d684e879252 (diff)
parenta9402889f41cc2db7a9b162990bef271be098ff0 (diff)
Merge tag 'for-linus-20170510' of git://git.infradead.org/linux-mtd
Pull MTD updates from Brian Norris: "NAND, from Boris: - some minor fixes/improvements on existing drivers (fsmc, gpio, ifc, davinci, brcmnand, omap) - a huge cleanup/rework of the denali driver accompanied with core fixes/improvements to simplify the driver code - a complete rewrite of the atmel driver to support new DT bindings make future evolution easier - the addition of per-vendor detection/initialization steps to avoid extending the nand_ids table with more extended-id entries SPI NOR, from Cyrille: - fixes in the hisi, intel and Mediatek SPI controller drivers - fixes to some SPI flash memories not supporting the Chip Erase command. - add support to some new memory parts (Winbond, Macronix, Micron, ESMT). - add new driver for the STM32 QSPI controller And a few fixes for Gemini and Versatile platforms on physmap-of" * tag 'for-linus-20170510' of git://git.infradead.org/linux-mtd: (100 commits) MAINTAINERS: Update NAND subsystem git repositories mtd: nand: gpio: update binding mtd: nand: add ooblayout for old hamming layout mtd: oxnas_nand: Allocating more than necessary in probe() dt-bindings: mtd: Document the STM32 QSPI bindings mtd: mtk-nor: set controller's address width according to nor flash mtd: spi-nor: add driver for STM32 quad spi flash controller mtd: nand: brcmnand: Check flash #WP pin status before nand erase/program mtd: nand: davinci: add comment on NAND subpage write status on keystone mtd: nand: omap2: Fix partition creation via cmdline mtdparts mtd: nand: NULL terminate a of_device_id table mtd: nand: Fix a couple error codes mtd: nand: allow drivers to request minimum alignment for passed buffer mtd: nand: allocate aligned buffers if NAND_OWN_BUFFERS is unset mtd: nand: denali: allow to override revision number mtd: nand: denali_dt: use pdev instead of ofdev for platform_device mtd: nand: denali_dt: remove dma-mask DT property mtd: nand: denali: support 64bit capable DMA engine mtd: nand: denali_dt: enable HW_ECC_FIXUP for Altera SOCFPGA variant mtd: nand: denali: support HW_ECC_FIXUP capability ...
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig23
-rw-r--r--drivers/mtd/nand/Makefile11
-rw-r--r--drivers/mtd/nand/atmel/Makefile4
-rw-r--r--drivers/mtd/nand/atmel/nand-controller.c2197
-rw-r--r--drivers/mtd/nand/atmel/pmecc.c1020
-rw-r--r--drivers/mtd/nand/atmel/pmecc.h73
-rw-r--r--drivers/mtd/nand/atmel_nand.c2479
-rw-r--r--drivers/mtd/nand/atmel_nand_ecc.h163
-rw-r--r--drivers/mtd/nand/atmel_nand_nfc.h103
-rw-r--r--drivers/mtd/nand/brcmnand/brcmnand.c61
-rw-r--r--drivers/mtd/nand/cmx270_nand.c4
-rw-r--r--drivers/mtd/nand/davinci_nand.c11
-rw-r--r--drivers/mtd/nand/denali.c567
-rw-r--r--drivers/mtd/nand/denali.h192
-rw-r--r--drivers/mtd/nand/denali_dt.c74
-rw-r--r--drivers/mtd/nand/fsmc_nand.c236
-rw-r--r--drivers/mtd/nand/gpio.c18
-rw-r--r--drivers/mtd/nand/nand_amd.c51
-rw-r--r--drivers/mtd/nand/nand_base.c588
-rw-r--r--drivers/mtd/nand/nand_hynix.c631
-rw-r--r--drivers/mtd/nand/nand_ids.c39
-rw-r--r--drivers/mtd/nand/nand_macronix.c30
-rw-r--r--drivers/mtd/nand/nand_micron.c86
-rw-r--r--drivers/mtd/nand/nand_samsung.c112
-rw-r--r--drivers/mtd/nand/nand_toshiba.c51
-rw-r--r--drivers/mtd/nand/nandsim.c2
-rw-r--r--drivers/mtd/nand/omap2.c9
-rw-r--r--drivers/mtd/nand/orion_nand.c48
-rw-r--r--drivers/mtd/nand/oxnas_nand.c2
-rw-r--r--drivers/mtd/nand/sunxi_nand.c20
-rw-r--r--drivers/mtd/nand/tango_nand.c8
31 files changed, 5166 insertions, 3747 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 6d4d5672d1d8..c3029528063b 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -13,7 +13,6 @@ config MTD_NAND_ECC_SMC
menuconfig MTD_NAND
tristate "NAND Device Support"
depends on MTD
- select MTD_NAND_IDS
select MTD_NAND_ECC
help
This enables support for accessing all type of NAND flash
@@ -60,17 +59,6 @@ config MTD_NAND_DENALI_DT
Enable the driver for NAND flash on platforms using a Denali NAND
controller as a DT device.
-config MTD_NAND_DENALI_SCRATCH_REG_ADDR
- hex "Denali NAND size scratch register address"
- default "0xFF108018"
- depends on MTD_NAND_DENALI_PCI
- help
- Some platforms place the NAND chip size in a scratch register
- because (some versions of) the driver aren't able to automatically
- determine the size of certain chips. Set the address of the
- scratch register here to enable this feature. On Intel Moorestown
- boards, the scratch register is at 0xFF108018.
-
config MTD_NAND_GPIO
tristate "GPIO assisted NAND Flash driver"
depends on GPIOLIB || COMPILE_TEST
@@ -109,9 +97,6 @@ config MTD_NAND_OMAP_BCH
config MTD_NAND_OMAP_BCH_BUILD
def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
-config MTD_NAND_IDS
- tristate
-
config MTD_NAND_RICOH
tristate "Ricoh xD card reader"
default n
@@ -321,11 +306,11 @@ config MTD_NAND_CS553X
If you say "m", the module will be called cs553x_nand.
config MTD_NAND_ATMEL
- tristate "Support for NAND Flash / SmartMedia on AT91 and AVR32"
- depends on ARCH_AT91 || AVR32
+ tristate "Support for NAND Flash / SmartMedia on AT91"
+ depends on ARCH_AT91
help
Enables support for NAND Flash / Smart Media Card interface
- on Atmel AT91 and AVR32 processors.
+ on Atmel AT91 processors.
config MTD_NAND_PXA3xx
tristate "NAND support on PXA3xx and Armada 370/XP"
@@ -443,7 +428,7 @@ config MTD_NAND_FSL_ELBC
config MTD_NAND_FSL_IFC
tristate "NAND support for Freescale IFC controller"
- depends on FSL_SOC || ARCH_LAYERSCAPE
+ depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
select FSL_IFC
select MEMORY
help
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 19a66e404d5b..ade5fc4c3819 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -5,7 +5,6 @@
obj-$(CONFIG_MTD_NAND) += nand.o
obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o
obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o
-obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o
obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
@@ -25,7 +24,7 @@ obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
-obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
+obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
omap2_nand-objs := omap2.o
obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
@@ -61,4 +60,10 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o
-nand-objs := nand_base.o nand_bbt.o nand_timings.o
+nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_amd.o
+nand-objs += nand_hynix.o
+nand-objs += nand_macronix.o
+nand-objs += nand_micron.o
+nand-objs += nand_samsung.o
+nand-objs += nand_toshiba.o
diff --git a/drivers/mtd/nand/atmel/Makefile b/drivers/mtd/nand/atmel/Makefile
new file mode 100644
index 000000000000..288db4f38a8f
--- /dev/null
+++ b/drivers/mtd/nand/atmel/Makefile
@@ -0,0 +1,4 @@
+obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o
+
+atmel-nand-controller-objs := nand-controller.o
+atmel-pmecc-objs := pmecc.o
diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/atmel/nand-controller.c
new file mode 100644
index 000000000000..3b2446896147
--- /dev/null
+++ b/drivers/mtd/nand/atmel/nand-controller.c
@@ -0,0 +1,2197 @@
+/*
+ * Copyright 2017 ATMEL
+ * Copyright 2017 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ * Copyright 2003 Rick Bronson
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
+ *
+ * Derived from Das U-Boot source code
+ * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ * Copyright 2012 ATMEL, Hong Xu
+ *
+ * Add Nand Flash Controller support for SAMA5 SoC
+ * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * A few words about the naming convention in this file. This convention
+ * applies to structure and function names.
+ *
+ * Prefixes:
+ *
+ * - atmel_nand_: all generic structures/functions
+ * - atmel_smc_nand_: all structures/functions specific to the SMC interface
+ * (at91sam9 and avr32 SoCs)
+ * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
+ * (sama5 SoCs and later)
+ * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
+ * that is available in the HSMC block
+ * - <soc>_nand_: all SoC specific structures/functions
+ */
+
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/genalloc.h>
+#include <linux/gpio.h>
+#include <linux/gpio/consumer.h>
+#include <linux/interrupt.h>
+#include <linux/mfd/syscon.h>
+#include <linux/mfd/syscon/atmel-matrix.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/iopoll.h>
+#include <linux/platform_device.h>
+#include <linux/platform_data/atmel.h>
+#include <linux/regmap.h>
+
+#include "pmecc.h"
+
+#define ATMEL_HSMC_NFC_CFG 0x0
+#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
+#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
+#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
+#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
+#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
+#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
+#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
+#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
+#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
+#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
+
+#define ATMEL_HSMC_NFC_CTRL 0x4
+#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
+#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
+
+#define ATMEL_HSMC_NFC_SR 0x8
+#define ATMEL_HSMC_NFC_IER 0xc
+#define ATMEL_HSMC_NFC_IDR 0x10
+#define ATMEL_HSMC_NFC_IMR 0x14
+#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
+#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
+#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
+#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
+#define ATMEL_HSMC_NFC_SR_WR BIT(11)
+#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
+#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
+#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
+#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
+#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
+#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
+#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
+#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
+ ATMEL_HSMC_NFC_SR_UNDEF | \
+ ATMEL_HSMC_NFC_SR_AWB | \
+ ATMEL_HSMC_NFC_SR_NFCASE)
+#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
+
+#define ATMEL_HSMC_NFC_ADDR 0x18
+#define ATMEL_HSMC_NFC_BANK 0x1c
+
+#define ATMEL_NFC_MAX_RB_ID 7
+
+#define ATMEL_NFC_SRAM_SIZE 0x2400
+
+#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
+#define ATMEL_NFC_VCMD2 BIT(18)
+#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
+#define ATMEL_NFC_CSID(cs) ((cs) << 22)
+#define ATMEL_NFC_DATAEN BIT(25)
+#define ATMEL_NFC_NFCWR BIT(26)
+
+#define ATMEL_NFC_MAX_ADDR_CYCLES 5
+
+#define ATMEL_NAND_ALE_OFFSET BIT(21)
+#define ATMEL_NAND_CLE_OFFSET BIT(22)
+
+#define DEFAULT_TIMEOUT_MS 1000
+#define MIN_DMA_LEN 128
+
+enum atmel_nand_rb_type {
+ ATMEL_NAND_NO_RB,
+ ATMEL_NAND_NATIVE_RB,
+ ATMEL_NAND_GPIO_RB,
+};
+
+struct atmel_nand_rb {
+ enum atmel_nand_rb_type type;
+ union {
+ struct gpio_desc *gpio;
+ int id;
+ };
+};
+
+struct atmel_nand_cs {
+ int id;
+ struct atmel_nand_rb rb;
+ struct gpio_desc *csgpio;
+ struct {
+ void __iomem *virt;
+ dma_addr_t dma;
+ } io;
+};
+
+struct atmel_nand {
+ struct list_head node;
+ struct device *dev;
+ struct nand_chip base;
+ struct atmel_nand_cs *activecs;
+ struct atmel_pmecc_user *pmecc;
+ struct gpio_desc *cdgpio;
+ int numcs;
+ struct atmel_nand_cs cs[];
+};
+
+static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct atmel_nand, base);
+}
+
+enum atmel_nfc_data_xfer {
+ ATMEL_NFC_NO_DATA,
+ ATMEL_NFC_READ_DATA,
+ ATMEL_NFC_WRITE_DATA,
+};
+
+struct atmel_nfc_op {
+ u8 cs;
+ u8 ncmds;
+ u8 cmds[2];
+ u8 naddrs;
+ u8 addrs[5];
+ enum atmel_nfc_data_xfer data;
+ u32 wait;
+ u32 errors;
+};
+
+struct atmel_nand_controller;
+struct atmel_nand_controller_caps;
+
+struct atmel_nand_controller_ops {
+ int (*probe)(struct platform_device *pdev,
+ const struct atmel_nand_controller_caps *caps);
+ int (*remove)(struct atmel_nand_controller *nc);
+ void (*nand_init)(struct atmel_nand_controller *nc,
+ struct atmel_nand *nand);
+ int (*ecc_init)(struct atmel_nand *nand);
+};
+
+struct atmel_nand_controller_caps {
+ bool has_dma;
+ bool legacy_of_bindings;
+ u32 ale_offs;
+ u32 cle_offs;
+ const struct atmel_nand_controller_ops *ops;
+};
+
+struct atmel_nand_controller {
+ struct nand_hw_control base;
+ const struct atmel_nand_controller_caps *caps;
+ struct device *dev;
+ struct regmap *smc;
+ struct dma_chan *dmac;
+ struct atmel_pmecc *pmecc;
+ struct list_head chips;
+ struct clk *mck;
+};
+
+static inline struct atmel_nand_controller *
+to_nand_controller(struct nand_hw_control *ctl)
+{
+ return container_of(ctl, struct atmel_nand_controller, base);
+}
+
+struct atmel_smc_nand_controller {
+ struct atmel_nand_controller base;
+ struct regmap *matrix;
+ unsigned int ebi_csa_offs;
+};
+
+static inline struct atmel_smc_nand_controller *
+to_smc_nand_controller(struct nand_hw_control *ctl)
+{
+ return container_of(to_nand_controller(ctl),
+ struct atmel_smc_nand_controller, base);
+}
+
+struct atmel_hsmc_nand_controller {
+ struct atmel_nand_controller base;
+ struct {
+ struct gen_pool *pool;
+ void __iomem *virt;
+ dma_addr_t dma;
+ } sram;
+ struct regmap *io;
+ struct atmel_nfc_op op;
+ struct completion complete;
+ int irq;
+
+ /* Only used when instantiating from legacy DT bindings. */
+ struct clk *clk;
+};
+
+static inline struct atmel_hsmc_nand_controller *
+to_hsmc_nand_controller(struct nand_hw_control *ctl)
+{
+ return container_of(to_nand_controller(ctl),
+ struct atmel_hsmc_nand_controller, base);
+}
+
+static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
+{
+ op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
+ op->wait ^= status & op->wait;
+
+ return !op->wait || op->errors;
+}
+
+static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
+{
+ struct atmel_hsmc_nand_controller *nc = data;
+ u32 sr, rcvd;
+ bool done;
+
+ regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
+
+ rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
+ done = atmel_nfc_op_done(&nc->op, sr);
+
+ if (rcvd)
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
+
+ if (done)
+ complete(&nc->complete);
+
+ return rcvd ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
+ unsigned int timeout_ms)
+{
+ int ret;
+
+ if (!timeout_ms)
+ timeout_ms = DEFAULT_TIMEOUT_MS;
+
+ if (poll) {
+ u32 status;
+
+ ret = regmap_read_poll_timeout(nc->base.smc,
+ ATMEL_HSMC_NFC_SR, status,
+ atmel_nfc_op_done(&nc->op,
+ status),
+ 0, timeout_ms * 1000);
+ } else {
+ init_completion(&nc->complete);
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
+ nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
+ ret = wait_for_completion_timeout(&nc->complete,
+ msecs_to_jiffies(timeout_ms));
+ if (!ret)
+ ret = -ETIMEDOUT;
+ else
+ ret = 0;
+
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
+ }
+
+ if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
+ dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
+ ret = -ETIMEDOUT;
+ }
+
+ if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
+ dev_err(nc->base.dev, "Access to an undefined area\n");
+ ret = -EIO;
+ }
+
+ if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
+ dev_err(nc->base.dev, "Access while busy\n");
+ ret = -EIO;
+ }
+
+ if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
+ dev_err(nc->base.dev, "Wrong access size\n");
+ ret = -EIO;
+ }
+
+ return ret;
+}
+
+static void atmel_nand_dma_transfer_finished(void *data)
+{
+ struct completion *finished = data;
+
+ complete(finished);
+}
+
+static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
+ void *buf, dma_addr_t dev_dma, size_t len,
+ enum dma_data_direction dir)
+{
+ DECLARE_COMPLETION_ONSTACK(finished);
+ dma_addr_t src_dma, dst_dma, buf_dma;
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+
+ buf_dma = dma_map_single(nc->dev, buf, len, dir);
+ if (dma_mapping_error(nc->dev, dev_dma)) {
+ dev_err(nc->dev,
+ "Failed to prepare a buffer for DMA access\n");
+ goto err;
+ }
+
+ if (dir == DMA_FROM_DEVICE) {
+ src_dma = dev_dma;
+ dst_dma = buf_dma;
+ } else {
+ src_dma = buf_dma;
+ dst_dma = dev_dma;
+ }
+
+ tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
+ DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+ if (!tx) {
+ dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
+ goto err_unmap;
+ }
+
+ tx->callback = atmel_nand_dma_transfer_finished;
+ tx->callback_param = &finished;
+
+ cookie = dmaengine_submit(tx);
+ if (dma_submit_error(cookie)) {
+ dev_err(nc->dev, "Failed to do DMA tx_submit\n");
+ goto err_unmap;
+ }
+
+ dma_async_issue_pending(nc->dmac);
+ wait_for_completion(&finished);
+
+ return 0;
+
+err_unmap:
+ dma_unmap_single(nc->dev, buf_dma, len, dir);
+
+err:
+ dev_dbg(nc->dev, "Fall back to CPU I/O\n");
+
+ return -EIO;
+}
+
+static u8 atmel_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ return ioread8(nand->activecs->io.virt);
+}
+
+static u16 atmel_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ return ioread16(nand->activecs->io.virt);
+}
+
+static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ iowrite16(byte | (byte << 8), nand->activecs->io.virt);
+ else
+ iowrite8(byte, nand->activecs->io.virt);
+}
+
+static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_nand_controller *nc;
+
+ nc = to_nand_controller(chip->controller);
+
+ /*
+ * If the controller supports DMA, the buffer address is DMA-able and
+ * len is long enough to make DMA transfers profitable, let's trigger
+ * a DMA transfer. If it fails, fallback to PIO mode.
+ */
+ if (nc->dmac && virt_addr_valid(buf) &&
+ len >= MIN_DMA_LEN &&
+ !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
+ DMA_FROM_DEVICE))
+ return;
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ ioread16_rep(nand->activecs->io.virt, buf, len / 2);
+ else
+ ioread8_rep(nand->activecs->io.virt, buf, len);
+}
+
+static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_nand_controller *nc;
+
+ nc = to_nand_controller(chip->controller);
+
+ /*
+ * If the controller supports DMA, the buffer address is DMA-able and
+ * len is long enough to make DMA transfers profitable, let's trigger
+ * a DMA transfer. If it fails, fallback to PIO mode.
+ */
+ if (nc->dmac && virt_addr_valid(buf) &&
+ len >= MIN_DMA_LEN &&
+ !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
+ len, DMA_TO_DEVICE))
+ return;
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
+ else
+ iowrite8_rep(nand->activecs->io.virt, buf, len);
+}
+
+static int atmel_nand_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ return gpiod_get_value(nand->activecs->rb.gpio);
+}
+
+static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ if (cs < 0 || cs >= nand->numcs) {
+ nand->activecs = NULL;
+ chip->dev_ready = NULL;
+ return;
+ }
+
+ nand->activecs = &nand->cs[cs];
+
+ if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
+ chip->dev_ready = atmel_nand_dev_ready;
+}
+
+static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_hsmc_nand_controller *nc;
+ u32 status;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
+
+ return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
+}
+
+static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_hsmc_nand_controller *nc;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ atmel_nand_select_chip(mtd, cs);
+
+ if (!nand->activecs) {
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
+ ATMEL_HSMC_NFC_CTRL_DIS);
+ return;
+ }
+
+ if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
+ chip->dev_ready = atmel_hsmc_nand_dev_ready;
+
+ regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
+ ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
+ ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
+ ATMEL_HSMC_NFC_CFG_RSPARE |
+ ATMEL_HSMC_NFC_CFG_WSPARE,
+ ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
+ ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
+ ATMEL_HSMC_NFC_CFG_RSPARE);
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
+ ATMEL_HSMC_NFC_CTRL_EN);
+}
+
+static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
+{
+ u8 *addrs = nc->op.addrs;
+ unsigned int op = 0;
+ u32 addr, val;
+ int i, ret;
+
+ nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
+
+ for (i = 0; i < nc->op.ncmds; i++)
+ op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
+
+ if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
+
+ op |= ATMEL_NFC_CSID(nc->op.cs) |
+ ATMEL_NFC_ACYCLE(nc->op.naddrs);
+
+ if (nc->op.ncmds > 1)
+ op |= ATMEL_NFC_VCMD2;
+
+ addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
+ (addrs[3] << 24);
+
+ if (nc->op.data != ATMEL_NFC_NO_DATA) {
+ op |= ATMEL_NFC_DATAEN;
+ nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
+
+ if (nc->op.data == ATMEL_NFC_WRITE_DATA)
+ op |= ATMEL_NFC_NFCWR;
+ }
+
+ /* Clear all flags. */
+ regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
+
+ /* Send the command. */
+ regmap_write(nc->io, op, addr);
+
+ ret = atmel_nfc_wait(nc, poll, 0);
+ if (ret)
+ dev_err(nc->base.dev,
+ "Failed to send NAND command (err = %d)!",
+ ret);
+
+ /* Reset the op state. */
+ memset(&nc->op, 0, sizeof(nc->op));
+
+ return ret;
+}
+
+static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
+ unsigned int ctrl)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_hsmc_nand_controller *nc;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ if (ctrl & NAND_ALE) {
+ if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
+ return;
+
+ nc->op.addrs[nc->op.naddrs++] = dat;
+ } else if (ctrl & NAND_CLE) {
+ if (nc->op.ncmds > 1)
+ return;
+
+ nc->op.cmds[nc->op.ncmds++] = dat;
+ }
+
+ if (dat == NAND_CMD_NONE) {
+ nc->op.cs = nand->activecs->id;
+ atmel_nfc_exec_op(nc, true);
+ }
+}
+
+static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_nand_controller *nc;
+
+ nc = to_nand_controller(chip->controller);
+
+ if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
+ if (ctrl & NAND_NCE)
+ gpiod_set_value(nand->activecs->csgpio, 0);
+ else
+ gpiod_set_value(nand->activecs->csgpio, 1);
+ }
+
+ if (ctrl & NAND_ALE)
+ writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
+ else if (ctrl & NAND_CLE)
+ writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
+}
+
+static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
+ bool oob_required)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_hsmc_nand_controller *nc;
+ int ret = -EIO;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ if (nc->base.dmac)
+ ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
+ nc->sram.dma, mtd->writesize,
+ DMA_TO_DEVICE);
+
+ /* Falling back to CPU copy. */
+ if (ret)
+ memcpy_toio(nc->sram.virt, buf, mtd->writesize);
+
+ if (oob_required)
+ memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
+ mtd->oobsize);
+}
+
+static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
+ bool oob_required)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_hsmc_nand_controller *nc;
+ int ret = -EIO;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ if (nc->base.dmac)
+ ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
+ mtd->writesize, DMA_FROM_DEVICE);
+
+ /* Falling back to CPU copy. */
+ if (ret)
+ memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
+
+ if (oob_required)
+ memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
+ mtd->oobsize);
+}
+
+static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_hsmc_nand_controller *nc;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ if (column >= 0) {
+ nc->op.addrs[nc->op.naddrs++] = column;
+
+ /*
+ * 2 address cycles for the column offset on large page NANDs.
+ */
+ if (mtd->writesize > 512)
+ nc->op.addrs[nc->op.naddrs++] = column >> 8;
+ }
+
+ if (page >= 0) {
+ nc->op.addrs[nc->op.naddrs++] = page;
+ nc->op.addrs[nc->op.naddrs++] = page >> 8;
+
+ if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
+ (mtd->writesize <= 512 && chip->chipsize > SZ_32M))
+ nc->op.addrs[nc->op.naddrs++] = page >> 16;
+ }
+}
+
+static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
+{
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_nand_controller *nc;
+ int ret;
+
+ nc = to_nand_controller(chip->controller);
+
+ if (raw)
+ return 0;
+
+ ret = atmel_pmecc_enable(nand->pmecc, op);
+ if (ret)
+ dev_err(nc->dev,
+ "Failed to enable ECC engine (err = %d)\n", ret);
+
+ return ret;
+}
+
+static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
+{
+ struct atmel_nand *nand = to_atmel_nand(chip);
+
+ if (!raw)
+ atmel_pmecc_disable(nand->pmecc);
+}
+
+static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
+{
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_controller *nc;
+ struct mtd_oob_region oobregion;
+ void *eccbuf;
+ int ret, i;
+
+ nc = to_nand_controller(chip->controller);
+
+ if (raw)
+ return 0;
+
+ ret = atmel_pmecc_wait_rdy(nand->pmecc);
+ if (ret) {
+ dev_err(nc->dev,
+ "Failed to transfer NAND page data (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ mtd_ooblayout_ecc(mtd, 0, &oobregion);
+ eccbuf = chip->oob_poi + oobregion.offset;
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
+ eccbuf);
+ eccbuf += chip->ecc.bytes;
+ }
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
+ bool raw)
+{
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_controller *nc;
+ struct mtd_oob_region oobregion;
+ int ret, i, max_bitflips = 0;
+ void *databuf, *eccbuf;
+
+ nc = to_nand_controller(chip->controller);
+
+ if (raw)
+ return 0;
+
+ ret = atmel_pmecc_wait_rdy(nand->pmecc);
+ if (ret) {
+ dev_err(nc->dev,
+ "Failed to read NAND page data (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ mtd_ooblayout_ecc(mtd, 0, &oobregion);
+ eccbuf = chip->oob_poi + oobregion.offset;
+ databuf = buf;
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
+ eccbuf);
+ if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
+ ret = nand_check_erased_ecc_chunk(databuf,
+ chip->ecc.size,
+ eccbuf,
+ chip->ecc.bytes,
+ NULL, 0,
+ chip->ecc.strength);
+
+ if (ret >= 0)
+ max_bitflips = max(ret, max_bitflips);
+ else
+ mtd->ecc_stats.failed++;
+
+ databuf += chip->ecc.size;
+ eccbuf += chip->ecc.bytes;
+ }
+
+ return max_bitflips;
+}
+
+static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
+ bool oob_required, int page, bool raw)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ int ret;
+
+ ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
+ if (ret)
+ return ret;
+
+ atmel_nand_write_buf(mtd, buf, mtd->writesize);
+
+ ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
+ if (ret) {
+ atmel_pmecc_disable(nand->pmecc);
+ return ret;
+ }
+
+ atmel_nand_pmecc_disable(chip, raw);
+
+ atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
+}
+
+static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
+}
+
+static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
+ bool oob_required, int page, bool raw)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
+ if (ret)
+ return ret;
+
+ atmel_nand_read_buf(mtd, buf, mtd->writesize);
+ atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
+
+ atmel_nand_pmecc_disable(chip, raw);
+
+ return ret;
+}
+
+static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
+}
+
+static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
+}
+
+static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
+ const u8 *buf, bool oob_required,
+ int page, bool raw)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_hsmc_nand_controller *nc;
+ int ret;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ atmel_nfc_copy_to_sram(chip, buf, false);
+
+ nc->op.cmds[0] = NAND_CMD_SEQIN;
+ nc->op.ncmds = 1;
+ atmel_nfc_set_op_addr(chip, page, 0x0);
+ nc->op.cs = nand->activecs->id;
+ nc->op.data = ATMEL_NFC_WRITE_DATA;
+
+ ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
+ if (ret)
+ return ret;
+
+ ret = atmel_nfc_exec_op(nc, false);
+ if (ret) {
+ atmel_nand_pmecc_disable(chip, raw);
+ dev_err(nc->base.dev,
+ "Failed to transfer NAND page data (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
+
+ atmel_nand_pmecc_disable(chip, raw);
+
+ if (ret)
+ return ret;
+
+ atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ nc->op.cmds[0] = NAND_CMD_PAGEPROG;
+ nc->op.ncmds = 1;
+ nc->op.cs = nand->activecs->id;
+ ret = atmel_nfc_exec_op(nc, false);
+ if (ret)
+ dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
+ ret);
+
+ return ret;
+}
+
+static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
+ false);
+}
+
+static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required, int page)
+{
+ return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
+ true);
+}
+
+static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
+ bool oob_required, int page,
+ bool raw)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_hsmc_nand_controller *nc;
+ int ret;
+
+ nc = to_hsmc_nand_controller(chip->controller);
+
+ /*
+ * Optimized read page accessors only work when the NAND R/B pin is
+ * connected to a native SoC R/B pin. If that's not the case, fallback
+ * to the non-optimized one.
+ */
+ if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+
+ return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
+ raw);
+ }
+
+ nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
+
+ if (mtd->writesize > 512)
+ nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
+
+ atmel_nfc_set_op_addr(chip, page, 0x0);
+ nc->op.cs = nand->activecs->id;
+ nc->op.data = ATMEL_NFC_READ_DATA;
+
+ ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
+ if (ret)
+ return ret;
+
+ ret = atmel_nfc_exec_op(nc, false);
+ if (ret) {
+ atmel_nand_pmecc_disable(chip, raw);
+ dev_err(nc->base.dev,
+ "Failed to load NAND page data (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ atmel_nfc_copy_from_sram(chip, buf, true);
+
+ ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
+
+ atmel_nand_pmecc_disable(chip, raw);
+
+ return ret;
+}
+
+static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
+ false);
+}
+
+static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u8 *buf, int oob_required,
+ int page)
+{
+ return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
+ true);
+}
+
+static int atmel_nand_pmecc_init(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand *nand = to_atmel_nand(chip);
+ struct atmel_nand_controller *nc;
+ struct atmel_pmecc_user_req req;
+
+ nc = to_nand_controller(chip->controller);
+
+ if (!nc->pmecc) {
+ dev_err(nc->dev, "HW ECC not supported\n");
+ return -ENOTSUPP;
+ }
+
+ if (nc->caps->legacy_of_bindings) {
+ u32 val;
+
+ if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
+ &val))
+ chip->ecc.strength = val;
+
+ if (!of_property_read_u32(nc->dev->of_node,
+ "atmel,pmecc-sector-size",
+ &val))
+ chip->ecc.size = val;
+ }
+
+ if (chip->ecc.options & NAND_ECC_MAXIMIZE)
+ req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
+ else if (chip->ecc.strength)
+ req.ecc.strength = chip->ecc.strength;
+ else if (chip->ecc_strength_ds)
+ req.ecc.strength = chip->ecc_strength_ds;
+ else
+ req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
+
+ if (chip->ecc.size)
+ req.ecc.sectorsize = chip->ecc.size;
+ else if (chip->ecc_step_ds)
+ req.ecc.sectorsize = chip->ecc_step_ds;
+ else
+ req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
+
+ req.pagesize = mtd->writesize;
+ req.oobsize = mtd->oobsize;
+
+ if (mtd->writesize <= 512) {
+ req.ecc.bytes = 4;
+ req.ecc.ooboffset = 0;
+ } else {
+ req.ecc.bytes = mtd->oobsize - 2;
+ req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
+ }
+
+ nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
+ if (IS_ERR(nand->pmecc))
+ return PTR_ERR(nand->pmecc);
+
+ chip->ecc.algo = NAND_ECC_BCH;
+ chip->ecc.size = req.ecc.sectorsize;
+ chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
+ chip->ecc.strength = req.ecc.strength;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+
+ return 0;
+}
+
+static int atmel_nand_ecc_init(struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct atmel_nand_controller *nc;
+ int ret;
+
+ nc = to_nand_controller(chip->controller);
+
+ switch (chip->ecc.mode) {
+ case NAND_ECC_NONE:
+ case NAND_ECC_SOFT:
+ /*
+ * Nothing to do, the core will initialize everything for us.
+ */
+ break;
+
+ case NAND_ECC_HW:
+ ret = atmel_nand_pmecc_init(chip);
+ if (ret)
+ return ret;
+
+ chip->ecc.read_page = atmel_nand_pmecc_read_page;
+ chip->ecc.write_page = atmel_nand_pmecc_write_page;
+ chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
+ chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
+ break;
+
+ default:
+ /* Other modes are not supported. */
+ dev_err(nc->dev, "Unsupported ECC mode: %d\n",
+ chip->ecc.mode);
+ return -ENOTSUPP;
+ }
+
+ return 0;
+}
+
+static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ int ret;
+
+ ret = atmel_nand_ecc_init(nand);
+ if (ret)
+ return ret;
+
+ if (chip->ecc.mode != NAND_ECC_HW)
+ return 0;
+
+ /* Adjust the ECC operations for the HSMC IP. */
+ chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
+ chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
+ chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
+ chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
+ chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
+
+ return 0;
+}
+
+static void atmel_nand_init(struct atmel_nand_controller *nc,
+ struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ mtd->dev.parent = nc->dev;
+ nand->base.controller = &nc->base;
+
+ chip->cmd_ctrl = atmel_nand_cmd_ctrl;
+ chip->read_byte = atmel_nand_read_byte;
+ chip->read_word = atmel_nand_read_word;
+ chip->write_byte = atmel_nand_write_byte;
+ chip->read_buf = atmel_nand_read_buf;
+ chip->write_buf = atmel_nand_write_buf;
+ chip->select_chip = atmel_nand_select_chip;
+
+ /* Some NANDs require a longer delay than the default one (20us). */
+ chip->chip_delay = 40;
+
+ /*
+ * Use a bounce buffer when the buffer passed by the MTD user is not
+ * suitable for DMA.
+ */
+ if (nc->dmac)
+ chip->options |= NAND_USE_BOUNCE_BUFFER;
+
+ /* Default to HW ECC if pmecc is available. */
+ if (nc->pmecc)
+ chip->ecc.mode = NAND_ECC_HW;
+}
+
+static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
+ struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct atmel_smc_nand_controller *smc_nc;
+ int i;
+
+ atmel_nand_init(nc, nand);
+
+ smc_nc = to_smc_nand_controller(chip->controller);
+ if (!smc_nc->matrix)
+ return;
+
+ /* Attach the CS to the NAND Flash logic. */
+ for (i = 0; i < nand->numcs; i++)
+ regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
+ BIT(nand->cs[i].id), BIT(nand->cs[i].id));
+}
+
+static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
+ struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+
+ atmel_nand_init(nc, nand);
+
+ /* Overload some methods for the HSMC controller. */
+ chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
+ chip->select_chip = atmel_hsmc_nand_select_chip;
+}
+
+static int atmel_nand_detect(struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_controller *nc;
+ int ret;
+
+ nc = to_nand_controller(chip->controller);
+
+ ret = nand_scan_ident(mtd, nand->numcs, NULL);
+ if (ret)
+ dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
+
+ return ret;
+}
+
+static int atmel_nand_unregister(struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ ret = mtd_device_unregister(mtd);
+ if (ret)
+ return ret;
+
+ nand_cleanup(chip);
+ list_del(&nand->node);
+
+ return 0;
+}
+
+static int atmel_nand_register(struct atmel_nand *nand)
+{
+ struct nand_chip *chip = &nand->base;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_controller *nc;
+ int ret;
+
+ nc = to_nand_controller(chip->controller);
+
+ if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
+ /*
+ * We keep the MTD name unchanged to avoid breaking platforms
+ * where the MTD cmdline parser is used and the bootloader
+ * has not been updated to use the new naming scheme.
+ */
+ mtd->name = "atmel_nand";
+ } else if (!mtd->name) {
+ /*
+ * If the new bindings are used and the bootloader has not been
+ * updated to pass a new mtdparts parameter on the cmdline, you
+ * should define the following property in your nand node:
+ *
+ * label = "atmel_nand";
+ *
+ * This way, mtd->name will be set by the core when
+ * nand_set_flash_node() is called.
+ */
+ mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
+ "%s:nand.%d", dev_name(nc->dev),
+ nand->cs[0].id);
+ if (!mtd->name) {
+ dev_err(nc->dev, "Failed to allocate mtd->name\n");
+ return -ENOMEM;
+ }
+ }
+
+ ret = nand_scan_tail(mtd);
+ if (ret) {
+ dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
+ return ret;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&nand->node, &nc->chips);
+
+ return 0;
+}
+
+static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
+ struct device_node *np,
+ int reg_cells)
+{
+ struct atmel_nand *nand;
+ struct gpio_desc *gpio;
+ int numcs, ret, i;
+
+ numcs = of_property_count_elems_of_size(np, "reg",
+ reg_cells * sizeof(u32));
+ if (numcs < 1) {
+ dev_err(nc->dev, "Missing or invalid reg property\n");
+ return ERR_PTR(-EINVAL);
+ }
+
+ nand = devm_kzalloc(nc->dev,
+ sizeof(*nand) + (numcs * sizeof(*nand->cs)),
+ GFP_KERNEL);
+ if (!nand) {
+ dev_err(nc->dev, "Failed to allocate NAND object\n");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ nand->numcs = numcs;
+
+ gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
+ &np->fwnode, GPIOD_IN,
+ "nand-det");
+ if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+ dev_err(nc->dev,
+ "Failed to get detect gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return ERR_CAST(gpio);
+ }
+
+ if (!IS_ERR(gpio))
+ nand->cdgpio = gpio;
+
+ for (i = 0; i < numcs; i++) {
+ struct resource res;
+ u32 val;
+
+ ret = of_address_to_resource(np, 0, &res);
+ if (ret) {
+ dev_err(nc->dev, "Invalid reg property (err = %d)\n",
+ ret);
+ return ERR_PTR(ret);
+ }
+
+ ret = of_property_read_u32_index(np, "reg", i * reg_cells,
+ &val);
+ if (ret) {
+ dev_err(nc->dev, "Invalid reg property (err = %d)\n",
+ ret);
+ return ERR_PTR(ret);
+ }
+
+ nand->cs[i].id = val;
+
+ nand->cs[i].io.dma = res.start;
+ nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
+ if (IS_ERR(nand->cs[i].io.virt))
+ return ERR_CAST(nand->cs[i].io.virt);
+
+ if (!of_property_read_u32(np, "atmel,rb", &val)) {
+ if (val > ATMEL_NFC_MAX_RB_ID)
+ return ERR_PTR(-EINVAL);
+
+ nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
+ nand->cs[i].rb.id = val;
+ } else {
+ gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
+ "rb", i, &np->fwnode,
+ GPIOD_IN, "nand-rb");
+ if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+ dev_err(nc->dev,
+ "Failed to get R/B gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return ERR_CAST(gpio);
+ }
+
+ if (!IS_ERR(gpio)) {
+ nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
+ nand->cs[i].rb.gpio = gpio;
+ }
+ }
+
+ gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
+ i, &np->fwnode,
+ GPIOD_OUT_HIGH,
+ "nand-cs");
+ if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+ dev_err(nc->dev,
+ "Failed to get CS gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return ERR_CAST(gpio);
+ }
+
+ if (!IS_ERR(gpio))
+ nand->cs[i].csgpio = gpio;
+ }
+
+ nand_set_flash_node(&nand->base, np);
+
+ return nand;
+}
+
+static int
+atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
+ struct atmel_nand *nand)
+{
+ int ret;
+
+ /* No card inserted, skip this NAND. */
+ if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
+ dev_info(nc->dev, "No SmartMedia card inserted.\n");
+ return 0;
+ }
+
+ nc->caps->ops->nand_init(nc, nand);
+
+ ret = atmel_nand_detect(nand);
+ if (ret)
+ return ret;
+
+ ret = nc->caps->ops->ecc_init(nand);
+ if (ret)
+ return ret;
+
+ return atmel_nand_register(nand);
+}
+
+static int
+atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
+{
+ struct atmel_nand *nand, *tmp;
+ int ret;
+
+ list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
+ ret = atmel_nand_unregister(nand);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int
+atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
+{
+ struct device *dev = nc->dev;
+ struct platform_device *pdev = to_platform_device(dev);
+ struct atmel_nand *nand;
+ struct gpio_desc *gpio;
+ struct resource *res;
+
+ /*
+ * Legacy bindings only allow connecting a single NAND with a unique CS
+ * line to the controller.
+ */
+ nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
+ GFP_KERNEL);
+ if (!nand)
+ return -ENOMEM;
+
+ nand->numcs = 1;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
+ if (IS_ERR(nand->cs[0].io.virt))
+ return PTR_ERR(nand->cs[0].io.virt);
+
+ nand->cs[0].io.dma = res->start;
+
+ /*
+ * The old driver was hardcoding the CS id to 3 for all sama5
+ * controllers. Since this id is only meaningful for the sama5
+ * controller we can safely assign this id to 3 no matter the
+ * controller.
+ * If one wants to connect a NAND to a different CS line, he will
+ * have to use the new bindings.
+ */
+ nand->cs[0].id = 3;
+
+ /* R/B GPIO. */
+ gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
+ if (IS_ERR(gpio)) {
+ dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return PTR_ERR(gpio);
+ }
+
+ if (gpio) {
+ nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
+ nand->cs[0].rb.gpio = gpio;
+ }
+
+ /* CS GPIO. */
+ gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
+ if (IS_ERR(gpio)) {
+ dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return PTR_ERR(gpio);
+ }
+
+ nand->cs[0].csgpio = gpio;
+
+ /* Card detect GPIO. */
+ gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
+ if (IS_ERR(gpio)) {
+ dev_err(dev,
+ "Failed to get detect gpio (err = %ld)\n",
+ PTR_ERR(gpio));
+ return PTR_ERR(gpio);
+ }
+
+ nand->cdgpio = gpio;
+
+ nand_set_flash_node(&nand->base, nc->dev->of_node);
+
+ return atmel_nand_controller_add_nand(nc, nand);
+}
+
+static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
+{
+ struct device_node *np, *nand_np;
+ struct device *dev = nc->dev;
+ int ret, reg_cells;
+ u32 val;
+
+ /* We do not retrieve the SMC syscon when parsing old DTs. */
+ if (nc->caps->legacy_of_bindings)
+ return atmel_nand_controller_legacy_add_nands(nc);
+
+ np = dev->of_node;
+
+ ret = of_property_read_u32(np, "#address-cells", &val);
+ if (ret) {
+ dev_err(dev, "missing #address-cells property\n");
+ return ret;
+ }
+
+ reg_cells = val;
+
+ ret = of_property_read_u32(np, "#size-cells", &val);
+ if (ret) {
+ dev_err(dev, "missing #address-cells property\n");
+ return ret;
+ }
+
+ reg_cells += val;
+
+ for_each_child_of_node(np, nand_np) {
+ struct atmel_nand *nand;
+
+ nand = atmel_nand_create(nc, nand_np, reg_cells);
+ if (IS_ERR(nand)) {
+ ret = PTR_ERR(nand);
+ goto err;
+ }
+
+ ret = atmel_nand_controller_add_nand(nc, nand);
+ if (ret)
+ goto err;
+ }
+
+ return 0;
+
+err:
+ atmel_nand_controller_remove_nands(nc);
+
+ return ret;
+}
+
+static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
+{
+ if (nc->dmac)
+ dma_release_channel(nc->dmac);
+
+ clk_put(nc->mck);
+}
+
+static const struct of_device_id atmel_matrix_of_ids[] = {
+ {
+ .compatible = "atmel,at91sam9260-matrix",
+ .data = (void *)AT91SAM9260_MATRIX_EBICSA,
+ },
+ {
+ .compatible = "atmel,at91sam9261-matrix",
+ .data = (void *)AT91SAM9261_MATRIX_EBICSA,
+ },
+ {
+ .compatible = "atmel,at91sam9263-matrix",
+ .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
+ },
+ {
+ .compatible = "atmel,at91sam9rl-matrix",
+ .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
+ },
+ {
+ .compatible = "atmel,at91sam9g45-matrix",
+ .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
+ },
+ {
+ .compatible = "atmel,at91sam9n12-matrix",
+ .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
+ },
+ {
+ .compatible = "atmel,at91sam9x5-matrix",
+ .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
+ },
+ { /* sentinel */ },
+};
+
+static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
+ struct platform_device *pdev,
+ const struct atmel_nand_controller_caps *caps)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+ int ret;
+
+ nand_hw_control_init(&nc->base);
+ INIT_LIST_HEAD(&nc->chips);
+ nc->dev = dev;
+ nc->caps = caps;
+
+ platform_set_drvdata(pdev, nc);
+
+ nc->pmecc = devm_atmel_pmecc_get(dev);
+ if (IS_ERR(nc->pmecc)) {
+ ret = PTR_ERR(nc->pmecc);
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Could not get PMECC object (err = %d)\n",
+ ret);
+ return ret;
+ }
+
+ if (nc->caps->has_dma) {
+ dma_cap_mask_t mask;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_MEMCPY, mask);
+
+ nc->dmac = dma_request_channel(mask, NULL, NULL);
+ if (!nc->dmac)
+ dev_err(nc->dev, "Failed to request DMA channel\n");
+ }
+
+ /* We do not retrieve the SMC syscon when parsing old DTs. */
+ if (nc->caps->legacy_of_bindings)
+ return 0;
+
+ np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
+ if (!np) {
+ dev_err(dev, "Missing or invalid atmel,smc property\n");
+ return -EINVAL;
+ }
+
+ nc->smc = syscon_node_to_regmap(np);
+ of_node_put(np);
+ if (IS_ERR(nc->smc)) {
+ ret = PTR_ERR(nc->smc);
+ dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int
+atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
+{
+ struct device *dev = nc->base.dev;
+ const struct of_device_id *match;
+ struct device_node *np;
+ int ret;
+
+ /* We do not retrieve the matrix syscon when parsing old DTs. */
+ if (nc->base.caps->legacy_of_bindings)
+ return 0;
+
+ np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
+ if (!np)
+ return 0;
+
+ match = of_match_node(atmel_matrix_of_ids, np);
+ if (!match) {
+ of_node_put(np);
+ return 0;
+ }
+
+ nc->matrix = syscon_node_to_regmap(np);
+ of_node_put(np);
+ if (IS_ERR(nc->matrix)) {
+ ret = PTR_ERR(nc->matrix);
+ dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
+ return ret;
+ }
+
+ nc->ebi_csa_offs = (unsigned int)match->data;
+
+ /*
+ * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
+ * add 4 to ->ebi_csa_offs.
+ */
+ if (of_device_is_compatible(dev->parent->of_node,
+ "atmel,at91sam9263-ebi1"))
+ nc->ebi_csa_offs += 4;
+
+ return 0;
+}
+
+static int
+atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
+{
+ struct regmap_config regmap_conf = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+ };
+
+ struct device *dev = nc->base.dev;
+ struct device_node *nand_np, *nfc_np;
+ void __iomem *iomem;
+ struct resource res;
+ int ret;
+
+ nand_np = dev->of_node;
+ nfc_np = of_find_compatible_node(dev->of_node, NULL,
+ "atmel,sama5d3-nfc");
+
+ nc->clk = of_clk_get(nfc_np, 0);
+ if (IS_ERR(nc->clk)) {
+ ret = PTR_ERR(nc->clk);
+ dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ ret = clk_prepare_enable(nc->clk);
+ if (ret) {
+ dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ nc->irq = of_irq_get(nand_np, 0);
+ if (nc->irq < 0) {
+ ret = nc->irq;
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get IRQ number (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ ret = of_address_to_resource(nfc_np, 0, &res);
+ if (ret) {
+ dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ iomem = devm_ioremap_resource(dev, &res);
+ if (IS_ERR(iomem)) {
+ ret = PTR_ERR(iomem);
+ goto out;
+ }
+
+ regmap_conf.name = "nfc-io";
+ regmap_conf.max_register = resource_size(&res) - 4;
+ nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
+ if (IS_ERR(nc->io)) {
+ ret = PTR_ERR(nc->io);
+ dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ ret = of_address_to_resource(nfc_np, 1, &res);
+ if (ret) {
+ dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ iomem = devm_ioremap_resource(dev, &res);
+ if (IS_ERR(iomem)) {
+ ret = PTR_ERR(iomem);
+ goto out;
+ }
+
+ regmap_conf.name = "smc";
+ regmap_conf.max_register = resource_size(&res) - 4;
+ nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
+ if (IS_ERR(nc->base.smc)) {
+ ret = PTR_ERR(nc->base.smc);
+ dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ ret = of_address_to_resource(nfc_np, 2, &res);
+ if (ret) {
+ dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
+ ret);
+ goto out;
+ }
+
+ nc->sram.virt = devm_ioremap_resource(dev, &res);
+ if (IS_ERR(nc->sram.virt)) {
+ ret = PTR_ERR(nc->sram.virt);
+ goto out;
+ }
+
+ nc->sram.dma = res.start;
+
+out:
+ of_node_put(nfc_np);
+
+ return ret;
+}
+
+static int
+atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
+{
+ struct device *dev = nc->base.dev;
+ struct device_node *np;
+ int ret;
+
+ np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
+ if (!np) {
+ dev_err(dev, "Missing or invalid atmel,smc property\n");
+ return -EINVAL;
+ }
+
+ nc->irq = of_irq_get(np, 0);
+ of_node_put(np);
+ if (nc->irq < 0) {
+ if (nc->irq != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get IRQ number (err = %d)\n",
+ nc->irq);
+ return nc->irq;
+ }
+
+ np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
+ if (!np) {
+ dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
+ return -EINVAL;
+ }
+
+ nc->io = syscon_node_to_regmap(np);
+ of_node_put(np);
+ if (IS_ERR(nc->io)) {
+ ret = PTR_ERR(nc->io);
+ dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
+ return ret;
+ }
+
+ nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
+ "atmel,nfc-sram", 0);
+ if (!nc->sram.pool) {
+ dev_err(nc->base.dev, "Missing SRAM\n");
+ return -ENOMEM;
+ }
+
+ nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
+ ATMEL_NFC_SRAM_SIZE,
+ &nc->sram.dma);
+ if (!nc->sram.virt) {
+ dev_err(nc->base.dev,
+ "Could not allocate memory from the NFC SRAM pool\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int
+atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
+{
+ struct atmel_hsmc_nand_controller *hsmc_nc;
+ int ret;
+
+ ret = atmel_nand_controller_remove_nands(nc);
+ if (ret)
+ return ret;
+
+ hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
+ if (hsmc_nc->sram.pool)
+ gen_pool_free(hsmc_nc->sram.pool,
+ (unsigned long)hsmc_nc->sram.virt,
+ ATMEL_NFC_SRAM_SIZE);
+
+ if (hsmc_nc->clk) {
+ clk_disable_unprepare(hsmc_nc->clk);
+ clk_put(hsmc_nc->clk);
+ }
+
+ atmel_nand_controller_cleanup(nc);
+
+ return 0;
+}
+
+static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
+ const struct atmel_nand_controller_caps *caps)
+{
+ struct device *dev = &pdev->dev;
+ struct atmel_hsmc_nand_controller *nc;
+ int ret;
+
+ nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
+ if (!nc)
+ return -ENOMEM;
+
+ ret = atmel_nand_controller_init(&nc->base, pdev, caps);
+ if (ret)
+ return ret;
+
+ if (caps->legacy_of_bindings)
+ ret = atmel_hsmc_nand_controller_legacy_init(nc);
+ else
+ ret = atmel_hsmc_nand_controller_init(nc);
+
+ if (ret)
+ return ret;
+
+ /* Make sure all irqs are masked before registering our IRQ handler. */
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
+ ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
+ IRQF_SHARED, "nfc", nc);
+ if (ret) {
+ dev_err(dev,
+ "Could not get register NFC interrupt handler (err = %d)\n",
+ ret);
+ goto err;
+ }
+
+ /* Initial NFC configuration. */
+ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
+ ATMEL_HSMC_NFC_CFG_DTO_MAX);
+
+ ret = atmel_nand_controller_add_nands(&nc->base);
+ if (ret)
+ goto err;
+
+ return 0;
+
+err:
+ atmel_hsmc_nand_controller_remove(&nc->base);
+
+ return ret;
+}
+
+static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
+ .probe = atmel_hsmc_nand_controller_probe,
+ .remove = atmel_hsmc_nand_controller_remove,
+ .ecc_init = atmel_hsmc_nand_ecc_init,
+ .nand_init = atmel_hsmc_nand_init,
+};
+
+static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
+ .has_dma = true,
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_hsmc_nc_ops,
+};
+
+/* Only used to parse old bindings. */
+static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
+ .has_dma = true,
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_hsmc_nc_ops,
+ .legacy_of_bindings = true,
+};
+
+static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
+ const struct atmel_nand_controller_caps *caps)
+{
+ struct device *dev = &pdev->dev;
+ struct atmel_smc_nand_controller *nc;
+ int ret;
+
+ nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
+ if (!nc)
+ return -ENOMEM;
+
+ ret = atmel_nand_controller_init(&nc->base, pdev, caps);
+ if (ret)
+ return ret;
+
+ ret = atmel_smc_nand_controller_init(nc);
+ if (ret)
+ return ret;
+
+ return atmel_nand_controller_add_nands(&nc->base);
+}
+
+static int
+atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
+{
+ int ret;
+
+ ret = atmel_nand_controller_remove_nands(nc);
+ if (ret)
+ return ret;
+
+ atmel_nand_controller_cleanup(nc);
+
+ return 0;
+}
+
+static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
+ .probe = atmel_smc_nand_controller_probe,
+ .remove = atmel_smc_nand_controller_remove,
+ .ecc_init = atmel_nand_ecc_init,
+ .nand_init = atmel_smc_nand_init,
+};
+
+static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_smc_nc_ops,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
+ .ale_offs = BIT(22),
+ .cle_offs = BIT(21),
+ .ops = &atmel_smc_nc_ops,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
+ .has_dma = true,
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_smc_nc_ops,
+};
+
+/* Only used to parse old bindings. */
+static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_smc_nc_ops,
+ .legacy_of_bindings = true,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
+ .ale_offs = BIT(22),
+ .cle_offs = BIT(21),
+ .ops = &atmel_smc_nc_ops,
+ .legacy_of_bindings = true,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
+ .has_dma = true,
+ .ale_offs = BIT(21),
+ .cle_offs = BIT(22),
+ .ops = &atmel_smc_nc_ops,
+ .legacy_of_bindings = true,
+};
+
+static const struct of_device_id atmel_nand_controller_of_ids[] = {
+ {
+ .compatible = "atmel,at91rm9200-nand-controller",
+ .data = &atmel_rm9200_nc_caps,
+ },
+ {
+ .compatible = "atmel,at91sam9260-nand-controller",
+ .data = &atmel_rm9200_nc_caps,
+ },
+ {
+ .compatible = "atmel,at91sam9261-nand-controller",
+ .data = &atmel_sam9261_nc_caps,
+ },
+ {
+ .compatible = "atmel,at91sam9g45-nand-controller",
+ .data = &atmel_sam9g45_nc_caps,
+ },
+ {
+ .compatible = "atmel,sama5d3-nand-controller",
+ .data = &atmel_sama5_nc_caps,
+ },
+ /* Support for old/deprecated bindings: */
+ {
+ .compatible = "atmel,at91rm9200-nand",
+ .data = &atmel_rm9200_nand_caps,
+ },
+ {
+ .compatible = "atmel,sama5d4-nand",
+ .data = &atmel_rm9200_nand_caps,
+ },
+ {
+ .compatible = "atmel,sama5d2-nand",
+ .data = &atmel_rm9200_nand_caps,
+ },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
+
+static int atmel_nand_controller_probe(struct platform_device *pdev)
+{
+ const struct atmel_nand_controller_caps *caps;
+
+ if (pdev->id_entry)
+ caps = (void *)pdev->id_entry->driver_data;
+ else
+ caps = of_device_get_match_data(&pdev->dev);
+
+ if (!caps) {
+ dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
+ return -EINVAL;
+ }
+
+ if (caps->legacy_of_bindings) {
+ u32 ale_offs = 21;
+
+ /*
+ * If we are parsing legacy DT props and the DT contains a
+ * valid NFC node, forward the request to the sama5 logic.
+ */
+ if (of_find_compatible_node(pdev->dev.of_node, NULL,
+ "atmel,sama5d3-nfc"))
+ caps = &atmel_sama5_nand_caps;
+
+ /*
+ * Even if the compatible says we are dealing with an
+ * at91rm9200 controller, the atmel,nand-has-dma specify that
+ * this controller supports DMA, which means we are in fact
+ * dealing with an at91sam9g45+ controller.
+ */
+ if (!caps->has_dma &&
+ of_property_read_bool(pdev->dev.of_node,
+ "atmel,nand-has-dma"))
+ caps = &atmel_sam9g45_nand_caps;
+
+ /*
+ * All SoCs except the at91sam9261 are assigning ALE to A21 and
+ * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
+ * actually dealing with an at91sam9261 controller.
+ */
+ of_property_read_u32(pdev->dev.of_node,
+ "atmel,nand-addr-offset", &ale_offs);
+ if (ale_offs != 21)
+ caps = &atmel_sam9261_nand_caps;
+ }
+
+ return caps->ops->probe(pdev, caps);
+}
+
+static int atmel_nand_controller_remove(struct platform_device *pdev)
+{
+ struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
+
+ return nc->caps->ops->remove(nc);
+}
+
+static struct platform_driver atmel_nand_controller_driver = {
+ .driver = {
+ .name = "atmel-nand-controller",
+ .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
+ },
+ .probe = atmel_nand_controller_probe,
+ .remove = atmel_nand_controller_remove,
+};
+module_platform_driver(atmel_nand_controller_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
+MODULE_ALIAS("platform:atmel-nand-controller");
diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/atmel/pmecc.c
new file mode 100644
index 000000000000..55a8ee5306ea
--- /dev/null
+++ b/drivers/mtd/nand/atmel/pmecc.c
@@ -0,0 +1,1020 @@
+/*
+ * Copyright 2017 ATMEL
+ * Copyright 2017 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ * Copyright 2003 Rick Bronson
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
+ *
+ * Derived from Das U-Boot source code
+ * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ * Copyright 2012 ATMEL, Hong Xu
+ *
+ * Add Nand Flash Controller support for SAMA5 SoC
+ * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * The PMECC is an hardware assisted BCH engine, which means part of the
+ * ECC algorithm is left to the software. The hardware/software repartition
+ * is explained in the "PMECC Controller Functional Description" chapter in
+ * Atmel datasheets, and some of the functions in this file are directly
+ * implementing the algorithms described in the "Software Implementation"
+ * sub-section.
+ *
+ * TODO: it seems that the software BCH implementation in lib/bch.c is already
+ * providing some of the logic we are implementing here. It would be smart
+ * to expose the needed lib/bch.c helpers/functions and re-use them here.
+ */
+
+#include <linux/genalloc.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "pmecc.h"
+
+/* Galois field dimension */
+#define PMECC_GF_DIMENSION_13 13
+#define PMECC_GF_DIMENSION_14 14
+
+/* Primitive Polynomial used by PMECC */
+#define PMECC_GF_13_PRIMITIVE_POLY 0x201b
+#define PMECC_GF_14_PRIMITIVE_POLY 0x4443
+
+#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000
+#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000
+
+/* Time out value for reading PMECC status register */
+#define PMECC_MAX_TIMEOUT_MS 100
+
+/* PMECC Register Definitions */
+#define ATMEL_PMECC_CFG 0x0
+#define PMECC_CFG_BCH_STRENGTH(x) (x)
+#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0)
+#define PMECC_CFG_SECTOR512 (0 << 4)
+#define PMECC_CFG_SECTOR1024 (1 << 4)
+#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8)
+#define PMECC_CFG_READ_OP (0 << 12)
+#define PMECC_CFG_WRITE_OP (1 << 12)
+#define PMECC_CFG_SPARE_ENABLE BIT(16)
+#define PMECC_CFG_AUTO_ENABLE BIT(20)
+
+#define ATMEL_PMECC_SAREA 0x4
+#define ATMEL_PMECC_SADDR 0x8
+#define ATMEL_PMECC_EADDR 0xc
+
+#define ATMEL_PMECC_CLK 0x10
+#define PMECC_CLK_133MHZ (2 << 0)
+
+#define ATMEL_PMECC_CTRL 0x14
+#define PMECC_CTRL_RST BIT(0)
+#define PMECC_CTRL_DATA BIT(1)
+#define PMECC_CTRL_USER BIT(2)
+#define PMECC_CTRL_ENABLE BIT(4)
+#define PMECC_CTRL_DISABLE BIT(5)
+
+#define ATMEL_PMECC_SR 0x18
+#define PMECC_SR_BUSY BIT(0)
+#define PMECC_SR_ENABLE BIT(4)
+
+#define ATMEL_PMECC_IER 0x1c
+#define ATMEL_PMECC_IDR 0x20
+#define ATMEL_PMECC_IMR 0x24
+#define ATMEL_PMECC_ISR 0x28
+#define PMECC_ERROR_INT BIT(0)
+
+#define ATMEL_PMECC_ECC(sector, n) \
+ ((((sector) + 1) * 0x40) + (n))
+
+#define ATMEL_PMECC_REM(sector, n) \
+ ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
+
+/* PMERRLOC Register Definitions */
+#define ATMEL_PMERRLOC_ELCFG 0x0
+#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0)
+#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0)
+#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16)
+
+#define ATMEL_PMERRLOC_ELPRIM 0x4
+#define ATMEL_PMERRLOC_ELEN 0x8
+#define ATMEL_PMERRLOC_ELDIS 0xc
+#define PMERRLOC_DISABLE BIT(0)
+
+#define ATMEL_PMERRLOC_ELSR 0x10
+#define PMERRLOC_ELSR_BUSY BIT(0)
+
+#define ATMEL_PMERRLOC_ELIER 0x14
+#define ATMEL_PMERRLOC_ELIDR 0x18
+#define ATMEL_PMERRLOC_ELIMR 0x1c
+#define ATMEL_PMERRLOC_ELISR 0x20
+#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8)
+#define PMERRLOC_CALC_DONE BIT(0)
+
+#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28)
+
+#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs))
+
+struct atmel_pmecc_gf_tables {
+ u16 *alpha_to;
+ u16 *index_of;
+};
+
+struct atmel_pmecc_caps {
+ const int *strengths;
+ int nstrengths;
+ int el_offset;
+ bool correct_erased_chunks;
+};
+
+struct atmel_pmecc {
+ struct device *dev;
+ const struct atmel_pmecc_caps *caps;
+
+ struct {
+ void __iomem *base;
+ void __iomem *errloc;
+ } regs;
+
+ struct mutex lock;
+};
+
+struct atmel_pmecc_user_conf_cache {
+ u32 cfg;
+ u32 sarea;
+ u32 saddr;
+ u32 eaddr;
+};
+
+struct atmel_pmecc_user {
+ struct atmel_pmecc_user_conf_cache cache;
+ struct atmel_pmecc *pmecc;
+ const struct atmel_pmecc_gf_tables *gf_tables;
+ int eccbytes;
+ s16 *partial_syn;
+ s16 *si;
+ s16 *lmu;
+ s16 *smu;
+ s32 *mu;
+ s32 *dmu;
+ s32 *delta;
+ u32 isr;
+};
+
+static DEFINE_MUTEX(pmecc_gf_tables_lock);
+static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
+static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
+
+static inline int deg(unsigned int poly)
+{
+ /* polynomial degree is the most-significant bit index */
+ return fls(poly) - 1;
+}
+
+static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
+ struct atmel_pmecc_gf_tables *gf_tables)
+{
+ unsigned int i, x = 1;
+ const unsigned int k = BIT(deg(poly));
+ unsigned int nn = BIT(mm) - 1;
+
+ /* primitive polynomial must be of degree m */
+ if (k != (1u << mm))
+ return -EINVAL;
+
+ for (i = 0; i < nn; i++) {
+ gf_tables->alpha_to[i] = x;
+ gf_tables->index_of[x] = i;
+ if (i && (x == 1))
+ /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
+ return -EINVAL;
+ x <<= 1;
+ if (x & k)
+ x ^= poly;
+ }
+ gf_tables->alpha_to[nn] = 1;
+ gf_tables->index_of[0] = 0;
+
+ return 0;
+}
+
+static const struct atmel_pmecc_gf_tables *
+atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
+{
+ struct atmel_pmecc_gf_tables *gf_tables;
+ unsigned int poly, degree, table_size;
+ int ret;
+
+ if (req->ecc.sectorsize == 512) {
+ degree = PMECC_GF_DIMENSION_13;
+ poly = PMECC_GF_13_PRIMITIVE_POLY;
+ table_size = PMECC_LOOKUP_TABLE_SIZE_512;
+ } else {
+ degree = PMECC_GF_DIMENSION_14;
+ poly = PMECC_GF_14_PRIMITIVE_POLY;
+ table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
+ }
+
+ gf_tables = kzalloc(sizeof(*gf_tables) +
+ (2 * table_size * sizeof(u16)),
+ GFP_KERNEL);
+ if (!gf_tables)
+ return ERR_PTR(-ENOMEM);
+
+ gf_tables->alpha_to = (void *)(gf_tables + 1);
+ gf_tables->index_of = gf_tables->alpha_to + table_size;
+
+ ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
+ if (ret) {
+ kfree(gf_tables);
+ return ERR_PTR(ret);
+ }
+
+ return gf_tables;
+}
+
+static const struct atmel_pmecc_gf_tables *
+atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
+{
+ const struct atmel_pmecc_gf_tables **gf_tables, *ret;
+
+ mutex_lock(&pmecc_gf_tables_lock);
+ if (req->ecc.sectorsize == 512)
+ gf_tables = &pmecc_gf_tables_512;
+ else
+ gf_tables = &pmecc_gf_tables_1024;
+
+ ret = *gf_tables;
+
+ if (!ret) {
+ ret = atmel_pmecc_create_gf_tables(req);
+ if (!IS_ERR(ret))
+ *gf_tables = ret;
+ }
+ mutex_unlock(&pmecc_gf_tables_lock);
+
+ return ret;
+}
+
+static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
+ struct atmel_pmecc_user_req *req)
+{
+ int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
+
+ if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
+ return -EINVAL;
+
+ if (req->ecc.ooboffset >= 0 &&
+ req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
+ return -EINVAL;
+
+ if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
+ if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
+ return -EINVAL;
+
+ if (req->pagesize > 512)
+ req->ecc.sectorsize = 1024;
+ else
+ req->ecc.sectorsize = 512;
+ }
+
+ if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
+ return -EINVAL;
+
+ if (req->pagesize % req->ecc.sectorsize)
+ return -EINVAL;
+
+ req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
+
+ max_eccbytes = req->ecc.bytes;
+
+ for (i = 0; i < pmecc->caps->nstrengths; i++) {
+ int nbytes, strength = pmecc->caps->strengths[i];
+
+ if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
+ strength < req->ecc.strength)
+ continue;
+
+ nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
+ 8);
+ nbytes *= req->ecc.nsectors;
+
+ if (nbytes > max_eccbytes)
+ break;
+
+ eccstrength = strength;
+ eccbytes = nbytes;
+
+ if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
+ break;
+ }
+
+ if (!eccstrength)
+ return -EINVAL;
+
+ req->ecc.bytes = eccbytes;
+ req->ecc.strength = eccstrength;
+
+ if (req->ecc.ooboffset < 0)
+ req->ecc.ooboffset = req->oobsize - eccbytes;
+
+ return 0;
+}
+
+struct atmel_pmecc_user *
+atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
+ struct atmel_pmecc_user_req *req)
+{
+ struct atmel_pmecc_user *user;
+ const struct atmel_pmecc_gf_tables *gf_tables;
+ int strength, size, ret;
+
+ ret = atmel_pmecc_prepare_user_req(pmecc, req);
+ if (ret)
+ return ERR_PTR(ret);
+
+ size = sizeof(*user);
+ size = ALIGN(size, sizeof(u16));
+ /* Reserve space for partial_syn, si and smu */
+ size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
+ (2 + req->ecc.strength + 2);
+ /* Reserve space for lmu. */
+ size += (req->ecc.strength + 1) * sizeof(u16);
+ /* Reserve space for mu, dmu and delta. */
+ size = ALIGN(size, sizeof(s32));
+ size += (req->ecc.strength + 1) * sizeof(s32);
+
+ user = kzalloc(size, GFP_KERNEL);
+ if (!user)
+ return ERR_PTR(-ENOMEM);
+
+ user->pmecc = pmecc;
+
+ user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
+ user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
+ user->lmu = user->si + ((2 * req->ecc.strength) + 1);
+ user->smu = user->lmu + (req->ecc.strength + 1);
+ user->mu = (s32 *)PTR_ALIGN(user->smu +
+ (((2 * req->ecc.strength) + 1) *
+ (req->ecc.strength + 2)),
+ sizeof(s32));
+ user->dmu = user->mu + req->ecc.strength + 1;
+ user->delta = user->dmu + req->ecc.strength + 1;
+
+ gf_tables = atmel_pmecc_get_gf_tables(req);
+ if (IS_ERR(gf_tables)) {
+ kfree(user);
+ return ERR_CAST(gf_tables);
+ }
+
+ user->gf_tables = gf_tables;
+
+ user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
+
+ for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
+ if (pmecc->caps->strengths[strength] == req->ecc.strength)
+ break;
+ }
+
+ user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
+ PMECC_CFG_NSECTORS(req->ecc.nsectors);
+
+ if (req->ecc.sectorsize == 1024)
+ user->cache.cfg |= PMECC_CFG_SECTOR1024;
+
+ user->cache.sarea = req->oobsize - 1;
+ user->cache.saddr = req->ecc.ooboffset;
+ user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
+
+ return user;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
+
+void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
+{
+ kfree(user);
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
+
+static int get_strength(struct atmel_pmecc_user *user)
+{
+ const int *strengths = user->pmecc->caps->strengths;
+
+ return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
+}
+
+static int get_sectorsize(struct atmel_pmecc_user *user)
+{
+ return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512;
+}
+
+static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
+{
+ int strength = get_strength(user);
+ u32 value;
+ int i;
+
+ /* Fill odd syndromes */
+ for (i = 0; i < strength; i++) {
+ value = readl_relaxed(user->pmecc->regs.base +
+ ATMEL_PMECC_REM(sector, i / 2));
+ if (i & 1)
+ value >>= 16;
+
+ user->partial_syn[(2 * i) + 1] = value;
+ }
+}
+
+static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
+{
+ int degree = get_sectorsize(user) == 512 ? 13 : 14;
+ int cw_len = BIT(degree) - 1;
+ int strength = get_strength(user);
+ s16 *alpha_to = user->gf_tables->alpha_to;
+ s16 *index_of = user->gf_tables->index_of;
+ s16 *partial_syn = user->partial_syn;
+ s16 *si;
+ int i, j;
+
+ /*
+ * si[] is a table that holds the current syndrome value,
+ * an element of that table belongs to the field
+ */
+ si = user->si;
+
+ memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
+
+ /* Computation 2t syndromes based on S(x) */
+ /* Odd syndromes */
+ for (i = 1; i < 2 * strength; i += 2) {
+ for (j = 0; j < degree; j++) {
+ if (partial_syn[i] & BIT(j))
+ si[i] = alpha_to[i * j] ^ si[i];
+ }
+ }
+ /* Even syndrome = (Odd syndrome) ** 2 */
+ for (i = 2, j = 1; j <= strength; i = ++j << 1) {
+ if (si[j] == 0) {
+ si[i] = 0;
+ } else {
+ s16 tmp;
+
+ tmp = index_of[si[j]];
+ tmp = (tmp * 2) % cw_len;
+ si[i] = alpha_to[tmp];
+ }
+ }
+}
+
+static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
+{
+ s16 *lmu = user->lmu;
+ s16 *si = user->si;
+ s32 *mu = user->mu;
+ s32 *dmu = user->dmu;
+ s32 *delta = user->delta;
+ int degree = get_sectorsize(user) == 512 ? 13 : 14;
+ int cw_len = BIT(degree) - 1;
+ int strength = get_strength(user);
+ int num = 2 * strength + 1;
+ s16 *index_of = user->gf_tables->index_of;
+ s16 *alpha_to = user->gf_tables->alpha_to;
+ int i, j, k;
+ u32 dmu_0_count, tmp;
+ s16 *smu = user->smu;
+
+ /* index of largest delta */
+ int ro;
+ int largest;
+ int diff;
+
+ dmu_0_count = 0;
+
+ /* First Row */
+
+ /* Mu */
+ mu[0] = -1;
+
+ memset(smu, 0, sizeof(s16) * num);
+ smu[0] = 1;
+
+ /* discrepancy set to 1 */
+ dmu[0] = 1;
+ /* polynom order set to 0 */
+ lmu[0] = 0;
+ delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
+
+ /* Second Row */
+
+ /* Mu */
+ mu[1] = 0;
+ /* Sigma(x) set to 1 */
+ memset(&smu[num], 0, sizeof(s16) * num);
+ smu[num] = 1;
+
+ /* discrepancy set to S1 */
+ dmu[1] = si[1];
+
+ /* polynom order set to 0 */
+ lmu[1] = 0;
+
+ delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
+
+ /* Init the Sigma(x) last row */
+ memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
+
+ for (i = 1; i <= strength; i++) {
+ mu[i + 1] = i << 1;
+ /* Begin Computing Sigma (Mu+1) and L(mu) */
+ /* check if discrepancy is set to 0 */
+ if (dmu[i] == 0) {
+ dmu_0_count++;
+
+ tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
+ if ((strength - (lmu[i] >> 1) - 1) & 0x1)
+ tmp += 2;
+ else
+ tmp += 1;
+
+ if (dmu_0_count == tmp) {
+ for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+ smu[(strength + 1) * num + j] =
+ smu[i * num + j];
+
+ lmu[strength + 1] = lmu[i];
+ return;
+ }
+
+ /* copy polynom */
+ for (j = 0; j <= lmu[i] >> 1; j++)
+ smu[(i + 1) * num + j] = smu[i * num + j];
+
+ /* copy previous polynom order to the next */
+ lmu[i + 1] = lmu[i];
+ } else {
+ ro = 0;
+ largest = -1;
+ /* find largest delta with dmu != 0 */
+ for (j = 0; j < i; j++) {
+ if ((dmu[j]) && (delta[j] > largest)) {
+ largest = delta[j];
+ ro = j;
+ }
+ }
+
+ /* compute difference */
+ diff = (mu[i] - mu[ro]);
+
+ /* Compute degree of the new smu polynomial */
+ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+ lmu[i + 1] = lmu[i];
+ else
+ lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+ /* Init smu[i+1] with 0 */
+ for (k = 0; k < num; k++)
+ smu[(i + 1) * num + k] = 0;
+
+ /* Compute smu[i+1] */
+ for (k = 0; k <= lmu[ro] >> 1; k++) {
+ s16 a, b, c;
+
+ if (!(smu[ro * num + k] && dmu[i]))
+ continue;
+
+ a = index_of[dmu[i]];
+ b = index_of[dmu[ro]];
+ c = index_of[smu[ro * num + k]];
+ tmp = a + (cw_len - b) + c;
+ a = alpha_to[tmp % cw_len];
+ smu[(i + 1) * num + (k + diff)] = a;
+ }
+
+ for (k = 0; k <= lmu[i] >> 1; k++)
+ smu[(i + 1) * num + k] ^= smu[i * num + k];
+ }
+
+ /* End Computing Sigma (Mu+1) and L(mu) */
+ /* In either case compute delta */
+ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+ /* Do not compute discrepancy for the last iteration */
+ if (i >= strength)
+ continue;
+
+ for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+ tmp = 2 * (i - 1);
+ if (k == 0) {
+ dmu[i + 1] = si[tmp + 3];
+ } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+ s16 a, b, c;
+
+ a = index_of[smu[(i + 1) * num + k]];
+ b = si[2 * (i - 1) + 3 - k];
+ c = index_of[b];
+ tmp = a + c;
+ tmp %= cw_len;
+ dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
+ }
+ }
+ }
+}
+
+static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
+{
+ int sector_size = get_sectorsize(user);
+ int degree = sector_size == 512 ? 13 : 14;
+ struct atmel_pmecc *pmecc = user->pmecc;
+ int strength = get_strength(user);
+ int ret, roots_nbr, i, err_nbr = 0;
+ int num = (2 * strength) + 1;
+ s16 *smu = user->smu;
+ u32 val;
+
+ writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
+
+ for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
+ writel_relaxed(smu[(strength + 1) * num + i],
+ pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
+ err_nbr++;
+ }
+
+ val = (err_nbr - 1) << 16;
+ if (sector_size == 1024)
+ val |= 1;
+
+ writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
+ writel((sector_size * 8) + (degree * strength),
+ pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
+
+ ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
+ ATMEL_PMERRLOC_ELISR,
+ val, val & PMERRLOC_CALC_DONE, 0,
+ PMECC_MAX_TIMEOUT_MS * 1000);
+ if (ret) {
+ dev_err(pmecc->dev,
+ "PMECC: Timeout to calculate error location.\n");
+ return ret;
+ }
+
+ roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
+ /* Number of roots == degree of smu hence <= cap */
+ if (roots_nbr == user->lmu[strength + 1] >> 1)
+ return err_nbr - 1;
+
+ /*
+ * Number of roots does not match the degree of smu
+ * unable to correct error.
+ */
+ return -EBADMSG;
+}
+
+int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
+ void *data, void *ecc)
+{
+ struct atmel_pmecc *pmecc = user->pmecc;
+ int sectorsize = get_sectorsize(user);
+ int eccbytes = user->eccbytes;
+ int i, nerrors;
+
+ if (!(user->isr & BIT(sector)))
+ return 0;
+
+ atmel_pmecc_gen_syndrome(user, sector);
+ atmel_pmecc_substitute(user);
+ atmel_pmecc_get_sigma(user);
+
+ nerrors = atmel_pmecc_err_location(user);
+ if (nerrors < 0)
+ return nerrors;
+
+ for (i = 0; i < nerrors; i++) {
+ const char *area;
+ int byte, bit;
+ u32 errpos;
+ u8 *ptr;
+
+ errpos = readl_relaxed(pmecc->regs.errloc +
+ ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
+ errpos--;
+
+ byte = errpos / 8;
+ bit = errpos % 8;
+
+ if (byte < sectorsize) {
+ ptr = data + byte;
+ area = "data";
+ } else if (byte < sectorsize + eccbytes) {
+ ptr = ecc + byte - sectorsize;
+ area = "ECC";
+ } else {
+ dev_dbg(pmecc->dev,
+ "Invalid errpos value (%d, max is %d)\n",
+ errpos, (sectorsize + eccbytes) * 8);
+ return -EINVAL;
+ }
+
+ dev_dbg(pmecc->dev,
+ "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
+ area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
+
+ *ptr ^= BIT(bit);
+ }
+
+ return nerrors;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
+
+bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
+{
+ return user->pmecc->caps->correct_erased_chunks;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
+
+void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
+ int sector, void *ecc)
+{
+ struct atmel_pmecc *pmecc = user->pmecc;
+ u8 *ptr = ecc;
+ int i;
+
+ for (i = 0; i < user->eccbytes; i++)
+ ptr[i] = readb_relaxed(pmecc->regs.base +
+ ATMEL_PMECC_ECC(sector, i));
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
+
+int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
+{
+ struct atmel_pmecc *pmecc = user->pmecc;
+ u32 cfg;
+
+ if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
+ dev_err(pmecc->dev, "Bad ECC operation!");
+ return -EINVAL;
+ }
+
+ mutex_lock(&user->pmecc->lock);
+
+ cfg = user->cache.cfg;
+ if (op == NAND_ECC_WRITE)
+ cfg |= PMECC_CFG_WRITE_OP;
+ else
+ cfg |= PMECC_CFG_AUTO_ENABLE;
+
+ writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
+ writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
+ writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
+ writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
+
+ writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
+ writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
+
+void atmel_pmecc_disable(struct atmel_pmecc_user *user)
+{
+ struct atmel_pmecc *pmecc = user->pmecc;
+
+ writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
+ writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
+ mutex_unlock(&user->pmecc->lock);
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
+
+int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
+{
+ struct atmel_pmecc *pmecc = user->pmecc;
+ u32 status;
+ int ret;
+
+ ret = readl_relaxed_poll_timeout(pmecc->regs.base +
+ ATMEL_PMECC_SR,
+ status, !(status & PMECC_SR_BUSY), 0,
+ PMECC_MAX_TIMEOUT_MS * 1000);
+ if (ret) {
+ dev_err(pmecc->dev,
+ "Timeout while waiting for PMECC ready.\n");
+ return ret;
+ }
+
+ user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
+
+static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
+ const struct atmel_pmecc_caps *caps,
+ int pmecc_res_idx, int errloc_res_idx)
+{
+ struct device *dev = &pdev->dev;
+ struct atmel_pmecc *pmecc;
+ struct resource *res;
+
+ pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
+ if (!pmecc)
+ return ERR_PTR(-ENOMEM);
+
+ pmecc->caps = caps;
+ pmecc->dev = dev;
+ mutex_init(&pmecc->lock);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx);
+ pmecc->regs.base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(pmecc->regs.base))
+ return ERR_CAST(pmecc->regs.base);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx);
+ pmecc->regs.errloc = devm_ioremap_resource(dev, res);
+ if (IS_ERR(pmecc->regs.errloc))
+ return ERR_CAST(pmecc->regs.errloc);
+
+ /* Disable all interrupts before registering the PMECC handler. */
+ writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
+
+ /* Reset the ECC engine */
+ writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
+ writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
+
+ return pmecc;
+}
+
+static void devm_atmel_pmecc_put(struct device *dev, void *res)
+{
+ struct atmel_pmecc **pmecc = res;
+
+ put_device((*pmecc)->dev);
+}
+
+static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
+ struct device_node *np)
+{
+ struct platform_device *pdev;
+ struct atmel_pmecc *pmecc, **ptr;
+
+ pdev = of_find_device_by_node(np);
+ if (!pdev || !platform_get_drvdata(pdev))
+ return ERR_PTR(-EPROBE_DEFER);
+
+ ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
+ if (!ptr)
+ return ERR_PTR(-ENOMEM);
+
+ get_device(&pdev->dev);
+ pmecc = platform_get_drvdata(pdev);
+
+ *ptr = pmecc;
+
+ devres_add(userdev, ptr);
+
+ return pmecc;
+}
+
+static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
+
+static struct atmel_pmecc_caps at91sam9g45_caps = {
+ .strengths = atmel_pmecc_strengths,
+ .nstrengths = 5,
+ .el_offset = 0x8c,
+};
+
+static struct atmel_pmecc_caps sama5d4_caps = {
+ .strengths = atmel_pmecc_strengths,
+ .nstrengths = 5,
+ .el_offset = 0x8c,
+ .correct_erased_chunks = true,
+};
+
+static struct atmel_pmecc_caps sama5d2_caps = {
+ .strengths = atmel_pmecc_strengths,
+ .nstrengths = 6,
+ .el_offset = 0xac,
+ .correct_erased_chunks = true,
+};
+
+static const struct of_device_id atmel_pmecc_legacy_match[] = {
+ { .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
+ { .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
+ { /* sentinel */ }
+};
+
+struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
+{
+ struct atmel_pmecc *pmecc;
+ struct device_node *np;
+
+ if (!userdev)
+ return ERR_PTR(-EINVAL);
+
+ if (!userdev->of_node)
+ return NULL;
+
+ np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
+ if (np) {
+ pmecc = atmel_pmecc_get_by_node(userdev, np);
+ of_node_put(np);
+ } else {
+ /*
+ * Support old DT bindings: in this case the PMECC iomem
+ * resources are directly defined in the user pdev at position
+ * 1 and 2. Extract all relevant information from there.
+ */
+ struct platform_device *pdev = to_platform_device(userdev);
+ const struct atmel_pmecc_caps *caps;
+
+ /* No PMECC engine available. */
+ if (!of_property_read_bool(userdev->of_node,
+ "atmel,has-pmecc"))
+ return NULL;
+
+ caps = &at91sam9g45_caps;
+
+ /*
+ * Try to find the NFC subnode and extract the associated caps
+ * from there.
+ */
+ np = of_find_compatible_node(userdev->of_node, NULL,
+ "atmel,sama5d3-nfc");
+ if (np) {
+ const struct of_device_id *match;
+
+ match = of_match_node(atmel_pmecc_legacy_match, np);
+ if (match && match->data)
+ caps = match->data;
+
+ of_node_put(np);
+ }
+
+ pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
+ }
+
+ return pmecc;
+}
+EXPORT_SYMBOL(devm_atmel_pmecc_get);
+
+static const struct of_device_id atmel_pmecc_match[] = {
+ { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
+ { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
+ { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
+
+static int atmel_pmecc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ const struct atmel_pmecc_caps *caps;
+ struct atmel_pmecc *pmecc;
+
+ caps = of_device_get_match_data(&pdev->dev);
+ if (!caps) {
+ dev_err(dev, "Invalid caps\n");
+ return -EINVAL;
+ }
+
+ pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
+ if (IS_ERR(pmecc))
+ return PTR_ERR(pmecc);
+
+ platform_set_drvdata(pdev, pmecc);
+
+ return 0;
+}
+
+static struct platform_driver atmel_pmecc_driver = {
+ .driver = {
+ .name = "atmel-pmecc",
+ .of_match_table = of_match_ptr(atmel_pmecc_match),
+ },
+ .probe = atmel_pmecc_probe,
+};
+module_platform_driver(atmel_pmecc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_DESCRIPTION("PMECC engine driver");
+MODULE_ALIAS("platform:atmel_pmecc");
diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/atmel/pmecc.h
new file mode 100644
index 000000000000..a8ddbfca2ea5
--- /dev/null
+++ b/drivers/mtd/nand/atmel/pmecc.h
@@ -0,0 +1,73 @@
+/*
+ * © Copyright 2016 ATMEL
+ * © Copyright 2016 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ * Copyright © 2003 Rick Bronson
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
+ *
+ * Derived from Das U-Boot source code
+ * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ * © Copyright 2012 ATMEL, Hong Xu
+ *
+ * Add Nand Flash Controller support for SAMA5 SoC
+ * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#ifndef ATMEL_PMECC_H
+#define ATMEL_PMECC_H
+
+#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0
+#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0
+#define ATMEL_PMECC_OOBOFFSET_AUTO -1
+
+struct atmel_pmecc_user_req {
+ int pagesize;
+ int oobsize;
+ struct {
+ int strength;
+ int bytes;
+ int sectorsize;
+ int nsectors;
+ int ooboffset;
+ } ecc;
+};
+
+struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev);
+
+struct atmel_pmecc_user *
+atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
+ struct atmel_pmecc_user_req *req);
+void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user);
+
+int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op);
+void atmel_pmecc_disable(struct atmel_pmecc_user *user);
+int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user);
+int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
+ void *data, void *ecc);
+bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user);
+void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
+ int sector, void *ecc);
+
+#endif /* ATMEL_PMECC_H */
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c
deleted file mode 100644
index 9ebd5ecefea6..000000000000
--- a/drivers/mtd/nand/atmel_nand.c
+++ /dev/null
@@ -1,2479 +0,0 @@
-/*
- * Copyright © 2003 Rick Bronson
- *
- * Derived from drivers/mtd/nand/autcpu12.c
- * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
- *
- * Derived from drivers/mtd/spia.c
- * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
- *
- *
- * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
- * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
- *
- * Derived from Das U-Boot source code
- * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
- * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
- *
- * Add Programmable Multibit ECC support for various AT91 SoC
- * © Copyright 2012 ATMEL, Hong Xu
- *
- * Add Nand Flash Controller support for SAMA5 SoC
- * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- */
-
-#include <linux/clk.h>
-#include <linux/dma-mapping.h>
-#include <linux/slab.h>
-#include <linux/module.h>
-#include <linux/moduleparam.h>
-#include <linux/platform_device.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/of_gpio.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/delay.h>
-#include <linux/dmaengine.h>
-#include <linux/gpio.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/platform_data/atmel.h>
-
-static int use_dma = 1;
-module_param(use_dma, int, 0);
-
-static int on_flash_bbt = 0;
-module_param(on_flash_bbt, int, 0);
-
-/* Register access macros */
-#define ecc_readl(add, reg) \
- __raw_readl(add + ATMEL_ECC_##reg)
-#define ecc_writel(add, reg, value) \
- __raw_writel((value), add + ATMEL_ECC_##reg)
-
-#include "atmel_nand_ecc.h" /* Hardware ECC registers */
-#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
-
-struct atmel_nand_caps {
- bool pmecc_correct_erase_page;
- uint8_t pmecc_max_correction;
-};
-
-/*
- * oob layout for large page size
- * bad block info is on bytes 0 and 1
- * the bytes have to be consecutives to avoid
- * several NAND_CMD_RNDOUT during read
- *
- * oob layout for small page size
- * bad block info is on bytes 4 and 5
- * the bytes have to be consecutives to avoid
- * several NAND_CMD_RNDOUT during read
- */
-static int atmel_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->length = 4;
- oobregion->offset = 0;
-
- return 0;
-}
-
-static int atmel_ooblayout_free_sp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section)
- return -ERANGE;
-
- oobregion->offset = 6;
- oobregion->length = mtd->oobsize - oobregion->offset;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops atmel_ooblayout_sp_ops = {
- .ecc = atmel_ooblayout_ecc_sp,
- .free = atmel_ooblayout_free_sp,
-};
-
-struct atmel_nfc {
- void __iomem *base_cmd_regs;
- void __iomem *hsmc_regs;
- void *sram_bank0;
- dma_addr_t sram_bank0_phys;
- bool use_nfc_sram;
- bool write_by_sram;
-
- struct clk *clk;
-
- bool is_initialized;
- struct completion comp_ready;
- struct completion comp_cmd_done;
- struct completion comp_xfer_done;
-
- /* Point to the sram bank which include readed data via NFC */
- void *data_in_sram;
- bool will_write_sram;
-};
-static struct atmel_nfc nand_nfc;
-
-struct atmel_nand_host {
- struct nand_chip nand_chip;
- void __iomem *io_base;
- dma_addr_t io_phys;
- struct atmel_nand_data board;
- struct device *dev;
- void __iomem *ecc;
-
- struct completion comp;
- struct dma_chan *dma_chan;
-
- struct atmel_nfc *nfc;
-
- const struct atmel_nand_caps *caps;
- bool has_pmecc;
- u8 pmecc_corr_cap;
- u16 pmecc_sector_size;
- bool has_no_lookup_table;
- u32 pmecc_lookup_table_offset;
- u32 pmecc_lookup_table_offset_512;
- u32 pmecc_lookup_table_offset_1024;
-
- int pmecc_degree; /* Degree of remainders */
- int pmecc_cw_len; /* Length of codeword */
-
- void __iomem *pmerrloc_base;
- void __iomem *pmerrloc_el_base;
- void __iomem *pmecc_rom_base;
-
- /* lookup table for alpha_to and index_of */
- void __iomem *pmecc_alpha_to;
- void __iomem *pmecc_index_of;
-
- /* data for pmecc computation */
- int16_t *pmecc_partial_syn;
- int16_t *pmecc_si;
- int16_t *pmecc_smu; /* Sigma table */
- int16_t *pmecc_lmu; /* polynomal order */
- int *pmecc_mu;
- int *pmecc_dmu;
- int *pmecc_delta;
-};
-
-/*
- * Enable NAND.
- */
-static void atmel_nand_enable(struct atmel_nand_host *host)
-{
- if (gpio_is_valid(host->board.enable_pin))
- gpio_set_value(host->board.enable_pin, 0);
-}
-
-/*
- * Disable NAND.
- */
-static void atmel_nand_disable(struct atmel_nand_host *host)
-{
- if (gpio_is_valid(host->board.enable_pin))
- gpio_set_value(host->board.enable_pin, 1);
-}
-
-/*
- * Hardware specific access to control-lines
- */
-static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- if (ctrl & NAND_CTRL_CHANGE) {
- if (ctrl & NAND_NCE)
- atmel_nand_enable(host);
- else
- atmel_nand_disable(host);
- }
- if (cmd == NAND_CMD_NONE)
- return;
-
- if (ctrl & NAND_CLE)
- writeb(cmd, host->io_base + (1 << host->board.cle));
- else
- writeb(cmd, host->io_base + (1 << host->board.ale));
-}
-
-/*
- * Read the Device Ready pin.
- */
-static int atmel_nand_device_ready(struct mtd_info *mtd)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- return gpio_get_value(host->board.rdy_pin) ^
- !!host->board.rdy_pin_active_low;
-}
-
-/* Set up for hardware ready pin and enable pin. */
-static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- int res = 0;
-
- if (gpio_is_valid(host->board.rdy_pin)) {
- res = devm_gpio_request(host->dev,
- host->board.rdy_pin, "nand_rdy");
- if (res < 0) {
- dev_err(host->dev,
- "can't request rdy gpio %d\n",
- host->board.rdy_pin);
- return res;
- }
-
- res = gpio_direction_input(host->board.rdy_pin);
- if (res < 0) {
- dev_err(host->dev,
- "can't request input direction rdy gpio %d\n",
- host->board.rdy_pin);
- return res;
- }
-
- chip->dev_ready = atmel_nand_device_ready;
- }
-
- if (gpio_is_valid(host->board.enable_pin)) {
- res = devm_gpio_request(host->dev,
- host->board.enable_pin, "nand_enable");
- if (res < 0) {
- dev_err(host->dev,
- "can't request enable gpio %d\n",
- host->board.enable_pin);
- return res;
- }
-
- res = gpio_direction_output(host->board.enable_pin, 1);
- if (res < 0) {
- dev_err(host->dev,
- "can't request output direction enable gpio %d\n",
- host->board.enable_pin);
- return res;
- }
- }
-
- return res;
-}
-
-/*
- * Minimal-overhead PIO for data access.
- */
-static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
- memcpy(buf, host->nfc->data_in_sram, len);
- host->nfc->data_in_sram += len;
- } else {
- __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
- }
-}
-
-static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
- memcpy(buf, host->nfc->data_in_sram, len);
- host->nfc->data_in_sram += len;
- } else {
- __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
- }
-}
-
-static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
-
- __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
-}
-
-static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
-
- __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
-}
-
-static void dma_complete_func(void *completion)
-{
- complete(completion);
-}
-
-static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
-{
- /* NFC only has two banks. Must be 0 or 1 */
- if (bank > 1)
- return -EINVAL;
-
- if (bank) {
- struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
-
- /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
- if (mtd->writesize > 2048)
- return -EINVAL;
- nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
- } else {
- nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
- }
-
- return 0;
-}
-
-static uint nfc_get_sram_off(struct atmel_nand_host *host)
-{
- if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
- return NFC_SRAM_BANK1_OFFSET;
- else
- return 0;
-}
-
-static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
-{
- if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
- return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
- else
- return host->nfc->sram_bank0_phys;
-}
-
-static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
- int is_read)
-{
- struct dma_device *dma_dev;
- enum dma_ctrl_flags flags;
- dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
- struct dma_async_tx_descriptor *tx = NULL;
- dma_cookie_t cookie;
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- void *p = buf;
- int err = -EIO;
- enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
- struct atmel_nfc *nfc = host->nfc;
-
- if (buf >= high_memory)
- goto err_buf;
-
- dma_dev = host->dma_chan->device;
-
- flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
-
- phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
- if (dma_mapping_error(dma_dev->dev, phys_addr)) {
- dev_err(host->dev, "Failed to dma_map_single\n");
- goto err_buf;
- }
-
- if (is_read) {
- if (nfc && nfc->data_in_sram)
- dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
- - (nfc->sram_bank0 + nfc_get_sram_off(host)));
- else
- dma_src_addr = host->io_phys;
-
- dma_dst_addr = phys_addr;
- } else {
- dma_src_addr = phys_addr;
-
- if (nfc && nfc->write_by_sram)
- dma_dst_addr = nfc_sram_phys(host);
- else
- dma_dst_addr = host->io_phys;
- }
-
- tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
- dma_src_addr, len, flags);
- if (!tx) {
- dev_err(host->dev, "Failed to prepare DMA memcpy\n");
- goto err_dma;
- }
-
- init_completion(&host->comp);
- tx->callback = dma_complete_func;
- tx->callback_param = &host->comp;
-
- cookie = tx->tx_submit(tx);
- if (dma_submit_error(cookie)) {
- dev_err(host->dev, "Failed to do DMA tx_submit\n");
- goto err_dma;
- }
-
- dma_async_issue_pending(host->dma_chan);
- wait_for_completion(&host->comp);
-
- if (is_read && nfc && nfc->data_in_sram)
- /* After read data from SRAM, need to increase the position */
- nfc->data_in_sram += len;
-
- err = 0;
-
-err_dma:
- dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
-err_buf:
- if (err != 0)
- dev_dbg(host->dev, "Fall back to CPU I/O\n");
- return err;
-}
-
-static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- if (use_dma && len > mtd->oobsize)
- /* only use DMA for bigger than oob size: better performances */
- if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
- return;
-
- if (chip->options & NAND_BUSWIDTH_16)
- atmel_read_buf16(mtd, buf, len);
- else
- atmel_read_buf8(mtd, buf, len);
-}
-
-static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- if (use_dma && len > mtd->oobsize)
- /* only use DMA for bigger than oob size: better performances */
- if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
- return;
-
- if (chip->options & NAND_BUSWIDTH_16)
- atmel_write_buf16(mtd, buf, len);
- else
- atmel_write_buf8(mtd, buf, len);
-}
-
-/*
- * Return number of ecc bytes per sector according to sector size and
- * correction capability
- *
- * Following table shows what at91 PMECC supported:
- * Correction Capability Sector_512_bytes Sector_1024_bytes
- * ===================== ================ =================
- * 2-bits 4-bytes 4-bytes
- * 4-bits 7-bytes 7-bytes
- * 8-bits 13-bytes 14-bytes
- * 12-bits 20-bytes 21-bytes
- * 24-bits 39-bytes 42-bytes
- * 32-bits 52-bytes 56-bytes
- */
-static int pmecc_get_ecc_bytes(int cap, int sector_size)
-{
- int m = 12 + sector_size / 512;
- return (m * cap + 7) / 8;
-}
-
-static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
-{
- int table_size;
-
- table_size = host->pmecc_sector_size == 512 ?
- PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
-
- return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
- table_size * sizeof(int16_t);
-}
-
-static int pmecc_data_alloc(struct atmel_nand_host *host)
-{
- const int cap = host->pmecc_corr_cap;
- int size;
-
- size = (2 * cap + 1) * sizeof(int16_t);
- host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
- host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
- host->pmecc_lmu = devm_kzalloc(host->dev,
- (cap + 1) * sizeof(int16_t), GFP_KERNEL);
- host->pmecc_smu = devm_kzalloc(host->dev,
- (cap + 2) * size, GFP_KERNEL);
-
- size = (cap + 1) * sizeof(int);
- host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
- host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
- host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
-
- if (!host->pmecc_partial_syn ||
- !host->pmecc_si ||
- !host->pmecc_lmu ||
- !host->pmecc_smu ||
- !host->pmecc_mu ||
- !host->pmecc_dmu ||
- !host->pmecc_delta)
- return -ENOMEM;
-
- return 0;
-}
-
-static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- int i;
- uint32_t value;
-
- /* Fill odd syndromes */
- for (i = 0; i < host->pmecc_corr_cap; i++) {
- value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
- if (i & 1)
- value >>= 16;
- value &= 0xffff;
- host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
- }
-}
-
-static void pmecc_substitute(struct mtd_info *mtd)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- int16_t __iomem *alpha_to = host->pmecc_alpha_to;
- int16_t __iomem *index_of = host->pmecc_index_of;
- int16_t *partial_syn = host->pmecc_partial_syn;
- const int cap = host->pmecc_corr_cap;
- int16_t *si;
- int i, j;
-
- /* si[] is a table that holds the current syndrome value,
- * an element of that table belongs to the field
- */
- si = host->pmecc_si;
-
- memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
-
- /* Computation 2t syndromes based on S(x) */
- /* Odd syndromes */
- for (i = 1; i < 2 * cap; i += 2) {
- for (j = 0; j < host->pmecc_degree; j++) {
- if (partial_syn[i] & ((unsigned short)0x1 << j))
- si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
- }
- }
- /* Even syndrome = (Odd syndrome) ** 2 */
- for (i = 2, j = 1; j <= cap; i = ++j << 1) {
- if (si[j] == 0) {
- si[i] = 0;
- } else {
- int16_t tmp;
-
- tmp = readw_relaxed(index_of + si[j]);
- tmp = (tmp * 2) % host->pmecc_cw_len;
- si[i] = readw_relaxed(alpha_to + tmp);
- }
- }
-
- return;
-}
-
-static void pmecc_get_sigma(struct mtd_info *mtd)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- int16_t *lmu = host->pmecc_lmu;
- int16_t *si = host->pmecc_si;
- int *mu = host->pmecc_mu;
- int *dmu = host->pmecc_dmu; /* Discrepancy */
- int *delta = host->pmecc_delta; /* Delta order */
- int cw_len = host->pmecc_cw_len;
- const int16_t cap = host->pmecc_corr_cap;
- const int num = 2 * cap + 1;
- int16_t __iomem *index_of = host->pmecc_index_of;
- int16_t __iomem *alpha_to = host->pmecc_alpha_to;
- int i, j, k;
- uint32_t dmu_0_count, tmp;
- int16_t *smu = host->pmecc_smu;
-
- /* index of largest delta */
- int ro;
- int largest;
- int diff;
-
- dmu_0_count = 0;
-
- /* First Row */
-
- /* Mu */
- mu[0] = -1;
-
- memset(smu, 0, sizeof(int16_t) * num);
- smu[0] = 1;
-
- /* discrepancy set to 1 */
- dmu[0] = 1;
- /* polynom order set to 0 */
- lmu[0] = 0;
- delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
-
- /* Second Row */
-
- /* Mu */
- mu[1] = 0;
- /* Sigma(x) set to 1 */
- memset(&smu[num], 0, sizeof(int16_t) * num);
- smu[num] = 1;
-
- /* discrepancy set to S1 */
- dmu[1] = si[1];
-
- /* polynom order set to 0 */
- lmu[1] = 0;
-
- delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
-
- /* Init the Sigma(x) last row */
- memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
-
- for (i = 1; i <= cap; i++) {
- mu[i + 1] = i << 1;
- /* Begin Computing Sigma (Mu+1) and L(mu) */
- /* check if discrepancy is set to 0 */
- if (dmu[i] == 0) {
- dmu_0_count++;
-
- tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
- if ((cap - (lmu[i] >> 1) - 1) & 0x1)
- tmp += 2;
- else
- tmp += 1;
-
- if (dmu_0_count == tmp) {
- for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
- smu[(cap + 1) * num + j] =
- smu[i * num + j];
-
- lmu[cap + 1] = lmu[i];
- return;
- }
-
- /* copy polynom */
- for (j = 0; j <= lmu[i] >> 1; j++)
- smu[(i + 1) * num + j] = smu[i * num + j];
-
- /* copy previous polynom order to the next */
- lmu[i + 1] = lmu[i];
- } else {
- ro = 0;
- largest = -1;
- /* find largest delta with dmu != 0 */
- for (j = 0; j < i; j++) {
- if ((dmu[j]) && (delta[j] > largest)) {
- largest = delta[j];
- ro = j;
- }
- }
-
- /* compute difference */
- diff = (mu[i] - mu[ro]);
-
- /* Compute degree of the new smu polynomial */
- if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
- lmu[i + 1] = lmu[i];
- else
- lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
-
- /* Init smu[i+1] with 0 */
- for (k = 0; k < num; k++)
- smu[(i + 1) * num + k] = 0;
-
- /* Compute smu[i+1] */
- for (k = 0; k <= lmu[ro] >> 1; k++) {
- int16_t a, b, c;
-
- if (!(smu[ro * num + k] && dmu[i]))
- continue;
- a = readw_relaxed(index_of + dmu[i]);
- b = readw_relaxed(index_of + dmu[ro]);
- c = readw_relaxed(index_of + smu[ro * num + k]);
- tmp = a + (cw_len - b) + c;
- a = readw_relaxed(alpha_to + tmp % cw_len);
- smu[(i + 1) * num + (k + diff)] = a;
- }
-
- for (k = 0; k <= lmu[i] >> 1; k++)
- smu[(i + 1) * num + k] ^= smu[i * num + k];
- }
-
- /* End Computing Sigma (Mu+1) and L(mu) */
- /* In either case compute delta */
- delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
-
- /* Do not compute discrepancy for the last iteration */
- if (i >= cap)
- continue;
-
- for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
- tmp = 2 * (i - 1);
- if (k == 0) {
- dmu[i + 1] = si[tmp + 3];
- } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
- int16_t a, b, c;
- a = readw_relaxed(index_of +
- smu[(i + 1) * num + k]);
- b = si[2 * (i - 1) + 3 - k];
- c = readw_relaxed(index_of + b);
- tmp = a + c;
- tmp %= cw_len;
- dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
- dmu[i + 1];
- }
- }
- }
-
- return;
-}
-
-static int pmecc_err_location(struct mtd_info *mtd)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- unsigned long end_time;
- const int cap = host->pmecc_corr_cap;
- const int num = 2 * cap + 1;
- int sector_size = host->pmecc_sector_size;
- int err_nbr = 0; /* number of error */
- int roots_nbr; /* number of roots */
- int i;
- uint32_t val;
- int16_t *smu = host->pmecc_smu;
-
- pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
-
- for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
- pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
- smu[(cap + 1) * num + i]);
- err_nbr++;
- }
-
- val = (err_nbr - 1) << 16;
- if (sector_size == 1024)
- val |= 1;
-
- pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
- pmerrloc_writel(host->pmerrloc_base, ELEN,
- sector_size * 8 + host->pmecc_degree * cap);
-
- end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
- while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
- & PMERRLOC_CALC_DONE)) {
- if (unlikely(time_after(jiffies, end_time))) {
- dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
- return -1;
- }
- cpu_relax();
- }
-
- roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
- & PMERRLOC_ERR_NUM_MASK) >> 8;
- /* Number of roots == degree of smu hence <= cap */
- if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
- return err_nbr - 1;
-
- /* Number of roots does not match the degree of smu
- * unable to correct error */
- return -1;
-}
-
-static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
- int sector_num, int extra_bytes, int err_nbr)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- int i = 0;
- int byte_pos, bit_pos, sector_size, pos;
- uint32_t tmp;
- uint8_t err_byte;
-
- sector_size = host->pmecc_sector_size;
-
- while (err_nbr) {
- tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_el_base, i) - 1;
- byte_pos = tmp / 8;
- bit_pos = tmp % 8;
-
- if (byte_pos >= (sector_size + extra_bytes))
- BUG(); /* should never happen */
-
- if (byte_pos < sector_size) {
- err_byte = *(buf + byte_pos);
- *(buf + byte_pos) ^= (1 << bit_pos);
-
- pos = sector_num * host->pmecc_sector_size + byte_pos;
- dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
- pos, bit_pos, err_byte, *(buf + byte_pos));
- } else {
- struct mtd_oob_region oobregion;
-
- /* Bit flip in OOB area */
- tmp = sector_num * nand_chip->ecc.bytes
- + (byte_pos - sector_size);
- err_byte = ecc[tmp];
- ecc[tmp] ^= (1 << bit_pos);
-
- mtd_ooblayout_ecc(mtd, 0, &oobregion);
- pos = tmp + oobregion.offset;
- dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
- pos, bit_pos, err_byte, ecc[tmp]);
- }
-
- i++;
- err_nbr--;
- }
-
- return;
-}
-
-static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
- u8 *ecc)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- int i, err_nbr;
- uint8_t *buf_pos;
- int max_bitflips = 0;
-
- for (i = 0; i < nand_chip->ecc.steps; i++) {
- err_nbr = 0;
- if (pmecc_stat & 0x1) {
- buf_pos = buf + i * host->pmecc_sector_size;
-
- pmecc_gen_syndrome(mtd, i);
- pmecc_substitute(mtd);
- pmecc_get_sigma(mtd);
-
- err_nbr = pmecc_err_location(mtd);
- if (err_nbr >= 0) {
- pmecc_correct_data(mtd, buf_pos, ecc, i,
- nand_chip->ecc.bytes,
- err_nbr);
- } else if (!host->caps->pmecc_correct_erase_page) {
- u8 *ecc_pos = ecc + (i * nand_chip->ecc.bytes);
-
- /* Try to detect erased pages */
- err_nbr = nand_check_erased_ecc_chunk(buf_pos,
- host->pmecc_sector_size,
- ecc_pos,
- nand_chip->ecc.bytes,
- NULL, 0,
- nand_chip->ecc.strength);
- }
-
- if (err_nbr < 0) {
- dev_err(host->dev, "PMECC: Too many errors\n");
- mtd->ecc_stats.failed++;
- return -EIO;
- }
-
- mtd->ecc_stats.corrected += err_nbr;
- max_bitflips = max_t(int, max_bitflips, err_nbr);
- }
- pmecc_stat >>= 1;
- }
-
- return max_bitflips;
-}
-
-static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
-{
- u32 val;
-
- if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
- dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
- return;
- }
-
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
- val = pmecc_readl_relaxed(host->ecc, CFG);
-
- if (ecc_op == NAND_ECC_READ)
- pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
- | PMECC_CFG_AUTO_ENABLE);
- else
- pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
- & ~PMECC_CFG_AUTO_ENABLE);
-
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
-}
-
-static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
- struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
-{
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- int eccsize = chip->ecc.size * chip->ecc.steps;
- uint8_t *oob = chip->oob_poi;
- uint32_t stat;
- unsigned long end_time;
- int bitflips = 0;
-
- if (!host->nfc || !host->nfc->use_nfc_sram)
- pmecc_enable(host, NAND_ECC_READ);
-
- chip->read_buf(mtd, buf, eccsize);
- chip->read_buf(mtd, oob, mtd->oobsize);
-
- end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
- while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
- if (unlikely(time_after(jiffies, end_time))) {
- dev_err(host->dev, "PMECC: Timeout to get error status.\n");
- return -EIO;
- }
- cpu_relax();
- }
-
- stat = pmecc_readl_relaxed(host->ecc, ISR);
- if (stat != 0) {
- struct mtd_oob_region oobregion;
-
- mtd_ooblayout_ecc(mtd, 0, &oobregion);
- bitflips = pmecc_correction(mtd, stat, buf,
- &oob[oobregion.offset]);
- if (bitflips < 0)
- /* uncorrectable errors */
- return 0;
- }
-
- return bitflips;
-}
-
-static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf, int oob_required,
- int page)
-{
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- struct mtd_oob_region oobregion = { };
- int i, j, section = 0;
- unsigned long end_time;
-
- if (!host->nfc || !host->nfc->write_by_sram) {
- pmecc_enable(host, NAND_ECC_WRITE);
- chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
- }
-
- end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
- while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
- if (unlikely(time_after(jiffies, end_time))) {
- dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
- return -EIO;
- }
- cpu_relax();
- }
-
- for (i = 0; i < chip->ecc.steps; i++) {
- for (j = 0; j < chip->ecc.bytes; j++) {
- if (!oobregion.length)
- mtd_ooblayout_ecc(mtd, section, &oobregion);
-
- chip->oob_poi[oobregion.offset] =
- pmecc_readb_ecc_relaxed(host->ecc, i, j);
- oobregion.length--;
- oobregion.offset++;
- section++;
- }
- }
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return 0;
-}
-
-static void atmel_pmecc_core_init(struct mtd_info *mtd)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- int eccbytes = mtd_ooblayout_count_eccbytes(mtd);
- uint32_t val = 0;
- struct mtd_oob_region oobregion;
-
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
-
- switch (host->pmecc_corr_cap) {
- case 2:
- val = PMECC_CFG_BCH_ERR2;
- break;
- case 4:
- val = PMECC_CFG_BCH_ERR4;
- break;
- case 8:
- val = PMECC_CFG_BCH_ERR8;
- break;
- case 12:
- val = PMECC_CFG_BCH_ERR12;
- break;
- case 24:
- val = PMECC_CFG_BCH_ERR24;
- break;
- case 32:
- val = PMECC_CFG_BCH_ERR32;
- break;
- }
-
- if (host->pmecc_sector_size == 512)
- val |= PMECC_CFG_SECTOR512;
- else if (host->pmecc_sector_size == 1024)
- val |= PMECC_CFG_SECTOR1024;
-
- switch (nand_chip->ecc.steps) {
- case 1:
- val |= PMECC_CFG_PAGE_1SECTOR;
- break;
- case 2:
- val |= PMECC_CFG_PAGE_2SECTORS;
- break;
- case 4:
- val |= PMECC_CFG_PAGE_4SECTORS;
- break;
- case 8:
- val |= PMECC_CFG_PAGE_8SECTORS;
- break;
- }
-
- val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
- | PMECC_CFG_AUTO_DISABLE);
- pmecc_writel(host->ecc, CFG, val);
-
- pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
- mtd_ooblayout_ecc(mtd, 0, &oobregion);
- pmecc_writel(host->ecc, SADDR, oobregion.offset);
- pmecc_writel(host->ecc, EADDR,
- oobregion.offset + eccbytes - 1);
- /* See datasheet about PMECC Clock Control Register */
- pmecc_writel(host->ecc, CLK, 2);
- pmecc_writel(host->ecc, IDR, 0xff);
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
-}
-
-/*
- * Get minimum ecc requirements from NAND.
- * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
- * will set them according to minimum ecc requirement. Otherwise, use the
- * value in DTS file.
- * return 0 if success. otherwise return error code.
- */
-static int pmecc_choose_ecc(struct atmel_nand_host *host,
- int *cap, int *sector_size)
-{
- /* Get minimum ECC requirements */
- if (host->nand_chip.ecc_strength_ds) {
- *cap = host->nand_chip.ecc_strength_ds;
- *sector_size = host->nand_chip.ecc_step_ds;
- dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
- *cap, *sector_size);
- } else {
- *cap = 2;
- *sector_size = 512;
- dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
- }
-
- /* If device tree doesn't specify, use NAND's minimum ECC parameters */
- if (host->pmecc_corr_cap == 0) {
- if (*cap > host->caps->pmecc_max_correction)
- return -EINVAL;
-
- /* use the most fitable ecc bits (the near bigger one ) */
- if (*cap <= 2)
- host->pmecc_corr_cap = 2;
- else if (*cap <= 4)
- host->pmecc_corr_cap = 4;
- else if (*cap <= 8)
- host->pmecc_corr_cap = 8;
- else if (*cap <= 12)
- host->pmecc_corr_cap = 12;
- else if (*cap <= 24)
- host->pmecc_corr_cap = 24;
- else if (*cap <= 32)
- host->pmecc_corr_cap = 32;
- else
- return -EINVAL;
- }
- if (host->pmecc_sector_size == 0) {
- /* use the most fitable sector size (the near smaller one ) */
- if (*sector_size >= 1024)
- host->pmecc_sector_size = 1024;
- else if (*sector_size >= 512)
- host->pmecc_sector_size = 512;
- else
- return -EINVAL;
- }
- return 0;
-}
-
-static inline int deg(unsigned int poly)
-{
- /* polynomial degree is the most-significant bit index */
- return fls(poly) - 1;
-}
-
-static int build_gf_tables(int mm, unsigned int poly,
- int16_t *index_of, int16_t *alpha_to)
-{
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- unsigned int nn = (1 << mm) - 1;
-
- /* primitive polynomial must be of degree m */
- if (k != (1u << mm))
- return -EINVAL;
-
- for (i = 0; i < nn; i++) {
- alpha_to[i] = x;
- index_of[x] = i;
- if (i && (x == 1))
- /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
- return -EINVAL;
- x <<= 1;
- if (x & k)
- x ^= poly;
- }
- alpha_to[nn] = 1;
- index_of[0] = 0;
-
- return 0;
-}
-
-static uint16_t *create_lookup_table(struct device *dev, int sector_size)
-{
- int degree = (sector_size == 512) ?
- PMECC_GF_DIMENSION_13 :
- PMECC_GF_DIMENSION_14;
- unsigned int poly = (sector_size == 512) ?
- PMECC_GF_13_PRIMITIVE_POLY :
- PMECC_GF_14_PRIMITIVE_POLY;
- int table_size = (sector_size == 512) ?
- PMECC_LOOKUP_TABLE_SIZE_512 :
- PMECC_LOOKUP_TABLE_SIZE_1024;
-
- int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
- GFP_KERNEL);
- if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
- return NULL;
-
- return addr;
-}
-
-static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
- struct atmel_nand_host *host)
-{
- struct nand_chip *nand_chip = &host->nand_chip;
- struct mtd_info *mtd = nand_to_mtd(nand_chip);
- struct resource *regs, *regs_pmerr, *regs_rom;
- uint16_t *galois_table;
- int cap, sector_size, err_no;
-
- err_no = pmecc_choose_ecc(host, &cap, &sector_size);
- if (err_no) {
- dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
- return err_no;
- }
-
- if (cap > host->pmecc_corr_cap ||
- sector_size != host->pmecc_sector_size)
- dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
-
- cap = host->pmecc_corr_cap;
- sector_size = host->pmecc_sector_size;
- host->pmecc_lookup_table_offset = (sector_size == 512) ?
- host->pmecc_lookup_table_offset_512 :
- host->pmecc_lookup_table_offset_1024;
-
- dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
- cap, sector_size);
-
- regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- if (!regs) {
- dev_warn(host->dev,
- "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
- nand_chip->ecc.mode = NAND_ECC_SOFT;
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
- return 0;
- }
-
- host->ecc = devm_ioremap_resource(&pdev->dev, regs);
- if (IS_ERR(host->ecc)) {
- err_no = PTR_ERR(host->ecc);
- goto err;
- }
-
- regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
- host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
- if (IS_ERR(host->pmerrloc_base)) {
- err_no = PTR_ERR(host->pmerrloc_base);
- goto err;
- }
- host->pmerrloc_el_base = host->pmerrloc_base + ATMEL_PMERRLOC_SIGMAx +
- (host->caps->pmecc_max_correction + 1) * 4;
-
- if (!host->has_no_lookup_table) {
- regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
- host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
- regs_rom);
- if (IS_ERR(host->pmecc_rom_base)) {
- dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
- host->has_no_lookup_table = true;
- }
- }
-
- if (host->has_no_lookup_table) {
- /* Build the look-up table in runtime */
- galois_table = create_lookup_table(host->dev, sector_size);
- if (!galois_table) {
- dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
- err_no = -EINVAL;
- goto err;
- }
-
- host->pmecc_rom_base = (void __iomem *)galois_table;
- host->pmecc_lookup_table_offset = 0;
- }
-
- nand_chip->ecc.size = sector_size;
-
- /* set ECC page size and oob layout */
- switch (mtd->writesize) {
- case 512:
- case 1024:
- case 2048:
- case 4096:
- case 8192:
- if (sector_size > mtd->writesize) {
- dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
- err_no = -EINVAL;
- goto err;
- }
-
- host->pmecc_degree = (sector_size == 512) ?
- PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
- host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
- host->pmecc_alpha_to = pmecc_get_alpha_to(host);
- host->pmecc_index_of = host->pmecc_rom_base +
- host->pmecc_lookup_table_offset;
-
- nand_chip->ecc.strength = cap;
- nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
- nand_chip->ecc.steps = mtd->writesize / sector_size;
- nand_chip->ecc.total = nand_chip->ecc.bytes *
- nand_chip->ecc.steps;
- if (nand_chip->ecc.total >
- mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
- dev_err(host->dev, "No room for ECC bytes\n");
- err_no = -EINVAL;
- goto err;
- }
-
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
- break;
- default:
- dev_warn(host->dev,
- "Unsupported page size for PMECC, use Software ECC\n");
- /* page size not handled by HW ECC */
- /* switching back to soft ECC */
- nand_chip->ecc.mode = NAND_ECC_SOFT;
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
- return 0;
- }
-
- /* Allocate data for PMECC computation */
- err_no = pmecc_data_alloc(host);
- if (err_no) {
- dev_err(host->dev,
- "Cannot allocate memory for PMECC computation!\n");
- goto err;
- }
-
- nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
- nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
- nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
-
- atmel_pmecc_core_init(mtd);
-
- return 0;
-
-err:
- return err_no;
-}
-
-/*
- * Calculate HW ECC
- *
- * function called after a write
- *
- * mtd: MTD block structure
- * dat: raw data (unused)
- * ecc_code: buffer for ECC
- */
-static int atmel_nand_calculate(struct mtd_info *mtd,
- const u_char *dat, unsigned char *ecc_code)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- unsigned int ecc_value;
-
- /* get the first 2 ECC bytes */
- ecc_value = ecc_readl(host->ecc, PR);
-
- ecc_code[0] = ecc_value & 0xFF;
- ecc_code[1] = (ecc_value >> 8) & 0xFF;
-
- /* get the last 2 ECC bytes */
- ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
-
- ecc_code[2] = ecc_value & 0xFF;
- ecc_code[3] = (ecc_value >> 8) & 0xFF;
-
- return 0;
-}
-
-/*
- * HW ECC read page function
- *
- * mtd: mtd info structure
- * chip: nand chip info structure
- * buf: buffer to store read data
- * oob_required: caller expects OOB data read to chip->oob_poi
- */
-static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- uint8_t *p = buf;
- uint8_t *oob = chip->oob_poi;
- uint8_t *ecc_pos;
- int stat;
- unsigned int max_bitflips = 0;
- struct mtd_oob_region oobregion = {};
-
- /*
- * Errata: ALE is incorrectly wired up to the ECC controller
- * on the AP7000, so it will include the address cycles in the
- * ECC calculation.
- *
- * Workaround: Reset the parity registers before reading the
- * actual data.
- */
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- if (host->board.need_reset_workaround)
- ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
-
- /* read the page */
- chip->read_buf(mtd, p, eccsize);
-
- /* move to ECC position if needed */
- mtd_ooblayout_ecc(mtd, 0, &oobregion);
- if (oobregion.offset != 0) {
- /*
- * This only works on large pages because the ECC controller
- * waits for NAND_CMD_RNDOUTSTART after the NAND_CMD_RNDOUT.
- * Anyway, for small pages, the first ECC byte is at offset
- * 0 in the OOB area.
- */
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
- mtd->writesize + oobregion.offset, -1);
- }
-
- /* the ECC controller needs to read the ECC just after the data */
- ecc_pos = oob + oobregion.offset;
- chip->read_buf(mtd, ecc_pos, eccbytes);
-
- /* check if there's an error */
- stat = chip->ecc.correct(mtd, p, oob, NULL);
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
-
- /* get back to oob start (end of page) */
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
-
- /* read the oob */
- chip->read_buf(mtd, oob, mtd->oobsize);
-
- return max_bitflips;
-}
-
-/*
- * HW ECC Correction
- *
- * function called after a read
- *
- * mtd: MTD block structure
- * dat: raw data read from the chip
- * read_ecc: ECC from the chip (unused)
- * isnull: unused
- *
- * Detect and correct a 1 bit error for a page
- */
-static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *isnull)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
- unsigned int ecc_status;
- unsigned int ecc_word, ecc_bit;
-
- /* get the status from the Status Register */
- ecc_status = ecc_readl(host->ecc, SR);
-
- /* if there's no error */
- if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
- return 0;
-
- /* get error bit offset (4 bits) */
- ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
- /* get word address (12 bits) */
- ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
- ecc_word >>= 4;
-
- /* if there are multiple errors */
- if (ecc_status & ATMEL_ECC_MULERR) {
- /* check if it is a freshly erased block
- * (filled with 0xff) */
- if ((ecc_bit == ATMEL_ECC_BITADDR)
- && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
- /* the block has just been erased, return OK */
- return 0;
- }
- /* it doesn't seems to be a freshly
- * erased block.
- * We can't correct so many errors */
- dev_dbg(host->dev, "atmel_nand : multiple errors detected."
- " Unable to correct.\n");
- return -EBADMSG;
- }
-
- /* if there's a single bit error : we can correct it */
- if (ecc_status & ATMEL_ECC_ECCERR) {
- /* there's nothing much to do here.
- * the bit error is on the ECC itself.
- */
- dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
- " Nothing to correct\n");
- return 0;
- }
-
- dev_dbg(host->dev, "atmel_nand : one bit error on data."
- " (word offset in the page :"
- " 0x%x bit offset : 0x%x)\n",
- ecc_word, ecc_bit);
- /* correct the error */
- if (nand_chip->options & NAND_BUSWIDTH_16) {
- /* 16 bits words */
- ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
- } else {
- /* 8 bits words */
- dat[ecc_word] ^= (1 << ecc_bit);
- }
- dev_dbg(host->dev, "atmel_nand : error corrected\n");
- return 1;
-}
-
-/*
- * Enable HW ECC : unused on most chips
- */
-static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- if (host->board.need_reset_workaround)
- ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
-}
-
-static int atmel_of_init_ecc(struct atmel_nand_host *host,
- struct device_node *np)
-{
- u32 offset[2];
- u32 val;
-
- host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
-
- /* Not using PMECC */
- if (!(host->nand_chip.ecc.mode == NAND_ECC_HW) || !host->has_pmecc)
- return 0;
-
- /* use PMECC, get correction capability, sector size and lookup
- * table offset.
- * If correction bits and sector size are not specified, then find
- * them from NAND ONFI parameters.
- */
- if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
- if (val > host->caps->pmecc_max_correction) {
- dev_err(host->dev,
- "Required ECC strength too high: %u max %u\n",
- val, host->caps->pmecc_max_correction);
- return -EINVAL;
- }
- if ((val != 2) && (val != 4) && (val != 8) &&
- (val != 12) && (val != 24) && (val != 32)) {
- dev_err(host->dev,
- "Required ECC strength not supported: %u\n",
- val);
- return -EINVAL;
- }
- host->pmecc_corr_cap = (u8)val;
- }
-
- if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
- if ((val != 512) && (val != 1024)) {
- dev_err(host->dev,
- "Required ECC sector size not supported: %u\n",
- val);
- return -EINVAL;
- }
- host->pmecc_sector_size = (u16)val;
- }
-
- if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
- offset, 2) != 0) {
- dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
- host->has_no_lookup_table = true;
- /* Will build a lookup table and initialize the offset later */
- return 0;
- }
-
- if (!offset[0] && !offset[1]) {
- dev_err(host->dev, "Invalid PMECC lookup table offset\n");
- return -EINVAL;
- }
-
- host->pmecc_lookup_table_offset_512 = offset[0];
- host->pmecc_lookup_table_offset_1024 = offset[1];
-
- return 0;
-}
-
-static int atmel_of_init_port(struct atmel_nand_host *host,
- struct device_node *np)
-{
- u32 val;
- struct atmel_nand_data *board = &host->board;
- enum of_gpio_flags flags = 0;
-
- host->caps = (struct atmel_nand_caps *)
- of_device_get_match_data(host->dev);
-
- if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
- if (val >= 32) {
- dev_err(host->dev, "invalid addr-offset %u\n", val);
- return -EINVAL;
- }
- board->ale = val;
- }
-
- if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
- if (val >= 32) {
- dev_err(host->dev, "invalid cmd-offset %u\n", val);
- return -EINVAL;
- }
- board->cle = val;
- }
-
- board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
-
- board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
- board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
-
- board->enable_pin = of_get_gpio(np, 1);
- board->det_pin = of_get_gpio(np, 2);
-
- /* load the nfc driver if there is */
- of_platform_populate(np, NULL, NULL, host->dev);
-
- /*
- * Initialize ECC mode to NAND_ECC_SOFT so that we have a correct value
- * even if the nand-ecc-mode property is not defined.
- */
- host->nand_chip.ecc.mode = NAND_ECC_SOFT;
- host->nand_chip.ecc.algo = NAND_ECC_HAMMING;
-
- return 0;
-}
-
-static int atmel_hw_nand_init_params(struct platform_device *pdev,
- struct atmel_nand_host *host)
-{
- struct nand_chip *nand_chip = &host->nand_chip;
- struct mtd_info *mtd = nand_to_mtd(nand_chip);
- struct resource *regs;
-
- regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- if (!regs) {
- dev_err(host->dev,
- "Can't get I/O resource regs, use software ECC\n");
- nand_chip->ecc.mode = NAND_ECC_SOFT;
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
- return 0;
- }
-
- host->ecc = devm_ioremap_resource(&pdev->dev, regs);
- if (IS_ERR(host->ecc))
- return PTR_ERR(host->ecc);
-
- /* ECC is calculated for the whole page (1 step) */
- nand_chip->ecc.size = mtd->writesize;
-
- /* set ECC page size and oob layout */
- switch (mtd->writesize) {
- case 512:
- mtd_set_ooblayout(mtd, &atmel_ooblayout_sp_ops);
- ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
- break;
- case 1024:
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
- ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
- break;
- case 2048:
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
- ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
- break;
- case 4096:
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
- ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
- break;
- default:
- /* page size not handled by HW ECC */
- /* switching back to soft ECC */
- nand_chip->ecc.mode = NAND_ECC_SOFT;
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
- return 0;
- }
-
- /* set up for HW ECC */
- nand_chip->ecc.calculate = atmel_nand_calculate;
- nand_chip->ecc.correct = atmel_nand_correct;
- nand_chip->ecc.hwctl = atmel_nand_hwctl;
- nand_chip->ecc.read_page = atmel_nand_read_page;
- nand_chip->ecc.bytes = 4;
- nand_chip->ecc.strength = 1;
-
- return 0;
-}
-
-static inline u32 nfc_read_status(struct atmel_nand_host *host)
-{
- u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
- u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
-
- if (unlikely(nfc_status & err_flags)) {
- if (nfc_status & NFC_SR_DTOE)
- dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
- else if (nfc_status & NFC_SR_UNDEF)
- dev_err(host->dev, "NFC: Access Undefined Area Error\n");
- else if (nfc_status & NFC_SR_AWB)
- dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
- else if (nfc_status & NFC_SR_ASE)
- dev_err(host->dev, "NFC: Access memory Size Error\n");
- }
-
- return nfc_status;
-}
-
-/* SMC interrupt service routine */
-static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
-{
- struct atmel_nand_host *host = dev_id;
- u32 status, mask, pending;
- irqreturn_t ret = IRQ_NONE;
-
- status = nfc_read_status(host);
- mask = nfc_readl(host->nfc->hsmc_regs, IMR);
- pending = status & mask;
-
- if (pending & NFC_SR_XFR_DONE) {
- complete(&host->nfc->comp_xfer_done);
- nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
- ret = IRQ_HANDLED;
- }
- if (pending & NFC_SR_RB_EDGE) {
- complete(&host->nfc->comp_ready);
- nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
- ret = IRQ_HANDLED;
- }
- if (pending & NFC_SR_CMD_DONE) {
- complete(&host->nfc->comp_cmd_done);
- nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
- ret = IRQ_HANDLED;
- }
-
- return ret;
-}
-
-/* NFC(Nand Flash Controller) related functions */
-static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
-{
- if (flag & NFC_SR_XFR_DONE)
- init_completion(&host->nfc->comp_xfer_done);
-
- if (flag & NFC_SR_RB_EDGE)
- init_completion(&host->nfc->comp_ready);
-
- if (flag & NFC_SR_CMD_DONE)
- init_completion(&host->nfc->comp_cmd_done);
-
- /* Enable interrupt that need to wait for */
- nfc_writel(host->nfc->hsmc_regs, IER, flag);
-}
-
-static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
-{
- int i, index = 0;
- struct completion *comp[3]; /* Support 3 interrupt completion */
-
- if (flag & NFC_SR_XFR_DONE)
- comp[index++] = &host->nfc->comp_xfer_done;
-
- if (flag & NFC_SR_RB_EDGE)
- comp[index++] = &host->nfc->comp_ready;
-
- if (flag & NFC_SR_CMD_DONE)
- comp[index++] = &host->nfc->comp_cmd_done;
-
- if (index == 0) {
- dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
- return -EINVAL;
- }
-
- for (i = 0; i < index; i++) {
- if (wait_for_completion_timeout(comp[i],
- msecs_to_jiffies(NFC_TIME_OUT_MS)))
- continue; /* wait for next completion */
- else
- goto err_timeout;
- }
-
- return 0;
-
-err_timeout:
- dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
- /* Disable the interrupt as it is not handled by interrupt handler */
- nfc_writel(host->nfc->hsmc_regs, IDR, flag);
- return -ETIMEDOUT;
-}
-
-static int nfc_send_command(struct atmel_nand_host *host,
- unsigned int cmd, unsigned int addr, unsigned char cycle0)
-{
- unsigned long timeout;
- u32 flag = NFC_SR_CMD_DONE;
- flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
-
- dev_dbg(host->dev,
- "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
- cmd, addr, cycle0);
-
- timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
- while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
- if (time_after(jiffies, timeout)) {
- dev_err(host->dev,
- "Time out to wait for NFC ready!\n");
- return -ETIMEDOUT;
- }
- }
-
- nfc_prepare_interrupt(host, flag);
- nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
- nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
- return nfc_wait_interrupt(host, flag);
-}
-
-static int nfc_device_ready(struct mtd_info *mtd)
-{
- u32 status, mask;
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- status = nfc_read_status(host);
- mask = nfc_readl(host->nfc->hsmc_regs, IMR);
-
- /* The mask should be 0. If not we may lost interrupts */
- if (unlikely(mask & status))
- dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
- mask & status);
-
- return status & NFC_SR_RB_EDGE;
-}
-
-static void nfc_select_chip(struct mtd_info *mtd, int chip)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
-
- if (chip == -1)
- nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
- else
- nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
-}
-
-static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
- int page_addr, unsigned int *addr1234, unsigned int *cycle0)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- int acycle = 0;
- unsigned char addr_bytes[8];
- int index = 0, bit_shift;
-
- BUG_ON(addr1234 == NULL || cycle0 == NULL);
-
- *cycle0 = 0;
- *addr1234 = 0;
-
- if (column != -1) {
- if (chip->options & NAND_BUSWIDTH_16 &&
- !nand_opcode_8bits(command))
- column >>= 1;
- addr_bytes[acycle++] = column & 0xff;
- if (mtd->writesize > 512)
- addr_bytes[acycle++] = (column >> 8) & 0xff;
- }
-
- if (page_addr != -1) {
- addr_bytes[acycle++] = page_addr & 0xff;
- addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
- if (chip->chipsize > (128 << 20))
- addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
- }
-
- if (acycle > 4)
- *cycle0 = addr_bytes[index++];
-
- for (bit_shift = 0; index < acycle; bit_shift += 8)
- *addr1234 += addr_bytes[index++] << bit_shift;
-
- /* return acycle in cmd register */
- return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
-}
-
-static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
- int column, int page_addr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- unsigned long timeout;
- unsigned int nfc_addr_cmd = 0;
-
- unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
-
- /* Set default settings: no cmd2, no addr cycle. read from nand */
- unsigned int cmd2 = 0;
- unsigned int vcmd2 = 0;
- int acycle = NFCADDR_CMD_ACYCLE_NONE;
- int csid = NFCADDR_CMD_CSID_3;
- int dataen = NFCADDR_CMD_DATADIS;
- int nfcwr = NFCADDR_CMD_NFCRD;
- unsigned int addr1234 = 0;
- unsigned int cycle0 = 0;
- bool do_addr = true;
- host->nfc->data_in_sram = NULL;
-
- dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
- __func__, command, column, page_addr);
-
- switch (command) {
- case NAND_CMD_RESET:
- nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
- nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
- udelay(chip->chip_delay);
-
- nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
- timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
- while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
- if (time_after(jiffies, timeout)) {
- dev_err(host->dev,
- "Time out to wait status ready!\n");
- break;
- }
- }
- return;
- case NAND_CMD_STATUS:
- do_addr = false;
- break;
- case NAND_CMD_PARAM:
- case NAND_CMD_READID:
- do_addr = false;
- acycle = NFCADDR_CMD_ACYCLE_1;
- if (column != -1)
- addr1234 = column;
- break;
- case NAND_CMD_RNDOUT:
- cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
- vcmd2 = NFCADDR_CMD_VCMD2;
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- if (command == NAND_CMD_READOOB) {
- column += mtd->writesize;
- command = NAND_CMD_READ0; /* only READ0 is valid */
- cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
- }
- if (host->nfc->use_nfc_sram) {
- /* Enable Data transfer to sram */
- dataen = NFCADDR_CMD_DATAEN;
-
- /* Need enable PMECC now, since NFC will transfer
- * data in bus after sending nfc read command.
- */
- if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
- pmecc_enable(host, NAND_ECC_READ);
- }
-
- cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
- vcmd2 = NFCADDR_CMD_VCMD2;
- break;
- /* For prgramming command, the cmd need set to write enable */
- case NAND_CMD_PAGEPROG:
- case NAND_CMD_SEQIN:
- case NAND_CMD_RNDIN:
- nfcwr = NFCADDR_CMD_NFCWR;
- if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
- dataen = NFCADDR_CMD_DATAEN;
- break;
- default:
- break;
- }
-
- if (do_addr)
- acycle = nfc_make_addr(mtd, command, column, page_addr,
- &addr1234, &cycle0);
-
- nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
- nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
-
- /*
- * Program and erase have their own busy handlers status, sequential
- * in, and deplete1 need no delay.
- */
- switch (command) {
- case NAND_CMD_CACHEDPROG:
- case NAND_CMD_PAGEPROG:
- case NAND_CMD_ERASE1:
- case NAND_CMD_ERASE2:
- case NAND_CMD_RNDIN:
- case NAND_CMD_STATUS:
- case NAND_CMD_RNDOUT:
- case NAND_CMD_SEQIN:
- case NAND_CMD_READID:
- return;
-
- case NAND_CMD_READ0:
- if (dataen == NFCADDR_CMD_DATAEN) {
- host->nfc->data_in_sram = host->nfc->sram_bank0 +
- nfc_get_sram_off(host);
- return;
- }
- /* fall through */
- default:
- nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
- nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
- }
-}
-
-static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint32_t offset, int data_len, const uint8_t *buf,
- int oob_required, int page, int cached, int raw)
-{
- int cfg, len;
- int status = 0;
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
-
- /* Subpage write is not supported */
- if (offset || (data_len < mtd->writesize))
- return -EINVAL;
-
- len = mtd->writesize;
- /* Copy page data to sram that will write to nand via NFC */
- if (use_dma) {
- if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
- /* Fall back to use cpu copy */
- memcpy(sram, buf, len);
- } else {
- memcpy(sram, buf, len);
- }
-
- cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
- if (unlikely(raw) && oob_required) {
- memcpy(sram + len, chip->oob_poi, mtd->oobsize);
- len += mtd->oobsize;
- nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
- } else {
- nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
- }
-
- if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
- /*
- * When use NFC sram, need set up PMECC before send
- * NAND_CMD_SEQIN command. Since when the nand command
- * is sent, nfc will do transfer from sram and nand.
- */
- pmecc_enable(host, NAND_ECC_WRITE);
-
- host->nfc->will_write_sram = true;
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
- host->nfc->will_write_sram = false;
-
- if (likely(!raw))
- /* Need to write ecc into oob */
- status = chip->ecc.write_page(mtd, chip, buf, oob_required,
- page);
-
- if (status < 0)
- return status;
-
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
-
- if ((status & NAND_STATUS_FAIL) && (chip->errstat))
- status = chip->errstat(mtd, chip, FL_WRITING, status, page);
-
- if (status & NAND_STATUS_FAIL)
- return -EIO;
-
- return 0;
-}
-
-static int nfc_sram_init(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct atmel_nand_host *host = nand_get_controller_data(chip);
- int res = 0;
-
- /* Initialize the NFC CFG register */
- unsigned int cfg_nfc = 0;
-
- /* set page size and oob layout */
- switch (mtd->writesize) {
- case 512:
- cfg_nfc = NFC_CFG_PAGESIZE_512;
- break;
- case 1024:
- cfg_nfc = NFC_CFG_PAGESIZE_1024;
- break;
- case 2048:
- cfg_nfc = NFC_CFG_PAGESIZE_2048;
- break;
- case 4096:
- cfg_nfc = NFC_CFG_PAGESIZE_4096;
- break;
- case 8192:
- cfg_nfc = NFC_CFG_PAGESIZE_8192;
- break;
- default:
- dev_err(host->dev, "Unsupported page size for NFC.\n");
- res = -ENXIO;
- return res;
- }
-
- /* oob bytes size = (NFCSPARESIZE + 1) * 4
- * Max support spare size is 512 bytes. */
- cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
- & NFC_CFG_NFC_SPARESIZE);
- /* default set a max timeout */
- cfg_nfc |= NFC_CFG_RSPARE |
- NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
-
- nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
-
- host->nfc->will_write_sram = false;
- nfc_set_sram_bank(host, 0);
-
- /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
- if (host->nfc->write_by_sram) {
- if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
- chip->ecc.mode == NAND_ECC_NONE)
- chip->write_page = nfc_sram_write_page;
- else
- host->nfc->write_by_sram = false;
- }
-
- dev_info(host->dev, "Using NFC Sram read %s\n",
- host->nfc->write_by_sram ? "and write" : "");
- return 0;
-}
-
-static struct platform_driver atmel_nand_nfc_driver;
-/*
- * Probe for the NAND device.
- */
-static int atmel_nand_probe(struct platform_device *pdev)
-{
- struct atmel_nand_host *host;
- struct mtd_info *mtd;
- struct nand_chip *nand_chip;
- struct resource *mem;
- int res, irq;
-
- /* Allocate memory for the device structure (and zero it) */
- host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
- if (!host)
- return -ENOMEM;
-
- res = platform_driver_register(&atmel_nand_nfc_driver);
- if (res)
- dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
-
- mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- host->io_base = devm_ioremap_resource(&pdev->dev, mem);
- if (IS_ERR(host->io_base)) {
- res = PTR_ERR(host->io_base);
- goto err_nand_ioremap;
- }
- host->io_phys = (dma_addr_t)mem->start;
-
- nand_chip = &host->nand_chip;
- mtd = nand_to_mtd(nand_chip);
- host->dev = &pdev->dev;
- if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
- nand_set_flash_node(nand_chip, pdev->dev.of_node);
- /* Only when CONFIG_OF is enabled of_node can be parsed */
- res = atmel_of_init_port(host, pdev->dev.of_node);
- if (res)
- goto err_nand_ioremap;
- } else {
- memcpy(&host->board, dev_get_platdata(&pdev->dev),
- sizeof(struct atmel_nand_data));
- nand_chip->ecc.mode = host->board.ecc_mode;
-
- /*
- * When using software ECC every supported avr32 board means
- * Hamming algorithm. If that ever changes we'll need to add
- * ecc_algo field to the struct atmel_nand_data.
- */
- if (nand_chip->ecc.mode == NAND_ECC_SOFT)
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
-
- /* 16-bit bus width */
- if (host->board.bus_width_16)
- nand_chip->options |= NAND_BUSWIDTH_16;
- }
-
- /* link the private data structures */
- nand_set_controller_data(nand_chip, host);
- mtd->dev.parent = &pdev->dev;
-
- /* Set address of NAND IO lines */
- nand_chip->IO_ADDR_R = host->io_base;
- nand_chip->IO_ADDR_W = host->io_base;
-
- if (nand_nfc.is_initialized) {
- /* NFC driver is probed and initialized */
- host->nfc = &nand_nfc;
-
- nand_chip->select_chip = nfc_select_chip;
- nand_chip->dev_ready = nfc_device_ready;
- nand_chip->cmdfunc = nfc_nand_command;
-
- /* Initialize the interrupt for NFC */
- irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(host->dev, "Cannot get HSMC irq!\n");
- res = irq;
- goto err_nand_ioremap;
- }
-
- res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
- 0, "hsmc", host);
- if (res) {
- dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
- irq);
- goto err_nand_ioremap;
- }
- } else {
- res = atmel_nand_set_enable_ready_pins(mtd);
- if (res)
- goto err_nand_ioremap;
-
- nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
- }
-
- nand_chip->chip_delay = 40; /* 40us command delay time */
-
-
- nand_chip->read_buf = atmel_read_buf;
- nand_chip->write_buf = atmel_write_buf;
-
- platform_set_drvdata(pdev, host);
- atmel_nand_enable(host);
-
- if (gpio_is_valid(host->board.det_pin)) {
- res = devm_gpio_request(&pdev->dev,
- host->board.det_pin, "nand_det");
- if (res < 0) {
- dev_err(&pdev->dev,
- "can't request det gpio %d\n",
- host->board.det_pin);
- goto err_no_card;
- }
-
- res = gpio_direction_input(host->board.det_pin);
- if (res < 0) {
- dev_err(&pdev->dev,
- "can't request input direction det gpio %d\n",
- host->board.det_pin);
- goto err_no_card;
- }
-
- if (gpio_get_value(host->board.det_pin)) {
- dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
- res = -ENXIO;
- goto err_no_card;
- }
- }
-
- if (!host->board.has_dma)
- use_dma = 0;
-
- if (use_dma) {
- dma_cap_mask_t mask;
-
- dma_cap_zero(mask);
- dma_cap_set(DMA_MEMCPY, mask);
- host->dma_chan = dma_request_channel(mask, NULL, NULL);
- if (!host->dma_chan) {
- dev_err(host->dev, "Failed to request DMA channel\n");
- use_dma = 0;
- }
- }
- if (use_dma)
- dev_info(host->dev, "Using %s for DMA transfers.\n",
- dma_chan_name(host->dma_chan));
- else
- dev_info(host->dev, "No DMA support for NAND access.\n");
-
- /* first scan to find the device and get the page size */
- res = nand_scan_ident(mtd, 1, NULL);
- if (res)
- goto err_scan_ident;
-
- if (host->board.on_flash_bbt || on_flash_bbt)
- nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
-
- if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
- dev_info(&pdev->dev, "Use On Flash BBT\n");
-
- if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
- res = atmel_of_init_ecc(host, pdev->dev.of_node);
- if (res)
- goto err_hw_ecc;
- }
-
- if (nand_chip->ecc.mode == NAND_ECC_HW) {
- if (host->has_pmecc)
- res = atmel_pmecc_nand_init_params(pdev, host);
- else
- res = atmel_hw_nand_init_params(pdev, host);
-
- if (res != 0)
- goto err_hw_ecc;
- }
-
- /* initialize the nfc configuration register */
- if (host->nfc && host->nfc->use_nfc_sram) {
- res = nfc_sram_init(mtd);
- if (res) {
- host->nfc->use_nfc_sram = false;
- dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
- }
- }
-
- /* second phase scan */
- res = nand_scan_tail(mtd);
- if (res)
- goto err_scan_tail;
-
- mtd->name = "atmel_nand";
- res = mtd_device_register(mtd, host->board.parts,
- host->board.num_parts);
- if (!res)
- return res;
-
-err_scan_tail:
- if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
-err_hw_ecc:
-err_scan_ident:
-err_no_card:
- atmel_nand_disable(host);
- if (host->dma_chan)
- dma_release_channel(host->dma_chan);
-err_nand_ioremap:
- return res;
-}
-
-/*
- * Remove a NAND device.
- */
-static int atmel_nand_remove(struct platform_device *pdev)
-{
- struct atmel_nand_host *host = platform_get_drvdata(pdev);
- struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
-
- nand_release(mtd);
-
- atmel_nand_disable(host);
-
- if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
- pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
- pmerrloc_writel(host->pmerrloc_base, ELDIS,
- PMERRLOC_DISABLE);
- }
-
- if (host->dma_chan)
- dma_release_channel(host->dma_chan);
-
- platform_driver_unregister(&atmel_nand_nfc_driver);
-
- return 0;
-}
-
-/*
- * AT91RM9200 does not have PMECC or PMECC Errloc peripherals for
- * BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe
- * devices from the SAM9 family that have those.
- */
-static const struct atmel_nand_caps at91rm9200_caps = {
- .pmecc_correct_erase_page = false,
- .pmecc_max_correction = 24,
-};
-
-static const struct atmel_nand_caps sama5d4_caps = {
- .pmecc_correct_erase_page = true,
- .pmecc_max_correction = 24,
-};
-
-/*
- * The PMECC Errloc controller starting in SAMA5D2 is not compatible,
- * as the increased correction strength requires more registers.
- */
-static const struct atmel_nand_caps sama5d2_caps = {
- .pmecc_correct_erase_page = true,
- .pmecc_max_correction = 32,
-};
-
-static const struct of_device_id atmel_nand_dt_ids[] = {
- { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
- { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
- { .compatible = "atmel,sama5d2-nand", .data = &sama5d2_caps },
- { /* sentinel */ }
-};
-
-MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
-
-static int atmel_nand_nfc_probe(struct platform_device *pdev)
-{
- struct atmel_nfc *nfc = &nand_nfc;
- struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
- int ret;
-
- nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
- if (IS_ERR(nfc->base_cmd_regs))
- return PTR_ERR(nfc->base_cmd_regs);
-
- nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
- if (IS_ERR(nfc->hsmc_regs))
- return PTR_ERR(nfc->hsmc_regs);
-
- nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
- if (nfc_sram) {
- nfc->sram_bank0 = (void * __force)
- devm_ioremap_resource(&pdev->dev, nfc_sram);
- if (IS_ERR(nfc->sram_bank0)) {
- dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
- PTR_ERR(nfc->sram_bank0));
- } else {
- nfc->use_nfc_sram = true;
- nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
-
- if (pdev->dev.of_node)
- nfc->write_by_sram = of_property_read_bool(
- pdev->dev.of_node,
- "atmel,write-by-sram");
- }
- }
-
- nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
- nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
-
- nfc->clk = devm_clk_get(&pdev->dev, NULL);
- if (!IS_ERR(nfc->clk)) {
- ret = clk_prepare_enable(nfc->clk);
- if (ret)
- return ret;
- } else {
- dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
- }
-
- nfc->is_initialized = true;
- dev_info(&pdev->dev, "NFC is probed.\n");
-
- return 0;
-}
-
-static int atmel_nand_nfc_remove(struct platform_device *pdev)
-{
- struct atmel_nfc *nfc = &nand_nfc;
-
- if (!IS_ERR(nfc->clk))
- clk_disable_unprepare(nfc->clk);
-
- return 0;
-}
-
-static const struct of_device_id atmel_nand_nfc_match[] = {
- { .compatible = "atmel,sama5d3-nfc" },
- { /* sentinel */ }
-};
-MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
-
-static struct platform_driver atmel_nand_nfc_driver = {
- .driver = {
- .name = "atmel_nand_nfc",
- .of_match_table = of_match_ptr(atmel_nand_nfc_match),
- },
- .probe = atmel_nand_nfc_probe,
- .remove = atmel_nand_nfc_remove,
-};
-
-static struct platform_driver atmel_nand_driver = {
- .probe = atmel_nand_probe,
- .remove = atmel_nand_remove,
- .driver = {
- .name = "atmel_nand",
- .of_match_table = of_match_ptr(atmel_nand_dt_ids),
- },
-};
-
-module_platform_driver(atmel_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Rick Bronson");
-MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
-MODULE_ALIAS("platform:atmel_nand");
diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h
deleted file mode 100644
index 834d694487bd..000000000000
--- a/drivers/mtd/nand/atmel_nand_ecc.h
+++ /dev/null
@@ -1,163 +0,0 @@
-/*
- * Error Corrected Code Controller (ECC) - System peripherals regsters.
- * Based on AT91SAM9260 datasheet revision B.
- *
- * Copyright (C) 2007 Andrew Victor
- * Copyright (C) 2007 - 2012 Atmel Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
-
-#ifndef ATMEL_NAND_ECC_H
-#define ATMEL_NAND_ECC_H
-
-#define ATMEL_ECC_CR 0x00 /* Control register */
-#define ATMEL_ECC_RST (1 << 0) /* Reset parity */
-
-#define ATMEL_ECC_MR 0x04 /* Mode register */
-#define ATMEL_ECC_PAGESIZE (3 << 0) /* Page Size */
-#define ATMEL_ECC_PAGESIZE_528 (0)
-#define ATMEL_ECC_PAGESIZE_1056 (1)
-#define ATMEL_ECC_PAGESIZE_2112 (2)
-#define ATMEL_ECC_PAGESIZE_4224 (3)
-
-#define ATMEL_ECC_SR 0x08 /* Status register */
-#define ATMEL_ECC_RECERR (1 << 0) /* Recoverable Error */
-#define ATMEL_ECC_ECCERR (1 << 1) /* ECC Single Bit Error */
-#define ATMEL_ECC_MULERR (1 << 2) /* Multiple Errors */
-
-#define ATMEL_ECC_PR 0x0c /* Parity register */
-#define ATMEL_ECC_BITADDR (0xf << 0) /* Bit Error Address */
-#define ATMEL_ECC_WORDADDR (0xfff << 4) /* Word Error Address */
-
-#define ATMEL_ECC_NPR 0x10 /* NParity register */
-#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */
-
-/* PMECC Register Definitions */
-#define ATMEL_PMECC_CFG 0x000 /* Configuration Register */
-#define PMECC_CFG_BCH_ERR2 (0 << 0)
-#define PMECC_CFG_BCH_ERR4 (1 << 0)
-#define PMECC_CFG_BCH_ERR8 (2 << 0)
-#define PMECC_CFG_BCH_ERR12 (3 << 0)
-#define PMECC_CFG_BCH_ERR24 (4 << 0)
-#define PMECC_CFG_BCH_ERR32 (5 << 0)
-
-#define PMECC_CFG_SECTOR512 (0 << 4)
-#define PMECC_CFG_SECTOR1024 (1 << 4)
-
-#define PMECC_CFG_PAGE_1SECTOR (0 << 8)
-#define PMECC_CFG_PAGE_2SECTORS (1 << 8)
-#define PMECC_CFG_PAGE_4SECTORS (2 << 8)
-#define PMECC_CFG_PAGE_8SECTORS (3 << 8)
-
-#define PMECC_CFG_READ_OP (0 << 12)
-#define PMECC_CFG_WRITE_OP (1 << 12)
-
-#define PMECC_CFG_SPARE_ENABLE (1 << 16)
-#define PMECC_CFG_SPARE_DISABLE (0 << 16)
-
-#define PMECC_CFG_AUTO_ENABLE (1 << 20)
-#define PMECC_CFG_AUTO_DISABLE (0 << 20)
-
-#define ATMEL_PMECC_SAREA 0x004 /* Spare area size */
-#define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */
-#define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */
-#define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */
-#define PMECC_CLK_133MHZ (2 << 0)
-
-#define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */
-#define PMECC_CTRL_RST (1 << 0)
-#define PMECC_CTRL_DATA (1 << 1)
-#define PMECC_CTRL_USER (1 << 2)
-#define PMECC_CTRL_ENABLE (1 << 4)
-#define PMECC_CTRL_DISABLE (1 << 5)
-
-#define ATMEL_PMECC_SR 0x018 /* PMECC status register */
-#define PMECC_SR_BUSY (1 << 0)
-#define PMECC_SR_ENABLE (1 << 4)
-
-#define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */
-#define PMECC_IER_ENABLE (1 << 0)
-#define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */
-#define PMECC_IER_DISABLE (1 << 0)
-#define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */
-#define PMECC_IER_MASK (1 << 0)
-#define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */
-#define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */
-#define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */
-
-/* PMERRLOC Register Definitions */
-#define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */
-#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0)
-#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0)
-#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16)
-
-#define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */
-#define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */
-#define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */
-#define PMERRLOC_DISABLE (1 << 0)
-
-#define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */
-#define PMERRLOC_ELSR_BUSY (1 << 0)
-#define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */
-#define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */
-#define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */
-#define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */
-#define PMERRLOC_ERR_NUM_MASK (0x1f << 8)
-#define PMERRLOC_CALC_DONE (1 << 0)
-#define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */
-
-/*
- * The ATMEL_PMERRLOC_ELx register location depends from the number of
- * bits corrected by the PMECC controller. Do not use it.
- */
-
-/* Register access macros for PMECC */
-#define pmecc_readl_relaxed(addr, reg) \
- readl_relaxed((addr) + ATMEL_PMECC_##reg)
-
-#define pmecc_writel(addr, reg, value) \
- writel((value), (addr) + ATMEL_PMECC_##reg)
-
-#define pmecc_readb_ecc_relaxed(addr, sector, n) \
- readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n))
-
-#define pmecc_readl_rem_relaxed(addr, sector, n) \
- readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4))
-
-#define pmerrloc_readl_relaxed(addr, reg) \
- readl_relaxed((addr) + ATMEL_PMERRLOC_##reg)
-
-#define pmerrloc_writel(addr, reg, value) \
- writel((value), (addr) + ATMEL_PMERRLOC_##reg)
-
-#define pmerrloc_writel_sigma_relaxed(addr, n, value) \
- writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4))
-
-#define pmerrloc_readl_sigma_relaxed(addr, n) \
- readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4))
-
-#define pmerrloc_readl_el_relaxed(addr, n) \
- readl_relaxed((addr) + ((n) * 4))
-
-/* Galois field dimension */
-#define PMECC_GF_DIMENSION_13 13
-#define PMECC_GF_DIMENSION_14 14
-
-/* Primitive Polynomial used by PMECC */
-#define PMECC_GF_13_PRIMITIVE_POLY 0x201b
-#define PMECC_GF_14_PRIMITIVE_POLY 0x4443
-
-#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000
-#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000
-
-/* Time out value for reading PMECC status register */
-#define PMECC_MAX_TIMEOUT_MS 100
-
-/* Reserved bytes in oob area */
-#define PMECC_OOB_RESERVED_BYTES 2
-
-#endif
diff --git a/drivers/mtd/nand/atmel_nand_nfc.h b/drivers/mtd/nand/atmel_nand_nfc.h
deleted file mode 100644
index 4d5d26221a7e..000000000000
--- a/drivers/mtd/nand/atmel_nand_nfc.h
+++ /dev/null
@@ -1,103 +0,0 @@
-/*
- * Atmel Nand Flash Controller (NFC) - System peripherals regsters.
- * Based on SAMA5D3 datasheet.
- *
- * © Copyright 2013 Atmel Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
-
-#ifndef ATMEL_NAND_NFC_H
-#define ATMEL_NAND_NFC_H
-
-/*
- * HSMC NFC registers
- */
-#define ATMEL_HSMC_NFC_CFG 0x00 /* NFC Configuration Register */
-#define NFC_CFG_PAGESIZE (7 << 0)
-#define NFC_CFG_PAGESIZE_512 (0 << 0)
-#define NFC_CFG_PAGESIZE_1024 (1 << 0)
-#define NFC_CFG_PAGESIZE_2048 (2 << 0)
-#define NFC_CFG_PAGESIZE_4096 (3 << 0)
-#define NFC_CFG_PAGESIZE_8192 (4 << 0)
-#define NFC_CFG_WSPARE (1 << 8)
-#define NFC_CFG_RSPARE (1 << 9)
-#define NFC_CFG_NFC_DTOCYC (0xf << 16)
-#define NFC_CFG_NFC_DTOMUL (0x7 << 20)
-#define NFC_CFG_NFC_SPARESIZE (0x7f << 24)
-#define NFC_CFG_NFC_SPARESIZE_BIT_POS 24
-
-#define ATMEL_HSMC_NFC_CTRL 0x04 /* NFC Control Register */
-#define NFC_CTRL_ENABLE (1 << 0)
-#define NFC_CTRL_DISABLE (1 << 1)
-
-#define ATMEL_HSMC_NFC_SR 0x08 /* NFC Status Register */
-#define NFC_SR_BUSY (1 << 8)
-#define NFC_SR_XFR_DONE (1 << 16)
-#define NFC_SR_CMD_DONE (1 << 17)
-#define NFC_SR_DTOE (1 << 20)
-#define NFC_SR_UNDEF (1 << 21)
-#define NFC_SR_AWB (1 << 22)
-#define NFC_SR_ASE (1 << 23)
-#define NFC_SR_RB_EDGE (1 << 24)
-
-#define ATMEL_HSMC_NFC_IER 0x0c
-#define ATMEL_HSMC_NFC_IDR 0x10
-#define ATMEL_HSMC_NFC_IMR 0x14
-#define ATMEL_HSMC_NFC_CYCLE0 0x18 /* NFC Address Cycle Zero */
-#define ATMEL_HSMC_NFC_ADDR_CYCLE0 (0xff)
-
-#define ATMEL_HSMC_NFC_BANK 0x1c /* NFC Bank Register */
-#define ATMEL_HSMC_NFC_BANK0 (0 << 0)
-#define ATMEL_HSMC_NFC_BANK1 (1 << 0)
-
-#define nfc_writel(addr, reg, value) \
- writel((value), (addr) + ATMEL_HSMC_NFC_##reg)
-
-#define nfc_readl(addr, reg) \
- readl_relaxed((addr) + ATMEL_HSMC_NFC_##reg)
-
-/*
- * NFC Address Command definitions
- */
-#define NFCADDR_CMD_CMD1 (0xff << 2) /* Command for Cycle 1 */
-#define NFCADDR_CMD_CMD1_BIT_POS 2
-#define NFCADDR_CMD_CMD2 (0xff << 10) /* Command for Cycle 2 */
-#define NFCADDR_CMD_CMD2_BIT_POS 10
-#define NFCADDR_CMD_VCMD2 (0x1 << 18) /* Valid Cycle 2 Command */
-#define NFCADDR_CMD_ACYCLE (0x7 << 19) /* Number of Address required */
-#define NFCADDR_CMD_ACYCLE_NONE (0x0 << 19)
-#define NFCADDR_CMD_ACYCLE_1 (0x1 << 19)
-#define NFCADDR_CMD_ACYCLE_2 (0x2 << 19)
-#define NFCADDR_CMD_ACYCLE_3 (0x3 << 19)
-#define NFCADDR_CMD_ACYCLE_4 (0x4 << 19)
-#define NFCADDR_CMD_ACYCLE_5 (0x5 << 19)
-#define NFCADDR_CMD_ACYCLE_BIT_POS 19
-#define NFCADDR_CMD_CSID (0x7 << 22) /* Chip Select Identifier */
-#define NFCADDR_CMD_CSID_0 (0x0 << 22)
-#define NFCADDR_CMD_CSID_1 (0x1 << 22)
-#define NFCADDR_CMD_CSID_2 (0x2 << 22)
-#define NFCADDR_CMD_CSID_3 (0x3 << 22)
-#define NFCADDR_CMD_CSID_4 (0x4 << 22)
-#define NFCADDR_CMD_CSID_5 (0x5 << 22)
-#define NFCADDR_CMD_CSID_6 (0x6 << 22)
-#define NFCADDR_CMD_CSID_7 (0x7 << 22)
-#define NFCADDR_CMD_DATAEN (0x1 << 25) /* Data Transfer Enable */
-#define NFCADDR_CMD_DATADIS (0x0 << 25) /* Data Transfer Disable */
-#define NFCADDR_CMD_NFCRD (0x0 << 26) /* NFC Read Enable */
-#define NFCADDR_CMD_NFCWR (0x1 << 26) /* NFC Write Enable */
-#define NFCADDR_CMD_NFCBUSY (0x1 << 27) /* NFC Busy */
-
-#define nfc_cmd_addr1234_writel(cmd, addr1234, nfc_base) \
- writel((addr1234), (cmd) + nfc_base)
-
-#define nfc_cmd_readl(bitstatus, nfc_base) \
- readl_relaxed((bitstatus) + nfc_base)
-
-#define NFC_TIME_OUT_MS 100
-#define NFC_SRAM_BANK1_OFFSET 0x1200
-
-#endif
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/brcmnand/brcmnand.c
index 42ebd73f821d..7419c5ce63f8 100644
--- a/drivers/mtd/nand/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/brcmnand/brcmnand.c
@@ -101,6 +101,9 @@ struct brcm_nand_dma_desc {
#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
+#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
+#define NAND_POLL_STATUS_TIMEOUT_MS 100
+
/* Controller feature flags */
enum {
BRCMNAND_HAS_1K_SECTORS = BIT(0),
@@ -765,6 +768,31 @@ enum {
CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
};
+static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
+ u32 mask, u32 expected_val,
+ unsigned long timeout_ms)
+{
+ unsigned long limit;
+ u32 val;
+
+ if (!timeout_ms)
+ timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
+
+ limit = jiffies + msecs_to_jiffies(timeout_ms);
+ do {
+ val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
+ if ((val & mask) == expected_val)
+ return 0;
+
+ cpu_relax();
+ } while (time_after(limit, jiffies));
+
+ dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
+ expected_val, val & mask);
+
+ return -ETIMEDOUT;
+}
+
static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
{
u32 val = en ? CS_SELECT_NAND_WP : 0;
@@ -1024,12 +1052,39 @@ static void brcmnand_wp(struct mtd_info *mtd, int wp)
if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
static int old_wp = -1;
+ int ret;
if (old_wp != wp) {
dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
old_wp = wp;
}
+
+ /*
+ * make sure ctrl/flash ready before and after
+ * changing state of #WP pin
+ */
+ ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
+ NAND_STATUS_READY,
+ NAND_CTRL_RDY |
+ NAND_STATUS_READY, 0);
+ if (ret)
+ return;
+
brcmnand_set_wp(ctrl, wp);
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
+ ret = bcmnand_ctrl_poll_status(ctrl,
+ NAND_CTRL_RDY |
+ NAND_STATUS_READY |
+ NAND_STATUS_WP,
+ NAND_CTRL_RDY |
+ NAND_STATUS_READY |
+ (wp ? 0 : NAND_STATUS_WP), 0);
+
+ if (ret)
+ dev_err_ratelimited(&host->pdev->dev,
+ "nand #WP expected %s\n",
+ wp ? "on" : "off");
}
}
@@ -1157,15 +1212,15 @@ static irqreturn_t brcmnand_dma_irq(int irq, void *data)
static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
- u32 intfc;
+ int ret;
dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
BUG_ON(ctrl->cmd_pending != 0);
ctrl->cmd_pending = cmd;
- intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
- WARN_ON(!(intfc & INTFC_CTLR_READY));
+ ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
+ WARN_ON(ret);
mb(); /* flush previous writes */
brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c
index 226ac0bcafc6..949b9400dcb7 100644
--- a/drivers/mtd/nand/cmx270_nand.c
+++ b/drivers/mtd/nand/cmx270_nand.c
@@ -145,7 +145,7 @@ static int __init cmx270_init(void)
ret = gpio_request(GPIO_NAND_CS, "NAND CS");
if (ret) {
- pr_warning("CM-X270: failed to request NAND CS gpio\n");
+ pr_warn("CM-X270: failed to request NAND CS gpio\n");
return ret;
}
@@ -153,7 +153,7 @@ static int __init cmx270_init(void)
ret = gpio_request(GPIO_NAND_RB, "NAND R/B");
if (ret) {
- pr_warning("CM-X270: failed to request NAND R/B gpio\n");
+ pr_warn("CM-X270: failed to request NAND R/B gpio\n");
goto err_gpio_request;
}
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
index 27fa8b87cd5f..531c51991e57 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/davinci_nand.c
@@ -581,6 +581,17 @@ static struct davinci_nand_pdata
"ti,davinci-nand-use-bbt"))
pdata->bbt_options = NAND_BBT_USE_FLASH;
+ /*
+ * Since kernel v4.8, this driver has been fixed to enable
+ * use of 4-bit hardware ECC with subpages and verified on
+ * TI's keystone EVMs (K2L, K2HK and K2E).
+ * However, in the interest of not breaking systems using
+ * existing UBI partitions, sub-page writes are not being
+ * (re)enabled. If you want to use subpage writes on Keystone
+ * platforms (i.e. do not have any existing UBI partitions),
+ * then use "ti,davinci-nand" as the compatible in your
+ * device-tree file.
+ */
if (of_device_is_compatible(pdev->dev.of_node,
"ti,keystone-nand")) {
pdata->options |= NAND_NO_SUBPAGE_WRITE;
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 73b9d4e2dca0..16634df2e39a 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -45,16 +45,16 @@ MODULE_PARM_DESC(onfi_timing_mode,
* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience.
*/
-#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
- INTR_STATUS__ECC_TRANSACTION_DONE | \
- INTR_STATUS__ECC_ERR | \
- INTR_STATUS__PROGRAM_FAIL | \
- INTR_STATUS__LOAD_COMP | \
- INTR_STATUS__PROGRAM_COMP | \
- INTR_STATUS__TIME_OUT | \
- INTR_STATUS__ERASE_FAIL | \
- INTR_STATUS__RST_COMP | \
- INTR_STATUS__ERASE_COMP)
+#define DENALI_IRQ_ALL (INTR__DMA_CMD_COMP | \
+ INTR__ECC_TRANSACTION_DONE | \
+ INTR__ECC_ERR | \
+ INTR__PROGRAM_FAIL | \
+ INTR__LOAD_COMP | \
+ INTR__PROGRAM_COMP | \
+ INTR__TIME_OUT | \
+ INTR__ERASE_FAIL | \
+ INTR__RST_COMP | \
+ INTR__ERASE_COMP)
/*
* indicates whether or not the internal value for the flash bank is
@@ -62,8 +62,6 @@ MODULE_PARM_DESC(onfi_timing_mode,
*/
#define CHIP_SELECT_INVALID -1
-#define SUPPORT_8BITECC 1
-
/*
* This macro divides two integers and rounds fractional values up
* to the nearest integer value.
@@ -86,16 +84,10 @@ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
-#define PIPELINE_ACCESS 0x2000
#define DENALI_READ 0
#define DENALI_WRITE 0x100
-/* types of device accesses. We can issue commands and get status */
-#define COMMAND_CYCLE 0
-#define ADDR_CYCLE 1
-#define STATUS_CYCLE 2
-
/*
* this is a helper macro that allows us to
* format the bank into the proper bits for the controller
@@ -164,7 +156,7 @@ static void read_status(struct denali_nand_info *denali)
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
+ uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
clear_interrupts(denali);
@@ -172,7 +164,7 @@ static void reset_bank(struct denali_nand_info *denali)
irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status & INTR_STATUS__TIME_OUT)
+ if (irq_status & INTR__TIME_OUT)
dev_err(denali->dev, "reset bank failed.\n");
}
@@ -182,22 +174,22 @@ static uint16_t denali_nand_reset(struct denali_nand_info *denali)
int i;
for (i = 0; i < denali->max_banks; i++)
- iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0; i < denali->max_banks; i++) {
iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
- (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+ (INTR__RST_COMP | INTR__TIME_OUT)))
cpu_relax();
if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
- INTR_STATUS__TIME_OUT)
+ INTR__TIME_OUT)
dev_dbg(denali->dev,
"NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
- iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return PASS;
@@ -347,52 +339,25 @@ static void get_samsung_nand_para(struct denali_nand_info *denali,
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
- uint32_t tmp;
-
/*
* Workaround to fix a controller bug which reports a wrong
* spare area size for some kind of Toshiba NAND device
*/
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+ (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
- ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- iowrite32(tmp,
- denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
-#if SUPPORT_15BITECC
- iowrite32(15, denali->flash_reg + ECC_CORRECTION);
-#elif SUPPORT_8BITECC
- iowrite32(8, denali->flash_reg + ECC_CORRECTION);
-#endif
- }
}
static void get_hynix_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
- uint32_t main_size, spare_size;
-
switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 *
- ioread32(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 *
- ioread32(denali->flash_reg + DEVICES_CONNECTED);
- iowrite32(main_size,
- denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- iowrite32(spare_size,
- denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
-#if SUPPORT_15BITECC
- iowrite32(15, denali->flash_reg + ECC_CORRECTION);
-#elif SUPPORT_8BITECC
- iowrite32(8, denali->flash_reg + ECC_CORRECTION);
-#endif
break;
default:
dev_warn(denali->dev,
@@ -454,17 +419,12 @@ static void find_valid_banks(struct denali_nand_info *denali)
static void detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->flash_reg + FEATURES);
- /*
- * Read the revision register, so we can calculate the max_banks
- * properly: the encoding changed from rev 5.0 to 5.1
- */
- u32 revision = MAKE_COMPARABLE_REVISION(
- ioread32(denali->flash_reg + REVISION));
- if (revision < REVISION_5_1)
- denali->max_banks = 2 << (features & FEATURES__N_BANKS);
- else
- denali->max_banks = 1 << (features & FEATURES__N_BANKS);
+ denali->max_banks = 1 << (features & FEATURES__N_BANKS);
+
+ /* the encoding changed from rev 5.0 to 5.1 */
+ if (denali->revision < 0x0501)
+ denali->max_banks <<= 1;
}
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
@@ -653,7 +613,6 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
spin_unlock(&denali->irq_lock);
return result;
}
-#define BANK(x) ((x) << 24)
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
@@ -718,15 +677,7 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
int access_type, int op)
{
int status = PASS;
- uint32_t page_count = 1;
- uint32_t addr, cmd, irq_status, irq_mask;
-
- if (op == DENALI_READ)
- irq_mask = INTR_STATUS__LOAD_COMP;
- else if (op == DENALI_WRITE)
- irq_mask = 0;
- else
- BUG();
+ uint32_t addr, cmd;
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
@@ -749,35 +700,8 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
cmd = MODE_10 | addr;
index_addr(denali, cmd, access_type);
- /*
- * page 33 of the NAND controller spec indicates we should not
- * use the pipeline commands in Spare area only mode.
- * So we don't.
- */
- if (access_type == SPARE_ACCESS) {
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- } else {
- index_addr(denali, cmd,
- PIPELINE_ACCESS | op | page_count);
-
- /*
- * wait for command to be accepted
- * can always use status0 bit as the
- * mask is identical for each bank.
- */
- irq_status = wait_for_irq(denali, irq_mask);
-
- if (irq_status == 0) {
- dev_err(denali->dev,
- "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
- cmd, denali->page, addr);
- status = FAIL;
- } else {
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- }
- }
+ cmd = MODE_01 | addr;
+ iowrite32(cmd, denali->flash_mem);
}
return status;
}
@@ -829,8 +753,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
- INTR_STATUS__PROGRAM_FAIL;
+ uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
int status = 0;
denali->page = page;
@@ -857,7 +780,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
+ uint32_t irq_mask = INTR__LOAD_COMP;
uint32_t irq_status, addr, cmd;
denali->page = page;
@@ -890,98 +813,158 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
}
}
-/*
- * this function examines buffers to see if they contain data that
- * indicate that the buffer is part of an erased region of flash.
- */
-static bool is_erased(uint8_t *buf, int len)
+static int denali_check_erased_page(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf,
+ unsigned long uncor_ecc_flags,
+ unsigned int max_bitflips)
{
- int i;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ int i, ret, stat;
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < ecc_steps; i++) {
+ if (!(uncor_ecc_flags & BIT(i)))
+ continue;
- for (i = 0; i < len; i++)
- if (buf[i] != 0xFF)
- return false;
- return true;
+ stat = nand_check_erased_ecc_chunk(buf, ecc_size,
+ ecc_code, ecc_bytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+
+ buf += ecc_size;
+ ecc_code += ecc_bytes;
+ }
+
+ return max_bitflips;
+}
+
+static int denali_hw_ecc_fixup(struct mtd_info *mtd,
+ struct denali_nand_info *denali,
+ unsigned long *uncor_ecc_flags)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bank = denali->flash_bank;
+ uint32_t ecc_cor;
+ unsigned int max_bitflips;
+
+ ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
+ ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
+
+ if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
+ /*
+ * This flag is set when uncorrectable error occurs at least in
+ * one ECC sector. We can not know "how many sectors", or
+ * "which sector(s)". We need erase-page check for all sectors.
+ */
+ *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
+ return 0;
+ }
+
+ max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
+
+ /*
+ * The register holds the maximum of per-sector corrected bitflips.
+ * This is suitable for the return value of the ->read_page() callback.
+ * Unfortunately, we can not know the total number of corrected bits in
+ * the page. Increase the stats by max_bitflips. (compromised solution)
+ */
+ mtd->ecc_stats.corrected += max_bitflips;
+
+ return max_bitflips;
}
+
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
-#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
+#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
-static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
- uint32_t irq_status, unsigned int *max_bitflips)
+static int denali_sw_ecc_fixup(struct mtd_info *mtd,
+ struct denali_nand_info *denali,
+ unsigned long *uncor_ecc_flags, uint8_t *buf)
{
- bool check_erased_page = false;
unsigned int bitflips = 0;
+ unsigned int max_bitflips = 0;
+ uint32_t err_addr, err_cor_info;
+ unsigned int err_byte, err_sector, err_device;
+ uint8_t err_cor_value;
+ unsigned int prev_sector = 0;
- if (irq_status & INTR_STATUS__ECC_ERR) {
- /* read the ECC errors. we'll ignore them for now */
- uint32_t err_address, err_correction_info, err_byte,
- err_sector, err_device, err_correction_value;
- denali_set_intr_modes(denali, false);
-
- do {
- err_address = ioread32(denali->flash_reg +
- ECC_ERROR_ADDRESS);
- err_sector = ECC_SECTOR(err_address);
- err_byte = ECC_BYTE(err_address);
-
- err_correction_info = ioread32(denali->flash_reg +
- ERR_CORRECTION_INFO);
- err_correction_value =
- ECC_CORRECTION_VALUE(err_correction_info);
- err_device = ECC_ERR_DEVICE(err_correction_info);
-
- if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
- /*
- * If err_byte is larger than ECC_SECTOR_SIZE,
- * means error happened in OOB, so we ignore
- * it. It's no need for us to correct it
- * err_device is represented the NAND error
- * bits are happened in if there are more
- * than one NAND connected.
- */
- if (err_byte < ECC_SECTOR_SIZE) {
- struct mtd_info *mtd =
- nand_to_mtd(&denali->nand);
- int offset;
-
- offset = (err_sector *
- ECC_SECTOR_SIZE +
- err_byte) *
- denali->devnum +
- err_device;
- /* correct the ECC error */
- buf[offset] ^= err_correction_value;
- mtd->ecc_stats.corrected++;
- bitflips++;
- }
- } else {
- /*
- * if the error is not correctable, need to
- * look at the page to see if it is an erased
- * page. if so, then it's not a real ECC error
- */
- check_erased_page = true;
- }
- } while (!ECC_LAST_ERR(err_correction_info));
- /*
- * Once handle all ecc errors, controller will triger
- * a ECC_TRANSACTION_DONE interrupt, so here just wait
- * for a while for this interrupt
- */
- while (!(read_interrupt_status(denali) &
- INTR_STATUS__ECC_TRANSACTION_DONE))
- cpu_relax();
- clear_interrupts(denali);
- denali_set_intr_modes(denali, true);
- }
- *max_bitflips = bitflips;
- return check_erased_page;
+ /* read the ECC errors. we'll ignore them for now */
+ denali_set_intr_modes(denali, false);
+
+ do {
+ err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
+ err_sector = ECC_SECTOR(err_addr);
+ err_byte = ECC_BYTE(err_addr);
+
+ err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
+ err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
+ err_device = ECC_ERR_DEVICE(err_cor_info);
+
+ /* reset the bitflip counter when crossing ECC sector */
+ if (err_sector != prev_sector)
+ bitflips = 0;
+
+ if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
+ /*
+ * Check later if this is a real ECC error, or
+ * an erased sector.
+ */
+ *uncor_ecc_flags |= BIT(err_sector);
+ } else if (err_byte < ECC_SECTOR_SIZE) {
+ /*
+ * If err_byte is larger than ECC_SECTOR_SIZE, means error
+ * happened in OOB, so we ignore it. It's no need for
+ * us to correct it err_device is represented the NAND
+ * error bits are happened in if there are more than
+ * one NAND connected.
+ */
+ int offset;
+ unsigned int flips_in_byte;
+
+ offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
+ denali->devnum + err_device;
+
+ /* correct the ECC error */
+ flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
+ buf[offset] ^= err_cor_value;
+ mtd->ecc_stats.corrected += flips_in_byte;
+ bitflips += flips_in_byte;
+
+ max_bitflips = max(max_bitflips, bitflips);
+ }
+
+ prev_sector = err_sector;
+ } while (!ECC_LAST_ERR(err_cor_info));
+
+ /*
+ * Once handle all ecc errors, controller will trigger a
+ * ECC_TRANSACTION_DONE interrupt, so here just wait for
+ * a while for this interrupt
+ */
+ while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
+ cpu_relax();
+ clear_interrupts(denali);
+ denali_set_intr_modes(denali, true);
+
+ return max_bitflips;
}
/* programs the controller to either enable/disable DMA transfers */
@@ -991,8 +974,30 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en)
ioread32(denali->flash_reg + DMA_ENABLE);
}
-/* setups the HW to perform the data DMA */
-static void denali_setup_dma(struct denali_nand_info *denali, int op)
+static void denali_setup_dma64(struct denali_nand_info *denali, int op)
+{
+ uint32_t mode;
+ const int page_count = 1;
+ uint64_t addr = denali->buf.dma_buf;
+
+ mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
+
+ /* DMA is a three step process */
+
+ /*
+ * 1. setup transfer type, interrupt when complete,
+ * burst len = 64 bytes, the number of pages
+ */
+ index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
+
+ /* 2. set memory low address */
+ index_addr(denali, mode, addr);
+
+ /* 3. set memory high address */
+ index_addr(denali, mode, addr >> 32);
+}
+
+static void denali_setup_dma32(struct denali_nand_info *denali, int op)
{
uint32_t mode;
const int page_count = 1;
@@ -1015,6 +1020,14 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op)
index_addr(denali, mode | 0x14000, 0x2400);
}
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
+{
+ if (denali->caps & DENALI_CAP_DMA_64BIT)
+ denali_setup_dma64(denali, op);
+ else
+ denali_setup_dma32(denali, op);
+}
+
/*
* writes a page. user specifies type, and this function handles the
* configuration details.
@@ -1026,8 +1039,7 @@ static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
dma_addr_t addr = denali->buf.dma_buf;
size_t size = mtd->writesize + mtd->oobsize;
uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
- INTR_STATUS__PROGRAM_FAIL;
+ uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
/*
* if it is a raw xfer, we want to disable ecc and send the spare area.
@@ -1118,16 +1130,15 @@ static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
- unsigned int max_bitflips;
struct denali_nand_info *denali = mtd_to_denali(mtd);
-
dma_addr_t addr = denali->buf.dma_buf;
size_t size = mtd->writesize + mtd->oobsize;
-
uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
- INTR_STATUS__ECC_ERR;
- bool check_erased_page = false;
+ uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
+ INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
+ INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
+ unsigned long uncor_ecc_flags = 0;
+ int stat = 0;
if (page != denali->page) {
dev_err(denali->dev,
@@ -1151,21 +1162,23 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
memcpy(buf, denali->buf.buf, mtd->writesize);
- check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
+ if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+ stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+ else if (irq_status & INTR__ECC_ERR)
+ stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
denali_enable_dma(denali, false);
- if (check_erased_page) {
+ if (stat < 0)
+ return stat;
+
+ if (uncor_ecc_flags) {
read_oob_data(mtd, chip->oob_poi, denali->page);
- /* check ECC failures that may have occurred on erased pages */
- if (check_erased_page) {
- if (!is_erased(buf, mtd->writesize))
- mtd->ecc_stats.failed++;
- if (!is_erased(buf, mtd->oobsize))
- mtd->ecc_stats.failed++;
- }
+ stat = denali_check_erased_page(mtd, chip, buf,
+ uncor_ecc_flags, stat);
}
- return max_bitflips;
+
+ return stat;
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
@@ -1174,7 +1187,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = mtd->writesize + mtd->oobsize;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+ uint32_t irq_mask = INTR__DMA_CMD_COMP;
if (page != denali->page) {
dev_err(denali->dev,
@@ -1247,10 +1260,9 @@ static int denali_erase(struct mtd_info *mtd, int page)
index_addr(denali, cmd, 0x1);
/* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
- INTR_STATUS__ERASE_FAIL);
+ irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
- return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
+ return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
@@ -1303,6 +1315,14 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
static void denali_hw_init(struct denali_nand_info *denali)
{
/*
+ * The REVISION register may not be reliable. Platforms are allowed to
+ * override it.
+ */
+ if (!denali->revision)
+ denali->revision =
+ swab16(ioread32(denali->flash_reg + REVISION));
+
+ /*
* tell driver how many bit controller will skip before
* writing ECC code in OOB, this register may be already
* set by firmware. So we read this value out.
@@ -1413,9 +1433,61 @@ static void denali_drv_init(struct denali_nand_info *denali)
denali->irq_status = 0;
}
+static int denali_multidev_fixup(struct denali_nand_info *denali)
+{
+ struct nand_chip *chip = &denali->nand;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ /*
+ * Support for multi device:
+ * When the IP configuration is x16 capable and two x8 chips are
+ * connected in parallel, DEVICES_CONNECTED should be set to 2.
+ * In this case, the core framework knows nothing about this fact,
+ * so we should tell it the _logical_ pagesize and anything necessary.
+ */
+ denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+
+ /*
+ * On some SoCs, DEVICES_CONNECTED is not auto-detected.
+ * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
+ */
+ if (denali->devnum == 0) {
+ denali->devnum = 1;
+ iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
+ }
+
+ if (denali->devnum == 1)
+ return 0;
+
+ if (denali->devnum != 2) {
+ dev_err(denali->dev, "unsupported number of devices %d\n",
+ denali->devnum);
+ return -EINVAL;
+ }
+
+ /* 2 chips in parallel */
+ mtd->size <<= 1;
+ mtd->erasesize <<= 1;
+ mtd->writesize <<= 1;
+ mtd->oobsize <<= 1;
+ chip->chipsize <<= 1;
+ chip->page_shift += 1;
+ chip->phys_erase_shift += 1;
+ chip->bbt_erase_shift += 1;
+ chip->chip_shift += 1;
+ chip->pagemask <<= 1;
+ chip->ecc.size <<= 1;
+ chip->ecc.bytes <<= 1;
+ chip->ecc.strength <<= 1;
+ denali->bbtskipbytes <<= 1;
+
+ return 0;
+}
+
int denali_init(struct denali_nand_info *denali)
{
- struct mtd_info *mtd = nand_to_mtd(&denali->nand);
+ struct nand_chip *chip = &denali->nand;
+ struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (denali->platform == INTEL_CE4100) {
@@ -1449,13 +1521,16 @@ int denali_init(struct denali_nand_info *denali)
/* now that our ISR is registered, we can enable interrupts */
denali_set_intr_modes(denali, true);
- mtd->name = "denali-nand";
+ nand_set_flash_node(chip, denali->dev->of_node);
+ /* Fallback to the default name if DT did not give "label" property */
+ if (!mtd->name)
+ mtd->name = "denali-nand";
/* register the driver with the NAND core subsystem */
- denali->nand.select_chip = denali_select_chip;
- denali->nand.cmdfunc = denali_cmdfunc;
- denali->nand.read_byte = denali_read_byte;
- denali->nand.waitfunc = denali_waitfunc;
+ chip->select_chip = denali_select_chip;
+ chip->cmdfunc = denali_cmdfunc;
+ chip->read_byte = denali_read_byte;
+ chip->waitfunc = denali_waitfunc;
/*
* scan for NAND devices attached to the controller
@@ -1476,8 +1551,9 @@ int denali_init(struct denali_nand_info *denali)
goto failed_req_irq;
}
- /* Is 32-bit DMA supported? */
- ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
+ ret = dma_set_mask(denali->dev,
+ DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
+ 64 : 32));
if (ret) {
dev_err(denali->dev, "No usable DMA configuration\n");
goto failed_req_irq;
@@ -1493,54 +1569,35 @@ int denali_init(struct denali_nand_info *denali)
}
/*
- * support for multi nand
- * MTD known nothing about multi nand, so we should tell it
- * the real pagesize and anything necessery
- */
- denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali->nand.chipsize <<= denali->devnum - 1;
- denali->nand.page_shift += denali->devnum - 1;
- denali->nand.pagemask = (denali->nand.chipsize >>
- denali->nand.page_shift) - 1;
- denali->nand.bbt_erase_shift += denali->devnum - 1;
- denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
- denali->nand.chip_shift += denali->devnum - 1;
- mtd->writesize <<= denali->devnum - 1;
- mtd->oobsize <<= denali->devnum - 1;
- mtd->erasesize <<= denali->devnum - 1;
- mtd->size = denali->nand.numchips * denali->nand.chipsize;
- denali->bbtskipbytes *= denali->devnum;
-
- /*
* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management.
*/
/* Bad block management */
- denali->nand.bbt_td = &bbt_main_descr;
- denali->nand.bbt_md = &bbt_mirror_descr;
+ chip->bbt_td = &bbt_main_descr;
+ chip->bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
- denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
- denali->nand.options |= NAND_SKIP_BBTSCAN;
- denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+ chip->bbt_options |= NAND_BBT_USE_FLASH;
+ chip->options |= NAND_SKIP_BBTSCAN;
+ chip->ecc.mode = NAND_ECC_HW_SYNDROME;
/* no subpage writes on denali */
- denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
/*
* Denali Controller only support 15bit and 8bit ECC in MRST,
* so just let controller do 15bit ECC for MLC and 8bit ECC for
* SLC if possible.
* */
- if (!nand_is_slc(&denali->nand) &&
+ if (!nand_is_slc(chip) &&
(mtd->oobsize > (denali->bbtskipbytes +
ECC_15BITS * (mtd->writesize /
ECC_SECTOR_SIZE)))) {
/* if MLC OOB size is large enough, use 15bit ECC*/
- denali->nand.ecc.strength = 15;
- denali->nand.ecc.bytes = ECC_15BITS;
+ chip->ecc.strength = 15;
+ chip->ecc.bytes = ECC_15BITS;
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
} else if (mtd->oobsize < (denali->bbtskipbytes +
ECC_8BITS * (mtd->writesize /
@@ -1548,24 +1605,26 @@ int denali_init(struct denali_nand_info *denali)
pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
goto failed_req_irq;
} else {
- denali->nand.ecc.strength = 8;
- denali->nand.ecc.bytes = ECC_8BITS;
+ chip->ecc.strength = 8;
+ chip->ecc.bytes = ECC_8BITS;
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
}
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
- denali->nand.ecc.bytes *= denali->devnum;
- denali->nand.ecc.strength *= denali->devnum;
/* override the default read operations */
- denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
- denali->nand.ecc.read_page = denali_read_page;
- denali->nand.ecc.read_page_raw = denali_read_page_raw;
- denali->nand.ecc.write_page = denali_write_page;
- denali->nand.ecc.write_page_raw = denali_write_page_raw;
- denali->nand.ecc.read_oob = denali_read_oob;
- denali->nand.ecc.write_oob = denali_write_oob;
- denali->nand.erase = denali_erase;
+ chip->ecc.size = ECC_SECTOR_SIZE;
+ chip->ecc.read_page = denali_read_page;
+ chip->ecc.read_page_raw = denali_read_page_raw;
+ chip->ecc.write_page = denali_write_page;
+ chip->ecc.write_page_raw = denali_write_page_raw;
+ chip->ecc.read_oob = denali_read_oob;
+ chip->ecc.write_oob = denali_write_oob;
+ chip->erase = denali_erase;
+
+ ret = denali_multidev_fixup(denali);
+ if (ret)
+ goto failed_req_irq;
ret = nand_scan_tail(mtd);
if (ret)
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
index ea22191e8515..ec004850652a 100644
--- a/drivers/mtd/nand/denali.h
+++ b/drivers/mtd/nand/denali.h
@@ -20,6 +20,7 @@
#ifndef __DENALI_H__
#define __DENALI_H__
+#include <linux/bitops.h>
#include <linux/mtd/nand.h>
#define DEVICE_RESET 0x0
@@ -178,8 +179,6 @@
#define REVISION 0x370
#define REVISION__VALUE 0xffff
-#define MAKE_COMPARABLE_REVISION(x) swab16((x) & REVISION__VALUE)
-#define REVISION_5_1 0x00000501
#define ONFI_DEVICE_FEATURES 0x380
#define ONFI_DEVICE_FEATURES__VALUE 0x003f
@@ -218,65 +217,29 @@
#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50))
#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
-
-#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001
-#define INTR_STATUS__ECC_ERR 0x0002
-#define INTR_STATUS__DMA_CMD_COMP 0x0004
-#define INTR_STATUS__TIME_OUT 0x0008
-#define INTR_STATUS__PROGRAM_FAIL 0x0010
-#define INTR_STATUS__ERASE_FAIL 0x0020
-#define INTR_STATUS__LOAD_COMP 0x0040
-#define INTR_STATUS__PROGRAM_COMP 0x0080
-#define INTR_STATUS__ERASE_COMP 0x0100
-#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200
-#define INTR_STATUS__LOCKED_BLK 0x0400
-#define INTR_STATUS__UNSUP_CMD 0x0800
-#define INTR_STATUS__INT_ACT 0x1000
-#define INTR_STATUS__RST_COMP 0x2000
-#define INTR_STATUS__PIPE_CMD_ERR 0x4000
-#define INTR_STATUS__PAGE_XFER_INC 0x8000
-
-#define INTR_EN__ECC_TRANSACTION_DONE 0x0001
-#define INTR_EN__ECC_ERR 0x0002
-#define INTR_EN__DMA_CMD_COMP 0x0004
-#define INTR_EN__TIME_OUT 0x0008
-#define INTR_EN__PROGRAM_FAIL 0x0010
-#define INTR_EN__ERASE_FAIL 0x0020
-#define INTR_EN__LOAD_COMP 0x0040
-#define INTR_EN__PROGRAM_COMP 0x0080
-#define INTR_EN__ERASE_COMP 0x0100
-#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200
-#define INTR_EN__LOCKED_BLK 0x0400
-#define INTR_EN__UNSUP_CMD 0x0800
-#define INTR_EN__INT_ACT 0x1000
-#define INTR_EN__RST_COMP 0x2000
-#define INTR_EN__PIPE_CMD_ERR 0x4000
-#define INTR_EN__PAGE_XFER_INC 0x8000
+/* bit[1:0] is used differently depending on IP version */
+#define INTR__ECC_UNCOR_ERR 0x0001 /* new IP */
+#define INTR__ECC_TRANSACTION_DONE 0x0001 /* old IP */
+#define INTR__ECC_ERR 0x0002 /* old IP */
+#define INTR__DMA_CMD_COMP 0x0004
+#define INTR__TIME_OUT 0x0008
+#define INTR__PROGRAM_FAIL 0x0010
+#define INTR__ERASE_FAIL 0x0020
+#define INTR__LOAD_COMP 0x0040
+#define INTR__PROGRAM_COMP 0x0080
+#define INTR__ERASE_COMP 0x0100
+#define INTR__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR__LOCKED_BLK 0x0400
+#define INTR__UNSUP_CMD 0x0800
+#define INTR__INT_ACT 0x1000
+#define INTR__RST_COMP 0x2000
+#define INTR__PIPE_CMD_ERR 0x4000
+#define INTR__PAGE_XFER_INC 0x8000
#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50))
#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50))
#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
-#define DATA_INTR 0x550
-#define DATA_INTR__WRITE_SPACE_AV 0x0001
-#define DATA_INTR__READ_DATA_AV 0x0002
-
-#define DATA_INTR_EN 0x560
-#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
-#define DATA_INTR_EN__READ_DATA_AV 0x0002
-
-#define GPREG_0 0x570
-#define GPREG_0__VALUE 0xffff
-
-#define GPREG_1 0x580
-#define GPREG_1__VALUE 0xffff
-
-#define GPREG_2 0x590
-#define GPREG_2__VALUE 0xffff
-
-#define GPREG_3 0x5a0
-#define GPREG_3__VALUE 0xffff
-
#define ECC_THRESHOLD 0x600
#define ECC_THRESHOLD__VALUE 0x03ff
@@ -297,6 +260,11 @@
#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10)
+#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8)
+#define ECC_COR_INFO__MAX_ERRORS 0x007f
+#define ECC_COR_INFO__UNCOR_ERR 0x0080
+
#define DMA_ENABLE 0x700
#define DMA_ENABLE__FLAG 0x0001
@@ -304,20 +272,13 @@
#define IGNORE_ECC_DONE__FLAG 0x0001
#define DMA_INTR 0x720
+#define DMA_INTR_EN 0x730
#define DMA_INTR__TARGET_ERROR 0x0001
#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
-#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
-
-#define DMA_INTR_EN 0x730
-#define DMA_INTR_EN__TARGET_ERROR 0x0001
-#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
-#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
-#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
-#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
-#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
#define TARGET_ERR_ADDR_LO 0x740
#define TARGET_ERR_ADDR_LO__VALUE 0xffff
@@ -331,69 +292,12 @@
#define CHNL_ACTIVE__CHANNEL2 0x0004
#define CHNL_ACTIVE__CHANNEL3 0x0008
-#define ACTIVE_SRC_ID 0x800
-#define ACTIVE_SRC_ID__VALUE 0x00ff
-
-#define PTN_INTR 0x810
-#define PTN_INTR__CONFIG_ERROR 0x0001
-#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
-#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
-#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
-#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
-#define PTN_INTR__REG_ACCESS_ERROR 0x0020
-
-#define PTN_INTR_EN 0x820
-#define PTN_INTR_EN__CONFIG_ERROR 0x0001
-#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
-#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
-#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
-#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
-#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
-
-#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40))
-#define PERM_SRC_ID__SRCID 0x00ff
-#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800
-#define PERM_SRC_ID__WRITE_ACTIVE 0x2000
-#define PERM_SRC_ID__READ_ACTIVE 0x4000
-#define PERM_SRC_ID__PARTITION_VALID 0x8000
-
-#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40))
-#define MIN_BLK_ADDR__VALUE 0xffff
-
-#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40))
-#define MAX_BLK_ADDR__VALUE 0xffff
-
-#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40))
-#define MIN_MAX_BANK__MIN_VALUE 0x0003
-#define MIN_MAX_BANK__MAX_VALUE 0x000c
-
-
-/* ffsdefs.h */
-#define CLEAR 0 /*use this to clear a field instead of "fail"*/
-#define SET 1 /*use this to set a field instead of "pass"*/
#define FAIL 1 /*failed flag*/
#define PASS 0 /*success flag*/
-#define ERR -1 /*error flag*/
-
-/* lld.h */
-#define GOOD_BLOCK 0
-#define DEFECTIVE_BLOCK 1
-#define READ_ERROR 2
#define CLK_X 5
#define CLK_MULTI 4
-/* KBV - Updated to LNW scratch register address */
-#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
-#define SCRATCH_REG_SIZE 64
-
-#define GLOB_HWCTL_DEFAULT_BLKS 2048
-
-#define SUPPORT_15BITECC 1
-#define SUPPORT_8BITECC 1
-
-#define CUSTOM_CONF_PARAMS 0
-
#define ONFI_BLOOM_TIME 1
#define MODE5_WORKAROUND 0
@@ -403,31 +307,6 @@
#define MODE_10 0x08000000
#define MODE_11 0x0C000000
-
-#define DATA_TRANSFER_MODE 0
-#define PROTECTION_PER_BLOCK 1
-#define LOAD_WAIT_COUNT 2
-#define PROGRAM_WAIT_COUNT 3
-#define ERASE_WAIT_COUNT 4
-#define INT_MONITOR_CYCLE_COUNT 5
-#define READ_BUSY_PIN_ENABLED 6
-#define MULTIPLANE_OPERATION_SUPPORT 7
-#define PRE_FETCH_MODE 8
-#define CE_DONT_CARE_SUPPORT 9
-#define COPYBACK_SUPPORT 10
-#define CACHE_WRITE_SUPPORT 11
-#define CACHE_READ_SUPPORT 12
-#define NUM_PAGES_IN_BLOCK 13
-#define ECC_ENABLE_SELECT 14
-#define WRITE_ENABLE_2_READ_ENABLE 15
-#define ADDRESS_2_DATA 16
-#define READ_ENABLE_2_WRITE_ENABLE 17
-#define TWO_ROW_ADDRESS_CYCLES 18
-#define MULTIPLANE_ADDRESS_RESTRICT 19
-#define ACC_CLOCKS 20
-#define READ_WRITE_ENABLE_LOW_COUNT 21
-#define READ_WRITE_ENABLE_HIGH_COUNT 22
-
#define ECC_SECTOR_SIZE 512
struct nand_buf {
@@ -449,23 +328,26 @@ struct denali_nand_info {
struct nand_buf buf;
struct device *dev;
int total_used_banks;
- uint32_t block; /* stored for future use */
- uint16_t page;
- void __iomem *flash_reg; /* Mapped io reg base address */
- void __iomem *flash_mem; /* Mapped io reg base address */
+ int page;
+ void __iomem *flash_reg; /* Register Interface */
+ void __iomem *flash_mem; /* Host Data/Command Interface */
/* elements used by ISR */
struct completion complete;
spinlock_t irq_lock;
uint32_t irq_status;
- int irq_debug_array[32];
int irq;
- uint32_t devnum; /* represent how many nands connected */
- uint32_t bbtskipbytes;
- uint32_t max_banks;
+ int devnum; /* represent how many nands connected */
+ int bbtskipbytes;
+ int max_banks;
+ unsigned int revision;
+ unsigned int caps;
};
+#define DENALI_CAP_HW_ECC_FIXUP BIT(0)
+#define DENALI_CAP_DMA_64BIT BIT(1)
+
extern int denali_init(struct denali_nand_info *denali);
extern void denali_remove(struct denali_nand_info *denali);
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c
index 5607fcd3b8ed..df9ef36cc2ce 100644
--- a/drivers/mtd/nand/denali_dt.c
+++ b/drivers/mtd/nand/denali_dt.c
@@ -29,64 +29,66 @@ struct denali_dt {
struct clk *clk;
};
-static const struct of_device_id denali_nand_dt_ids[] = {
- { .compatible = "denali,denali-nand-dt" },
- { /* sentinel */ }
- };
+struct denali_dt_data {
+ unsigned int revision;
+ unsigned int caps;
+};
-MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
+static const struct denali_dt_data denali_socfpga_data = {
+ .caps = DENALI_CAP_HW_ECC_FIXUP,
+};
-static u64 denali_dma_mask;
+static const struct of_device_id denali_nand_dt_ids[] = {
+ {
+ .compatible = "altr,socfpga-denali-nand",
+ .data = &denali_socfpga_data,
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
-static int denali_dt_probe(struct platform_device *ofdev)
+static int denali_dt_probe(struct platform_device *pdev)
{
struct resource *denali_reg, *nand_data;
struct denali_dt *dt;
+ const struct denali_dt_data *data;
struct denali_nand_info *denali;
int ret;
- const struct of_device_id *of_id;
- of_id = of_match_device(denali_nand_dt_ids, &ofdev->dev);
- if (of_id) {
- ofdev->id_entry = of_id->data;
- } else {
- pr_err("Failed to find the right device id.\n");
- return -ENOMEM;
- }
-
- dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
+ dt = devm_kzalloc(&pdev->dev, sizeof(*dt), GFP_KERNEL);
if (!dt)
return -ENOMEM;
denali = &dt->denali;
+ data = of_device_get_match_data(&pdev->dev);
+ if (data) {
+ denali->revision = data->revision;
+ denali->caps = data->caps;
+ }
+
denali->platform = DT;
- denali->dev = &ofdev->dev;
- denali->irq = platform_get_irq(ofdev, 0);
+ denali->dev = &pdev->dev;
+ denali->irq = platform_get_irq(pdev, 0);
if (denali->irq < 0) {
- dev_err(&ofdev->dev, "no irq defined\n");
+ dev_err(&pdev->dev, "no irq defined\n");
return denali->irq;
}
- denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg");
- denali->flash_reg = devm_ioremap_resource(&ofdev->dev, denali_reg);
+ denali_reg = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "denali_reg");
+ denali->flash_reg = devm_ioremap_resource(&pdev->dev, denali_reg);
if (IS_ERR(denali->flash_reg))
return PTR_ERR(denali->flash_reg);
- nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data");
- denali->flash_mem = devm_ioremap_resource(&ofdev->dev, nand_data);
+ nand_data = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "nand_data");
+ denali->flash_mem = devm_ioremap_resource(&pdev->dev, nand_data);
if (IS_ERR(denali->flash_mem))
return PTR_ERR(denali->flash_mem);
- if (!of_property_read_u32(ofdev->dev.of_node,
- "dma-mask", (u32 *)&denali_dma_mask)) {
- denali->dev->dma_mask = &denali_dma_mask;
- } else {
- denali->dev->dma_mask = NULL;
- }
-
- dt->clk = devm_clk_get(&ofdev->dev, NULL);
+ dt->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dt->clk)) {
- dev_err(&ofdev->dev, "no clk available\n");
+ dev_err(&pdev->dev, "no clk available\n");
return PTR_ERR(dt->clk);
}
clk_prepare_enable(dt->clk);
@@ -95,7 +97,7 @@ static int denali_dt_probe(struct platform_device *ofdev)
if (ret)
goto out_disable_clk;
- platform_set_drvdata(ofdev, dt);
+ platform_set_drvdata(pdev, dt);
return 0;
out_disable_clk:
@@ -104,9 +106,9 @@ out_disable_clk:
return ret;
}
-static int denali_dt_remove(struct platform_device *ofdev)
+static int denali_dt_remove(struct platform_device *pdev)
{
- struct denali_dt *dt = platform_get_drvdata(ofdev);
+ struct denali_dt *dt = platform_get_drvdata(pdev);
denali_remove(&dt->denali);
clk_disable_unprepare(dt->clk);
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c
index bda1e4667138..cea50d2f218c 100644
--- a/drivers/mtd/nand/fsmc_nand.c
+++ b/drivers/mtd/nand/fsmc_nand.c
@@ -38,15 +38,6 @@
#include <linux/amba/bus.h>
#include <mtd/mtd-abi.h>
-#define FSMC_NAND_BW8 1
-#define FSMC_NAND_BW16 2
-
-#define FSMC_MAX_NOR_BANKS 4
-#define FSMC_MAX_NAND_BANKS 4
-
-#define FSMC_FLASH_WIDTH8 1
-#define FSMC_FLASH_WIDTH16 2
-
/* fsmc controller registers for NOR flash */
#define CTRL 0x0
/* ctrl register definitions */
@@ -133,33 +124,48 @@ enum access_mode {
};
/**
- * fsmc_nand_platform_data - platform specific NAND controller config
- * @nand_timings: timing setup for the physical NAND interface
- * @partitions: partition table for the platform, use a default fallback
- * if this is NULL
- * @nr_partitions: the number of partitions in the previous entry
- * @options: different options for the driver
- * @width: bus width
- * @bank: default bank
- * @select_bank: callback to select a certain bank, this is
- * platform-specific. If the controller only supports one bank
- * this may be set to NULL
+ * struct fsmc_nand_data - structure for FSMC NAND device state
+ *
+ * @pid: Part ID on the AMBA PrimeCell format
+ * @mtd: MTD info for a NAND flash.
+ * @nand: Chip related info for a NAND flash.
+ * @partitions: Partition info for a NAND Flash.
+ * @nr_partitions: Total number of partition of a NAND flash.
+ *
+ * @bank: Bank number for probed device.
+ * @clk: Clock structure for FSMC.
+ *
+ * @read_dma_chan: DMA channel for read access
+ * @write_dma_chan: DMA channel for write access to NAND
+ * @dma_access_complete: Completion structure
+ *
+ * @data_pa: NAND Physical port for Data.
+ * @data_va: NAND port for Data.
+ * @cmd_va: NAND port for Command.
+ * @addr_va: NAND port for Address.
+ * @regs_va: FSMC regs base address.
*/
-struct fsmc_nand_platform_data {
- struct fsmc_nand_timings *nand_timings;
- struct mtd_partition *partitions;
- unsigned int nr_partitions;
- unsigned int options;
- unsigned int width;
- unsigned int bank;
+struct fsmc_nand_data {
+ u32 pid;
+ struct nand_chip nand;
+ unsigned int bank;
+ struct device *dev;
enum access_mode mode;
+ struct clk *clk;
- void (*select_bank)(uint32_t bank, uint32_t busw);
+ /* DMA related objects */
+ struct dma_chan *read_dma_chan;
+ struct dma_chan *write_dma_chan;
+ struct completion dma_access_complete;
- /* priv structures for dma accesses */
- void *read_dma_priv;
- void *write_dma_priv;
+ struct fsmc_nand_timings *dev_timings;
+
+ dma_addr_t data_pa;
+ void __iomem *data_va;
+ void __iomem *cmd_va;
+ void __iomem *addr_va;
+ void __iomem *regs_va;
};
static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
@@ -246,86 +252,11 @@ static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
.free = fsmc_ecc4_ooblayout_free,
};
-/**
- * struct fsmc_nand_data - structure for FSMC NAND device state
- *
- * @pid: Part ID on the AMBA PrimeCell format
- * @mtd: MTD info for a NAND flash.
- * @nand: Chip related info for a NAND flash.
- * @partitions: Partition info for a NAND Flash.
- * @nr_partitions: Total number of partition of a NAND flash.
- *
- * @bank: Bank number for probed device.
- * @clk: Clock structure for FSMC.
- *
- * @read_dma_chan: DMA channel for read access
- * @write_dma_chan: DMA channel for write access to NAND
- * @dma_access_complete: Completion structure
- *
- * @data_pa: NAND Physical port for Data.
- * @data_va: NAND port for Data.
- * @cmd_va: NAND port for Command.
- * @addr_va: NAND port for Address.
- * @regs_va: FSMC regs base address.
- */
-struct fsmc_nand_data {
- u32 pid;
- struct nand_chip nand;
- struct mtd_partition *partitions;
- unsigned int nr_partitions;
-
- unsigned int bank;
- struct device *dev;
- enum access_mode mode;
- struct clk *clk;
-
- /* DMA related objects */
- struct dma_chan *read_dma_chan;
- struct dma_chan *write_dma_chan;
- struct completion dma_access_complete;
-
- struct fsmc_nand_timings *dev_timings;
-
- dma_addr_t data_pa;
- void __iomem *data_va;
- void __iomem *cmd_va;
- void __iomem *addr_va;
- void __iomem *regs_va;
-
- void (*select_chip)(uint32_t bank, uint32_t busw);
-};
-
static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
}
-/* Assert CS signal based on chipnr */
-static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct fsmc_nand_data *host;
-
- host = mtd_to_fsmc(mtd);
-
- switch (chipnr) {
- case -1:
- chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
- break;
- case 0:
- case 1:
- case 2:
- case 3:
- if (host->select_chip)
- host->select_chip(chipnr,
- chip->options & NAND_BUSWIDTH_16);
- break;
-
- default:
- dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
- }
-}
-
/*
* fsmc_cmd_ctrl - For facilitaing Hardware access
* This routine allows hardware specific access to control-lines(ALE,CLE)
@@ -838,44 +769,46 @@ static bool filter(struct dma_chan *chan, void *slave)
}
static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
- struct device_node *np)
+ struct fsmc_nand_data *host,
+ struct nand_chip *nand)
{
- struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+ struct device_node *np = pdev->dev.of_node;
u32 val;
int ret;
- /* Set default NAND width to 8 bits */
- pdata->width = 8;
+ nand->options = 0;
+
if (!of_property_read_u32(np, "bank-width", &val)) {
if (val == 2) {
- pdata->width = 16;
+ nand->options |= NAND_BUSWIDTH_16;
} else if (val != 1) {
dev_err(&pdev->dev, "invalid bank-width %u\n", val);
return -EINVAL;
}
}
+
if (of_get_property(np, "nand-skip-bbtscan", NULL))
- pdata->options = NAND_SKIP_BBTSCAN;
+ nand->options |= NAND_SKIP_BBTSCAN;
- pdata->nand_timings = devm_kzalloc(&pdev->dev,
- sizeof(*pdata->nand_timings), GFP_KERNEL);
- if (!pdata->nand_timings)
+ host->dev_timings = devm_kzalloc(&pdev->dev,
+ sizeof(*host->dev_timings), GFP_KERNEL);
+ if (!host->dev_timings)
return -ENOMEM;
- ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
- sizeof(*pdata->nand_timings));
+ ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
+ sizeof(*host->dev_timings));
if (ret) {
dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
- pdata->nand_timings = NULL;
+ host->dev_timings = NULL;
}
/* Set default NAND bank to 0 */
- pdata->bank = 0;
+ host->bank = 0;
if (!of_property_read_u32(np, "bank", &val)) {
if (val > 3) {
dev_err(&pdev->dev, "invalid bank %u\n", val);
return -EINVAL;
}
- pdata->bank = val;
+ host->bank = val;
}
return 0;
}
@@ -886,8 +819,6 @@ static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
*/
static int __init fsmc_nand_probe(struct platform_device *pdev)
{
- struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- struct device_node __maybe_unused *np = pdev->dev.of_node;
struct fsmc_nand_data *host;
struct mtd_info *mtd;
struct nand_chip *nand;
@@ -897,22 +828,17 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
u32 pid;
int i;
- pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
- if (!pdata)
- return -ENOMEM;
-
- pdev->dev.platform_data = pdata;
- ret = fsmc_nand_probe_config_dt(pdev, np);
- if (ret) {
- dev_err(&pdev->dev, "no platform data\n");
- return -ENODEV;
- }
-
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
+ nand = &host->nand;
+
+ ret = fsmc_nand_probe_config_dt(pdev, host, nand);
+ if (ret)
+ return ret;
+
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
host->data_va = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->data_va))
@@ -935,7 +861,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
if (IS_ERR(host->regs_va))
return PTR_ERR(host->regs_va);
- host->clk = clk_get(&pdev->dev, NULL);
+ host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "failed to fetch block clock\n");
return PTR_ERR(host->clk);
@@ -943,7 +869,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
ret = clk_prepare_enable(host->clk);
if (ret)
- goto err_clk_prepare_enable;
+ return ret;
/*
* This device ID is actually a common AMBA ID as used on the
@@ -957,22 +883,15 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
- host->bank = pdata->bank;
- host->select_chip = pdata->select_bank;
- host->partitions = pdata->partitions;
- host->nr_partitions = pdata->nr_partitions;
host->dev = &pdev->dev;
- host->dev_timings = pdata->nand_timings;
- host->mode = pdata->mode;
if (host->mode == USE_DMA_ACCESS)
init_completion(&host->dma_access_complete);
/* Link all private pointers */
mtd = nand_to_mtd(&host->nand);
- nand = &host->nand;
nand_set_controller_data(nand, host);
- nand_set_flash_node(nand, np);
+ nand_set_flash_node(nand, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
nand->IO_ADDR_R = host->data_va;
@@ -987,26 +906,18 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.hwctl = fsmc_enable_hwecc;
nand->ecc.size = 512;
- nand->options = pdata->options;
- nand->select_chip = fsmc_select_chip;
nand->badblockbits = 7;
- nand_set_flash_node(nand, np);
-
- if (pdata->width == FSMC_NAND_BW16)
- nand->options |= NAND_BUSWIDTH_16;
switch (host->mode) {
case USE_DMA_ACCESS:
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
- host->read_dma_chan = dma_request_channel(mask, filter,
- pdata->read_dma_priv);
+ host->read_dma_chan = dma_request_channel(mask, filter, NULL);
if (!host->read_dma_chan) {
dev_err(&pdev->dev, "Unable to get read dma channel\n");
goto err_req_read_chnl;
}
- host->write_dma_chan = dma_request_channel(mask, filter,
- pdata->write_dma_priv);
+ host->write_dma_chan = dma_request_channel(mask, filter, NULL);
if (!host->write_dma_chan) {
dev_err(&pdev->dev, "Unable to get write dma channel\n");
goto err_req_write_chnl;
@@ -1107,18 +1018,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
if (ret)
goto err_probe;
- /*
- * The partition information can is accessed by (in the same precedence)
- *
- * command line through Bootloader,
- * platform data,
- * default partition information present in driver.
- */
- /*
- * Check for partition info passed
- */
mtd->name = "nand";
- ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
+ ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_probe;
@@ -1135,8 +1036,6 @@ err_req_write_chnl:
dma_release_channel(host->read_dma_chan);
err_req_read_chnl:
clk_disable_unprepare(host->clk);
-err_clk_prepare_enable:
- clk_put(host->clk);
return ret;
}
@@ -1155,7 +1054,6 @@ static int fsmc_nand_remove(struct platform_device *pdev)
dma_release_channel(host->read_dma_chan);
}
clk_disable_unprepare(host->clk);
- clk_put(host->clk);
}
return 0;
@@ -1185,20 +1083,18 @@ static int fsmc_nand_resume(struct device *dev)
static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
-#ifdef CONFIG_OF
static const struct of_device_id fsmc_nand_id_table[] = {
{ .compatible = "st,spear600-fsmc-nand" },
{ .compatible = "stericsson,fsmc-nand" },
{}
};
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
-#endif
static struct platform_driver fsmc_nand_driver = {
.remove = fsmc_nand_remove,
.driver = {
.name = "fsmc-nand",
- .of_match_table = of_match_ptr(fsmc_nand_id_table),
+ .of_match_table = fsmc_nand_id_table,
.pm = &fsmc_nand_pm_ops,
},
};
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c
index 0d24857469ab..85294f150f4f 100644
--- a/drivers/mtd/nand/gpio.c
+++ b/drivers/mtd/nand/gpio.c
@@ -78,7 +78,9 @@ static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
gpio_nand_dosync(gpiomtd);
if (ctrl & NAND_CTRL_CHANGE) {
- gpio_set_value(gpiomtd->plat.gpio_nce, !(ctrl & NAND_NCE));
+ if (gpio_is_valid(gpiomtd->plat.gpio_nce))
+ gpio_set_value(gpiomtd->plat.gpio_nce,
+ !(ctrl & NAND_NCE));
gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE));
gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE));
gpio_nand_dosync(gpiomtd);
@@ -201,7 +203,8 @@ static int gpio_nand_remove(struct platform_device *pdev)
if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
- gpio_set_value(gpiomtd->plat.gpio_nce, 1);
+ if (gpio_is_valid(gpiomtd->plat.gpio_nce))
+ gpio_set_value(gpiomtd->plat.gpio_nce, 1);
return 0;
}
@@ -239,10 +242,13 @@ static int gpio_nand_probe(struct platform_device *pdev)
if (ret)
return ret;
- ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, "NAND NCE");
- if (ret)
- return ret;
- gpio_direction_output(gpiomtd->plat.gpio_nce, 1);
+ if (gpio_is_valid(gpiomtd->plat.gpio_nce)) {
+ ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce,
+ "NAND NCE");
+ if (ret)
+ return ret;
+ gpio_direction_output(gpiomtd->plat.gpio_nce, 1);
+ }
if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) {
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp,
diff --git a/drivers/mtd/nand/nand_amd.c b/drivers/mtd/nand/nand_amd.c
new file mode 100644
index 000000000000..170403a3bfa8
--- /dev/null
+++ b/drivers/mtd/nand/nand_amd.c
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+
+static void amd_nand_decode_id(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ nand_decode_ext_id(chip);
+
+ /*
+ * Check for Spansion/AMD ID + repeating 5th, 6th byte since
+ * some Spansion chips have erasesize that conflicts with size
+ * listed in nand_ids table.
+ * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
+ */
+ if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 &&
+ chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 &&
+ mtd->writesize == 512) {
+ mtd->erasesize = 128 * 1024;
+ mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1);
+ }
+}
+
+static int amd_nand_init(struct nand_chip *chip)
+{
+ if (nand_is_slc(chip))
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ return 0;
+}
+
+const struct nand_manufacturer_ops amd_nand_manuf_ops = {
+ .detect = amd_nand_decode_id,
+ .init = amd_nand_init,
+};
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index b0524f8accb6..d474378ed810 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -139,6 +139,74 @@ const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
+/*
+ * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
+ * are placed at a fixed offset.
+ */
+static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+ if (section)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ oobregion->offset = 40;
+ break;
+ case 128:
+ oobregion->offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ oobregion->length = ecc->total;
+ if (oobregion->offset + oobregion->length > mtd->oobsize)
+ return -ERANGE;
+
+ return 0;
+}
+
+static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int ecc_offset = 0;
+
+ if (section < 0 || section > 1)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ ecc_offset = 40;
+ break;
+ case 128:
+ ecc_offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (section == 0) {
+ oobregion->offset = 2;
+ oobregion->length = ecc_offset - 2;
+ } else {
+ oobregion->offset = ecc_offset + ecc->total;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+ }
+
+ return 0;
+}
+
+const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
+ .ecc = nand_ooblayout_ecc_lp_hamming,
+ .free = nand_ooblayout_free_lp_hamming,
+};
+
static int check_offs_len(struct mtd_info *mtd,
loff_t ofs, uint64_t len)
{
@@ -354,40 +422,32 @@ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
{
- int page, res = 0, i = 0;
+ int page, page_end, res;
struct nand_chip *chip = mtd_to_nand(mtd);
- u16 bad;
+ u8 bad;
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+ page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
- do {
- if (chip->options & NAND_BUSWIDTH_16) {
- chip->cmdfunc(mtd, NAND_CMD_READOOB,
- chip->badblockpos & 0xFE, page);
- bad = cpu_to_le16(chip->read_word(mtd));
- if (chip->badblockpos & 0x1)
- bad >>= 8;
- else
- bad &= 0xFF;
- } else {
- chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
- page);
- bad = chip->read_byte(mtd);
- }
+ for (; page < page_end; page++) {
+ res = chip->ecc.read_oob(mtd, chip, page);
+ if (res)
+ return res;
+
+ bad = chip->oob_poi[chip->badblockpos];
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
- ofs += mtd->writesize;
- page = (int)(ofs >> chip->page_shift) & chip->pagemask;
- i++;
- } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
+ if (res)
+ return res;
+ }
- return res;
+ return 0;
}
/**
@@ -676,6 +736,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command,
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
+ case NAND_CMD_READID:
+ case NAND_CMD_SET_FEATURES:
return;
case NAND_CMD_RESET:
@@ -794,6 +856,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
+ case NAND_CMD_READID:
+ case NAND_CMD_SET_FEATURES:
return;
case NAND_CMD_RNDIN:
@@ -1958,7 +2022,9 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
if (!aligned)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
- use_bufpoi = !virt_addr_valid(buf);
+ use_bufpoi = !virt_addr_valid(buf) ||
+ !IS_ALIGNED((unsigned long)buf,
+ chip->buf_align);
else
use_bufpoi = 0;
@@ -1997,8 +2063,6 @@ read_retry:
break;
}
- max_bitflips = max_t(unsigned int, max_bitflips, ret);
-
/* Transfer not aligned data */
if (use_bufpoi) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
@@ -2049,6 +2113,7 @@ read_retry:
}
buf += bytes;
+ max_bitflips = max_t(unsigned int, max_bitflips, ret);
} else {
memcpy(buf, chip->buffers->databuf + col, bytes);
buf += bytes;
@@ -2637,7 +2702,7 @@ static int nand_write_page_syndrome(struct mtd_info *mtd,
}
/**
- * nand_write_page - [REPLACEABLE] write one page
+ * nand_write_page - write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @offset: address offset within the page
@@ -2815,7 +2880,9 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
if (part_pagewr)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
- use_bufpoi = !virt_addr_valid(buf);
+ use_bufpoi = !virt_addr_valid(buf) ||
+ !IS_ALIGNED((unsigned long)buf,
+ chip->buf_align);
else
use_bufpoi = 0;
@@ -2840,9 +2907,10 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
- ret = chip->write_page(mtd, chip, column, bytes, wbuf,
- oob_required, page, cached,
- (ops->mode == MTD_OPS_RAW));
+
+ ret = nand_write_page(mtd, chip, column, bytes, wbuf,
+ oob_required, page, cached,
+ (ops->mode == MTD_OPS_RAW));
if (ret)
break;
@@ -3385,8 +3453,10 @@ static void nand_shutdown(struct mtd_info *mtd)
}
/* Set default functions */
-static void nand_set_defaults(struct nand_chip *chip, int busw)
+static void nand_set_defaults(struct nand_chip *chip)
{
+ unsigned int busw = chip->options & NAND_BUSWIDTH_16;
+
/* check for proper chip_delay setup, set 20us if not */
if (!chip->chip_delay)
chip->chip_delay = 20;
@@ -3431,6 +3501,8 @@ static void nand_set_defaults(struct nand_chip *chip, int busw)
nand_hw_control_init(chip->controller);
}
+ if (!chip->buf_align)
+ chip->buf_align = 1;
}
/* Sanitize ONFI strings so we can safely print them */
@@ -3464,9 +3536,10 @@ static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
}
/* Parse the Extended Parameter Page. */
-static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
- struct nand_chip *chip, struct nand_onfi_params *p)
+static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
+ struct nand_onfi_params *p)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
struct onfi_ext_param_page *ep;
struct onfi_ext_section *s;
struct onfi_ext_ecc_info *ecc;
@@ -3534,36 +3607,12 @@ ext_out:
return ret;
}
-static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
-
- return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
- feature);
-}
-
-/*
- * Configure chip properties from Micron vendor-specific ONFI table
- */
-static void nand_onfi_detect_micron(struct nand_chip *chip,
- struct nand_onfi_params *p)
-{
- struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
-
- if (le16_to_cpu(p->vendor_revision) < 1)
- return;
-
- chip->read_retries = micron->read_retry_options;
- chip->setup_read_retry = nand_setup_read_retry_micron;
-}
-
/*
* Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
*/
-static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
- int *busw)
+static int nand_flash_detect_onfi(struct nand_chip *chip)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_onfi_params *p = &chip->onfi_params;
int i, j;
int val;
@@ -3633,9 +3682,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
- *busw = NAND_BUSWIDTH_16;
- else
- *busw = 0;
+ chip->options |= NAND_BUSWIDTH_16;
if (p->ecc_bits != 0xff) {
chip->ecc_strength_ds = p->ecc_bits;
@@ -3653,24 +3700,21 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
chip->cmdfunc = nand_command_lp;
/* The Extended Parameter Page is supported since ONFI 2.1. */
- if (nand_flash_detect_ext_param_page(mtd, chip, p))
+ if (nand_flash_detect_ext_param_page(chip, p))
pr_warn("Failed to detect ONFI extended param page\n");
} else {
pr_warn("Could not retrieve ONFI ECC requirements\n");
}
- if (p->jedec_id == NAND_MFR_MICRON)
- nand_onfi_detect_micron(chip, p);
-
return 1;
}
/*
* Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
*/
-static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
- int *busw)
+static int nand_flash_detect_jedec(struct nand_chip *chip)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_jedec_params *p = &chip->jedec_params;
struct jedec_ecc_info *ecc;
int val;
@@ -3729,9 +3773,7 @@ static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
chip->bits_per_cell = p->bits_per_cell;
if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
- *busw = NAND_BUSWIDTH_16;
- else
- *busw = 0;
+ chip->options |= NAND_BUSWIDTH_16;
/* ECC info */
ecc = &p->ecc_info[0];
@@ -3820,165 +3862,46 @@ static int nand_get_bits_per_cell(u8 cellinfo)
* chip. The rest of the parameters must be decoded according to generic or
* manufacturer-specific "extended ID" decoding patterns.
*/
-static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
- u8 id_data[8], int *busw)
+void nand_decode_ext_id(struct nand_chip *chip)
{
- int extid, id_len;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int extid;
+ u8 *id_data = chip->id.data;
/* The 3rd id byte holds MLC / multichip data */
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
/* The 4th id byte is the important one */
extid = id_data[3];
- id_len = nand_id_len(id_data, 8);
-
- /*
- * Field definitions are in the following datasheets:
- * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
- * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
- * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
- *
- * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
- * ID to decide what to do.
- */
- if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
- !nand_is_slc(chip) && id_data[5] != 0x00) {
- /* Calc pagesize */
- mtd->writesize = 2048 << (extid & 0x03);
- extid >>= 2;
- /* Calc oobsize */
- switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
- case 1:
- mtd->oobsize = 128;
- break;
- case 2:
- mtd->oobsize = 218;
- break;
- case 3:
- mtd->oobsize = 400;
- break;
- case 4:
- mtd->oobsize = 436;
- break;
- case 5:
- mtd->oobsize = 512;
- break;
- case 6:
- mtd->oobsize = 640;
- break;
- case 7:
- default: /* Other cases are "reserved" (unknown) */
- mtd->oobsize = 1024;
- break;
- }
- extid >>= 2;
- /* Calc blocksize */
- mtd->erasesize = (128 * 1024) <<
- (((extid >> 1) & 0x04) | (extid & 0x03));
- *busw = 0;
- } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
- !nand_is_slc(chip)) {
- unsigned int tmp;
-
- /* Calc pagesize */
- mtd->writesize = 2048 << (extid & 0x03);
- extid >>= 2;
- /* Calc oobsize */
- switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
- case 0:
- mtd->oobsize = 128;
- break;
- case 1:
- mtd->oobsize = 224;
- break;
- case 2:
- mtd->oobsize = 448;
- break;
- case 3:
- mtd->oobsize = 64;
- break;
- case 4:
- mtd->oobsize = 32;
- break;
- case 5:
- mtd->oobsize = 16;
- break;
- default:
- mtd->oobsize = 640;
- break;
- }
- extid >>= 2;
- /* Calc blocksize */
- tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
- if (tmp < 0x03)
- mtd->erasesize = (128 * 1024) << tmp;
- else if (tmp == 0x03)
- mtd->erasesize = 768 * 1024;
- else
- mtd->erasesize = (64 * 1024) << tmp;
- *busw = 0;
- } else {
- /* Calc pagesize */
- mtd->writesize = 1024 << (extid & 0x03);
- extid >>= 2;
- /* Calc oobsize */
- mtd->oobsize = (8 << (extid & 0x01)) *
- (mtd->writesize >> 9);
- extid >>= 2;
- /* Calc blocksize. Blocksize is multiples of 64KiB */
- mtd->erasesize = (64 * 1024) << (extid & 0x03);
- extid >>= 2;
- /* Get buswidth information */
- *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
-
- /*
- * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
- * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
- * follows:
- * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
- * 110b -> 24nm
- * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
- */
- if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
- nand_is_slc(chip) &&
- (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
- !(id_data[4] & 0x80) /* !BENAND */) {
- mtd->oobsize = 32 * mtd->writesize >> 9;
- }
-
- }
+ /* Calc pagesize */
+ mtd->writesize = 1024 << (extid & 0x03);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ if (extid & 0x1)
+ chip->options |= NAND_BUSWIDTH_16;
}
+EXPORT_SYMBOL_GPL(nand_decode_ext_id);
/*
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
* decodes a matching ID table entry and assigns the MTD size parameters for
* the chip.
*/
-static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
- struct nand_flash_dev *type, u8 id_data[8],
- int *busw)
+static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
{
- int maf_id = id_data[0];
+ struct mtd_info *mtd = nand_to_mtd(chip);
mtd->erasesize = type->erasesize;
mtd->writesize = type->pagesize;
mtd->oobsize = mtd->writesize / 32;
- *busw = type->options & NAND_BUSWIDTH_16;
/* All legacy ID NAND are small-page, SLC */
chip->bits_per_cell = 1;
-
- /*
- * Check for Spansion/AMD ID + repeating 5th, 6th byte since
- * some Spansion chips have erasesize that conflicts with size
- * listed in nand_ids table.
- * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
- */
- if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
- && id_data[6] == 0x00 && id_data[7] == 0x00
- && mtd->writesize == 512) {
- mtd->erasesize = 128 * 1024;
- mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
- }
}
/*
@@ -3986,36 +3909,15 @@ static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
* heuristic patterns using various detected parameters (e.g., manufacturer,
* page size, cell-type information).
*/
-static void nand_decode_bbm_options(struct mtd_info *mtd,
- struct nand_chip *chip, u8 id_data[8])
+static void nand_decode_bbm_options(struct nand_chip *chip)
{
- int maf_id = id_data[0];
+ struct mtd_info *mtd = nand_to_mtd(chip);
/* Set the bad block position */
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
else
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
-
- /*
- * Bad block marker is stored in the last page of each block on Samsung
- * and Hynix MLC devices; stored in first two pages of each block on
- * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
- * AMD/Spansion, and Macronix. All others scan only the first page.
- */
- if (!nand_is_slc(chip) &&
- (maf_id == NAND_MFR_SAMSUNG ||
- maf_id == NAND_MFR_HYNIX))
- chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
- else if ((nand_is_slc(chip) &&
- (maf_id == NAND_MFR_SAMSUNG ||
- maf_id == NAND_MFR_HYNIX ||
- maf_id == NAND_MFR_TOSHIBA ||
- maf_id == NAND_MFR_AMD ||
- maf_id == NAND_MFR_MACRONIX)) ||
- (mtd->writesize == 2048 &&
- maf_id == NAND_MFR_MICRON))
- chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}
static inline bool is_full_id_nand(struct nand_flash_dev *type)
@@ -4023,9 +3925,12 @@ static inline bool is_full_id_nand(struct nand_flash_dev *type)
return type->id_len;
}
-static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
- struct nand_flash_dev *type, u8 *id_data, int *busw)
+static bool find_full_id_nand(struct nand_chip *chip,
+ struct nand_flash_dev *type)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 *id_data = chip->id.data;
+
if (!strncmp(type->id, id_data, type->id_len)) {
mtd->writesize = type->pagesize;
mtd->erasesize = type->erasesize;
@@ -4039,8 +3944,6 @@ static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
- *busw = type->options & NAND_BUSWIDTH_16;
-
if (!mtd->name)
mtd->name = type->name;
@@ -4050,15 +3953,63 @@ static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
}
/*
+ * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
+ * compliant and does not have a full-id or legacy-id entry in the nand_ids
+ * table.
+ */
+static void nand_manufacturer_detect(struct nand_chip *chip)
+{
+ /*
+ * Try manufacturer detection if available and use
+ * nand_decode_ext_id() otherwise.
+ */
+ if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+ chip->manufacturer.desc->ops->detect)
+ chip->manufacturer.desc->ops->detect(chip);
+ else
+ nand_decode_ext_id(chip);
+}
+
+/*
+ * Manufacturer initialization. This function is called for all NANDs including
+ * ONFI and JEDEC compliant ones.
+ * Manufacturer drivers should put all their specific initialization code in
+ * their ->init() hook.
+ */
+static int nand_manufacturer_init(struct nand_chip *chip)
+{
+ if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
+ !chip->manufacturer.desc->ops->init)
+ return 0;
+
+ return chip->manufacturer.desc->ops->init(chip);
+}
+
+/*
+ * Manufacturer cleanup. This function is called for all NANDs including
+ * ONFI and JEDEC compliant ones.
+ * Manufacturer drivers should put all their specific cleanup code in their
+ * ->cleanup() hook.
+ */
+static void nand_manufacturer_cleanup(struct nand_chip *chip)
+{
+ /* Release manufacturer private data */
+ if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+ chip->manufacturer.desc->ops->cleanup)
+ chip->manufacturer.desc->ops->cleanup(chip);
+}
+
+/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
-static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
- int *maf_id, int *dev_id,
- struct nand_flash_dev *type)
+static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
{
+ const struct nand_manufacturer *manufacturer;
+ struct mtd_info *mtd = nand_to_mtd(chip);
int busw;
- int i, maf_idx;
- u8 id_data[8];
+ int i, ret;
+ u8 *id_data = chip->id.data;
+ u8 maf_id, dev_id;
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
@@ -4073,8 +4024,8 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
- *maf_id = chip->read_byte(mtd);
- *dev_id = chip->read_byte(mtd);
+ maf_id = chip->read_byte(mtd);
+ dev_id = chip->read_byte(mtd);
/*
* Try again to make sure, as some systems the bus-hold or other
@@ -4089,20 +4040,41 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
for (i = 0; i < 8; i++)
id_data[i] = chip->read_byte(mtd);
- if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
+ if (id_data[0] != maf_id || id_data[1] != dev_id) {
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
- *maf_id, *dev_id, id_data[0], id_data[1]);
+ maf_id, dev_id, id_data[0], id_data[1]);
return -ENODEV;
}
+ chip->id.len = nand_id_len(id_data, 8);
+
+ /* Try to identify manufacturer */
+ manufacturer = nand_get_manufacturer(maf_id);
+ chip->manufacturer.desc = manufacturer;
+
if (!type)
type = nand_flash_ids;
+ /*
+ * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
+ * override it.
+ * This is required to make sure initial NAND bus width set by the
+ * NAND controller driver is coherent with the real NAND bus width
+ * (extracted by auto-detection code).
+ */
+ busw = chip->options & NAND_BUSWIDTH_16;
+
+ /*
+ * The flag is only set (never cleared), reset it to its default value
+ * before starting auto-detection.
+ */
+ chip->options &= ~NAND_BUSWIDTH_16;
+
for (; type->name != NULL; type++) {
if (is_full_id_nand(type)) {
- if (find_full_id_nand(mtd, chip, type, id_data, &busw))
+ if (find_full_id_nand(chip, type))
goto ident_done;
- } else if (*dev_id == type->dev_id) {
+ } else if (dev_id == type->dev_id) {
break;
}
}
@@ -4110,11 +4082,11 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
chip->onfi_version = 0;
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
- if (nand_flash_detect_onfi(mtd, chip, &busw))
+ if (nand_flash_detect_onfi(chip))
goto ident_done;
/* Check if the chip is JEDEC compliant */
- if (nand_flash_detect_jedec(mtd, chip, &busw))
+ if (nand_flash_detect_jedec(chip))
goto ident_done;
}
@@ -4126,48 +4098,34 @@ static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
chip->chipsize = (uint64_t)type->chipsize << 20;
- if (!type->pagesize) {
- /* Decode parameters from extended ID */
- nand_decode_ext_id(mtd, chip, id_data, &busw);
- } else {
- nand_decode_id(mtd, chip, type, id_data, &busw);
- }
+ if (!type->pagesize)
+ nand_manufacturer_detect(chip);
+ else
+ nand_decode_id(chip, type);
+
/* Get chip options */
chip->options |= type->options;
- /*
- * Check if chip is not a Samsung device. Do not clear the
- * options for chips which do not have an extended id.
- */
- if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
- chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:
- /* Try to identify manufacturer */
- for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
- if (nand_manuf_ids[maf_idx].id == *maf_id)
- break;
- }
-
if (chip->options & NAND_BUSWIDTH_AUTO) {
- WARN_ON(chip->options & NAND_BUSWIDTH_16);
- chip->options |= busw;
- nand_set_defaults(chip, busw);
+ WARN_ON(busw & NAND_BUSWIDTH_16);
+ nand_set_defaults(chip);
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
- *maf_id, *dev_id);
- pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
- pr_warn("bus width %d instead %d bit\n",
- (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
- busw ? 16 : 8);
+ maf_id, dev_id);
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ mtd->name);
+ pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
+ (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
return -EINVAL;
}
- nand_decode_bbm_options(mtd, chip, id_data);
+ nand_decode_bbm_options(chip);
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
@@ -4190,18 +4148,22 @@ ident_done:
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
chip->cmdfunc = nand_command_lp;
+ ret = nand_manufacturer_init(chip);
+ if (ret)
+ return ret;
+
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
- *maf_id, *dev_id);
+ maf_id, dev_id);
if (chip->onfi_version)
- pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
- chip->onfi_params.model);
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ chip->onfi_params.model);
else if (chip->jedec_version)
- pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
- chip->jedec_params.model);
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ chip->jedec_params.model);
else
- pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
- type->name);
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ type->name);
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
@@ -4333,12 +4295,6 @@ static int nand_dt_init(struct nand_chip *chip)
ecc_strength = of_get_nand_ecc_strength(dn);
ecc_step = of_get_nand_ecc_step_size(dn);
- if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
- (!(ecc_step >= 0) && ecc_strength >= 0)) {
- pr_err("must set both strength and step size in DT\n");
- return -EINVAL;
- }
-
if (ecc_mode >= 0)
chip->ecc.mode = ecc_mode;
@@ -4391,10 +4347,10 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips,
return -EINVAL;
}
/* Set the default functions */
- nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
+ nand_set_defaults(chip);
/* Read the flash type */
- ret = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, table);
+ ret = nand_detect(chip, table);
if (ret) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
@@ -4419,6 +4375,9 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips,
if (ret)
return ret;
+ nand_maf_id = chip->id.data[0];
+ nand_dev_id = chip->id.data[1];
+
chip->select_chip(mtd, -1);
/* Check for a chip array */
@@ -4610,7 +4569,7 @@ int nand_scan_tail(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
- struct nand_buffers *nbuf;
+ struct nand_buffers *nbuf = NULL;
int ret;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
@@ -4624,13 +4583,28 @@ int nand_scan_tail(struct mtd_info *mtd)
}
if (!(chip->options & NAND_OWN_BUFFERS)) {
- nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
- + mtd->oobsize * 3, GFP_KERNEL);
+ nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL);
if (!nbuf)
return -ENOMEM;
- nbuf->ecccalc = (uint8_t *)(nbuf + 1);
- nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
- nbuf->databuf = nbuf->ecccode + mtd->oobsize;
+
+ nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL);
+ if (!nbuf->ecccalc) {
+ ret = -ENOMEM;
+ goto err_free;
+ }
+
+ nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL);
+ if (!nbuf->ecccode) {
+ ret = -ENOMEM;
+ goto err_free;
+ }
+
+ nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize,
+ GFP_KERNEL);
+ if (!nbuf->databuf) {
+ ret = -ENOMEM;
+ goto err_free;
+ }
chip->buffers = nbuf;
} else {
@@ -4653,7 +4627,7 @@ int nand_scan_tail(struct mtd_info *mtd)
break;
case 64:
case 128:
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+ mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
break;
default:
WARN(1, "No oob scheme defined for oobsize %d\n",
@@ -4663,9 +4637,6 @@ int nand_scan_tail(struct mtd_info *mtd)
}
}
- if (!chip->write_page)
- chip->write_page = nand_write_page;
-
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
@@ -4873,8 +4844,12 @@ int nand_scan_tail(struct mtd_info *mtd)
/* Build bad block table */
return chip->scan_bbt(mtd);
err_free:
- if (!(chip->options & NAND_OWN_BUFFERS))
- kfree(chip->buffers);
+ if (nbuf) {
+ kfree(nbuf->databuf);
+ kfree(nbuf->ecccode);
+ kfree(nbuf->ecccalc);
+ kfree(nbuf);
+ }
return ret;
}
EXPORT_SYMBOL(nand_scan_tail);
@@ -4925,13 +4900,20 @@ void nand_cleanup(struct nand_chip *chip)
/* Free bad block table memory */
kfree(chip->bbt);
- if (!(chip->options & NAND_OWN_BUFFERS))
+ if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) {
+ kfree(chip->buffers->databuf);
+ kfree(chip->buffers->ecccode);
+ kfree(chip->buffers->ecccalc);
kfree(chip->buffers);
+ }
/* Free bad block descriptor memory */
if (chip->badblock_pattern && chip->badblock_pattern->options
& NAND_BBT_DYNAMICSTRUCT)
kfree(chip->badblock_pattern);
+
+ /* Free manufacturer priv data. */
+ nand_manufacturer_cleanup(chip);
}
EXPORT_SYMBOL_GPL(nand_cleanup);
diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/nand_hynix.c
new file mode 100644
index 000000000000..b12dc7325378
--- /dev/null
+++ b/drivers/mtd/nand/nand_hynix.c
@@ -0,0 +1,631 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+#include <linux/sizes.h>
+#include <linux/slab.h>
+
+#define NAND_HYNIX_CMD_SET_PARAMS 0x36
+#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
+
+#define NAND_HYNIX_1XNM_RR_REPEAT 8
+
+/**
+ * struct hynix_read_retry - read-retry data
+ * @nregs: number of register to set when applying a new read-retry mode
+ * @regs: register offsets (NAND chip dependent)
+ * @values: array of values to set in registers. The array size is equal to
+ * (nregs * nmodes)
+ */
+struct hynix_read_retry {
+ int nregs;
+ const u8 *regs;
+ u8 values[0];
+};
+
+/**
+ * struct hynix_nand - private Hynix NAND struct
+ * @nand_technology: manufacturing process expressed in picometer
+ * @read_retry: read-retry information
+ */
+struct hynix_nand {
+ const struct hynix_read_retry *read_retry;
+};
+
+/**
+ * struct hynix_read_retry_otp - structure describing how the read-retry OTP
+ * area
+ * @nregs: number of hynix private registers to set before reading the reading
+ * the OTP area
+ * @regs: registers that should be configured
+ * @values: values that should be set in regs
+ * @page: the address to pass to the READ_PAGE command. Depends on the NAND
+ * chip
+ * @size: size of the read-retry OTP section
+ */
+struct hynix_read_retry_otp {
+ int nregs;
+ const u8 *regs;
+ const u8 *values;
+ int page;
+ int size;
+};
+
+static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 jedecid[6] = { };
+ int i = 0;
+
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
+ for (i = 0; i < 5; i++)
+ jedecid[i] = chip->read_byte(mtd);
+
+ return !strcmp("JEDEC", jedecid);
+}
+
+static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+ const u8 *values;
+ int status;
+ int i;
+
+ values = hynix->read_retry->values +
+ (retry_mode * hynix->read_retry->nregs);
+
+ /* Enter 'Set Hynix Parameters' mode */
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
+
+ /*
+ * Configure the NAND in the requested read-retry mode.
+ * This is done by setting pre-defined values in internal NAND
+ * registers.
+ *
+ * The set of registers is NAND specific, and the values are either
+ * predefined or extracted from an OTP area on the NAND (values are
+ * probably tweaked at production in this case).
+ */
+ for (i = 0; i < hynix->read_retry->nregs; i++) {
+ int column = hynix->read_retry->regs[i];
+
+ column |= column << 8;
+ chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
+ chip->write_byte(mtd, values[i]);
+ }
+
+ /* Apply the new settings. */
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+/**
+ * hynix_get_majority - get the value that is occurring the most in a given
+ * set of values
+ * @in: the array of values to test
+ * @repeat: the size of the in array
+ * @out: pointer used to store the output value
+ *
+ * This function implements the 'majority check' logic that is supposed to
+ * overcome the unreliability of MLC NANDs when reading the OTP area storing
+ * the read-retry parameters.
+ *
+ * It's based on a pretty simple assumption: if we repeat the same value
+ * several times and then take the one that is occurring the most, we should
+ * find the correct value.
+ * Let's hope this dummy algorithm prevents us from losing the read-retry
+ * parameters.
+ */
+static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
+{
+ int i, j, half = repeat / 2;
+
+ /*
+ * We only test the first half of the in array because we must ensure
+ * that the value is at least occurring repeat / 2 times.
+ *
+ * This loop is suboptimal since we may count the occurrences of the
+ * same value several time, but we are doing that on small sets, which
+ * makes it acceptable.
+ */
+ for (i = 0; i < half; i++) {
+ int cnt = 0;
+ u8 val = in[i];
+
+ /* Count all values that are matching the one at index i. */
+ for (j = i + 1; j < repeat; j++) {
+ if (in[j] == val)
+ cnt++;
+ }
+
+ /* We found a value occurring more than repeat / 2. */
+ if (cnt > half) {
+ *out = val;
+ return 0;
+ }
+ }
+
+ return -EIO;
+}
+
+static int hynix_read_rr_otp(struct nand_chip *chip,
+ const struct hynix_read_retry_otp *info,
+ void *buf)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int i;
+
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1);
+
+ for (i = 0; i < info->nregs; i++) {
+ int column = info->regs[i];
+
+ column |= column << 8;
+ chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
+ chip->write_byte(mtd, info->values[i]);
+ }
+
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
+
+ /* Sequence to enter OTP mode? */
+ chip->cmdfunc(mtd, 0x17, -1, -1);
+ chip->cmdfunc(mtd, 0x04, -1, -1);
+ chip->cmdfunc(mtd, 0x19, -1, -1);
+
+ /* Now read the page */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, info->page);
+ chip->read_buf(mtd, buf, info->size);
+
+ /* Put everything back to normal */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1);
+ chip->write_byte(mtd, 0x0);
+ chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1);
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1);
+
+ return 0;
+}
+
+#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
+#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
+#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
+ (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
+
+static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
+ int mode, int reg, bool inv, u8 *val)
+{
+ u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
+ int val_offs = (mode * nregs) + reg;
+ int set_size = nmodes * nregs;
+ int i, ret;
+
+ for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
+ int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
+
+ tmp[i] = buf[val_offs + set_offs];
+ }
+
+ ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
+ if (ret)
+ return ret;
+
+ if (inv)
+ *val = ~*val;
+
+ return 0;
+}
+
+static u8 hynix_1xnm_mlc_read_retry_regs[] = {
+ 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
+};
+
+static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
+ const struct hynix_read_retry_otp *info)
+{
+ struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+ struct hynix_read_retry *rr = NULL;
+ int ret, i, j;
+ u8 nregs, nmodes;
+ u8 *buf;
+
+ buf = kmalloc(info->size, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ ret = hynix_read_rr_otp(chip, info, buf);
+ if (ret)
+ goto out;
+
+ ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
+ &nmodes);
+ if (ret)
+ goto out;
+
+ ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
+ NAND_HYNIX_1XNM_RR_REPEAT,
+ &nregs);
+ if (ret)
+ goto out;
+
+ rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
+ if (!rr) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ for (i = 0; i < nmodes; i++) {
+ for (j = 0; j < nregs; j++) {
+ u8 *val = rr->values + (i * nregs);
+
+ ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
+ false, val);
+ if (!ret)
+ continue;
+
+ ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
+ true, val);
+ if (ret)
+ goto out;
+ }
+ }
+
+ rr->nregs = nregs;
+ rr->regs = hynix_1xnm_mlc_read_retry_regs;
+ hynix->read_retry = rr;
+ chip->setup_read_retry = hynix_nand_setup_read_retry;
+ chip->read_retries = nmodes;
+
+out:
+ kfree(buf);
+
+ if (ret)
+ kfree(rr);
+
+ return ret;
+}
+
+static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
+static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
+
+static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
+ {
+ .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
+ .regs = hynix_mlc_1xnm_rr_otp_regs,
+ .values = hynix_mlc_1xnm_rr_otp_values,
+ .page = 0x21f,
+ .size = 784
+ },
+ {
+ .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
+ .regs = hynix_mlc_1xnm_rr_otp_regs,
+ .values = hynix_mlc_1xnm_rr_otp_values,
+ .page = 0x200,
+ .size = 528,
+ },
+};
+
+static int hynix_nand_rr_init(struct nand_chip *chip)
+{
+ int i, ret = 0;
+ bool valid_jedecid;
+
+ valid_jedecid = hynix_nand_has_valid_jedecid(chip);
+
+ /*
+ * We only support read-retry for 1xnm NANDs, and those NANDs all
+ * expose a valid JEDEC ID.
+ */
+ if (valid_jedecid) {
+ u8 nand_tech = chip->id.data[5] >> 4;
+
+ /* 1xnm technology */
+ if (nand_tech == 4) {
+ for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
+ i++) {
+ /*
+ * FIXME: Hynix recommend to copy the
+ * read-retry OTP area into a normal page.
+ */
+ ret = hynix_mlc_1xnm_rr_init(chip,
+ hynix_mlc_1xnm_rr_otps);
+ if (!ret)
+ break;
+ }
+ }
+ }
+
+ if (ret)
+ pr_warn("failed to initialize read-retry infrastructure");
+
+ return 0;
+}
+
+static void hynix_nand_extract_oobsize(struct nand_chip *chip,
+ bool valid_jedecid)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 oobsize;
+
+ oobsize = ((chip->id.data[3] >> 2) & 0x3) |
+ ((chip->id.data[3] >> 4) & 0x4);
+
+ if (valid_jedecid) {
+ switch (oobsize) {
+ case 0:
+ mtd->oobsize = 2048;
+ break;
+ case 1:
+ mtd->oobsize = 1664;
+ break;
+ case 2:
+ mtd->oobsize = 1024;
+ break;
+ case 3:
+ mtd->oobsize = 640;
+ break;
+ default:
+ /*
+ * We should never reach this case, but if that
+ * happens, this probably means Hynix decided to use
+ * a different extended ID format, and we should find
+ * a way to support it.
+ */
+ WARN(1, "Invalid OOB size");
+ break;
+ }
+ } else {
+ switch (oobsize) {
+ case 0:
+ mtd->oobsize = 128;
+ break;
+ case 1:
+ mtd->oobsize = 224;
+ break;
+ case 2:
+ mtd->oobsize = 448;
+ break;
+ case 3:
+ mtd->oobsize = 64;
+ break;
+ case 4:
+ mtd->oobsize = 32;
+ break;
+ case 5:
+ mtd->oobsize = 16;
+ break;
+ case 6:
+ mtd->oobsize = 640;
+ break;
+ default:
+ /*
+ * We should never reach this case, but if that
+ * happens, this probably means Hynix decided to use
+ * a different extended ID format, and we should find
+ * a way to support it.
+ */
+ WARN(1, "Invalid OOB size");
+ break;
+ }
+ }
+}
+
+static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
+ bool valid_jedecid)
+{
+ u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
+
+ if (valid_jedecid) {
+ /* Reference: H27UCG8T2E datasheet */
+ chip->ecc_step_ds = 1024;
+
+ switch (ecc_level) {
+ case 0:
+ chip->ecc_step_ds = 0;
+ chip->ecc_strength_ds = 0;
+ break;
+ case 1:
+ chip->ecc_strength_ds = 4;
+ break;
+ case 2:
+ chip->ecc_strength_ds = 24;
+ break;
+ case 3:
+ chip->ecc_strength_ds = 32;
+ break;
+ case 4:
+ chip->ecc_strength_ds = 40;
+ break;
+ case 5:
+ chip->ecc_strength_ds = 50;
+ break;
+ case 6:
+ chip->ecc_strength_ds = 60;
+ break;
+ default:
+ /*
+ * We should never reach this case, but if that
+ * happens, this probably means Hynix decided to use
+ * a different extended ID format, and we should find
+ * a way to support it.
+ */
+ WARN(1, "Invalid ECC requirements");
+ }
+ } else {
+ /*
+ * The ECC requirements field meaning depends on the
+ * NAND technology.
+ */
+ u8 nand_tech = chip->id.data[5] & 0x3;
+
+ if (nand_tech < 3) {
+ /* > 26nm, reference: H27UBG8T2A datasheet */
+ if (ecc_level < 5) {
+ chip->ecc_step_ds = 512;
+ chip->ecc_strength_ds = 1 << ecc_level;
+ } else if (ecc_level < 7) {
+ if (ecc_level == 5)
+ chip->ecc_step_ds = 2048;
+ else
+ chip->ecc_step_ds = 1024;
+ chip->ecc_strength_ds = 24;
+ } else {
+ /*
+ * We should never reach this case, but if that
+ * happens, this probably means Hynix decided
+ * to use a different extended ID format, and
+ * we should find a way to support it.
+ */
+ WARN(1, "Invalid ECC requirements");
+ }
+ } else {
+ /* <= 26nm, reference: H27UBG8T2B datasheet */
+ if (!ecc_level) {
+ chip->ecc_step_ds = 0;
+ chip->ecc_strength_ds = 0;
+ } else if (ecc_level < 5) {
+ chip->ecc_step_ds = 512;
+ chip->ecc_strength_ds = 1 << (ecc_level - 1);
+ } else {
+ chip->ecc_step_ds = 1024;
+ chip->ecc_strength_ds = 24 +
+ (8 * (ecc_level - 5));
+ }
+ }
+ }
+}
+
+static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
+ bool valid_jedecid)
+{
+ u8 nand_tech;
+
+ /* We need scrambling on all TLC NANDs*/
+ if (chip->bits_per_cell > 2)
+ chip->options |= NAND_NEED_SCRAMBLING;
+
+ /* And on MLC NANDs with sub-3xnm process */
+ if (valid_jedecid) {
+ nand_tech = chip->id.data[5] >> 4;
+
+ /* < 3xnm */
+ if (nand_tech > 0)
+ chip->options |= NAND_NEED_SCRAMBLING;
+ } else {
+ nand_tech = chip->id.data[5] & 0x3;
+
+ /* < 32nm */
+ if (nand_tech > 2)
+ chip->options |= NAND_NEED_SCRAMBLING;
+ }
+}
+
+static void hynix_nand_decode_id(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ bool valid_jedecid;
+ u8 tmp;
+
+ /*
+ * Exclude all SLC NANDs from this advanced detection scheme.
+ * According to the ranges defined in several datasheets, it might
+ * appear that even SLC NANDs could fall in this extended ID scheme.
+ * If that the case rework the test to let SLC NANDs go through the
+ * detection process.
+ */
+ if (chip->id.len < 6 || nand_is_slc(chip)) {
+ nand_decode_ext_id(chip);
+ return;
+ }
+
+ /* Extract pagesize */
+ mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
+
+ tmp = (chip->id.data[3] >> 4) & 0x3;
+ /*
+ * When bit7 is set that means we start counting at 1MiB, otherwise
+ * we start counting at 128KiB and shift this value the content of
+ * ID[3][4:5].
+ * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
+ * this case the erasesize is set to 768KiB.
+ */
+ if (chip->id.data[3] & 0x80)
+ mtd->erasesize = SZ_1M << tmp;
+ else if (tmp == 3)
+ mtd->erasesize = SZ_512K + SZ_256K;
+ else
+ mtd->erasesize = SZ_128K << tmp;
+
+ /*
+ * Modern Toggle DDR NANDs have a valid JEDECID even though they are
+ * not exposing a valid JEDEC parameter table.
+ * These NANDs use a different NAND ID scheme.
+ */
+ valid_jedecid = hynix_nand_has_valid_jedecid(chip);
+
+ hynix_nand_extract_oobsize(chip, valid_jedecid);
+ hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
+ hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
+}
+
+static void hynix_nand_cleanup(struct nand_chip *chip)
+{
+ struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+
+ if (!hynix)
+ return;
+
+ kfree(hynix->read_retry);
+ kfree(hynix);
+ nand_set_manufacturer_data(chip, NULL);
+}
+
+static int hynix_nand_init(struct nand_chip *chip)
+{
+ struct hynix_nand *hynix;
+ int ret;
+
+ if (!nand_is_slc(chip))
+ chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+ else
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
+ if (!hynix)
+ return -ENOMEM;
+
+ nand_set_manufacturer_data(chip, hynix);
+
+ ret = hynix_nand_rr_init(chip);
+ if (ret)
+ hynix_nand_cleanup(chip);
+
+ return ret;
+}
+
+const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
+ .detect = hynix_nand_decode_id,
+ .init = hynix_nand_init,
+ .cleanup = hynix_nand_cleanup,
+};
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c
index 4a2f75b0c200..9d5ca0e540b5 100644
--- a/drivers/mtd/nand/nand_ids.c
+++ b/drivers/mtd/nand/nand_ids.c
@@ -10,7 +10,7 @@
#include <linux/mtd/nand.h>
#include <linux/sizes.h>
-#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS
+#define LP_OPTIONS 0
#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
#define SP_OPTIONS NAND_NEED_READRDY
@@ -169,29 +169,40 @@ struct nand_flash_dev nand_flash_ids[] = {
};
/* Manufacturer IDs */
-struct nand_manufacturers nand_manuf_ids[] = {
- {NAND_MFR_TOSHIBA, "Toshiba"},
+static const struct nand_manufacturer nand_manufacturers[] = {
+ {NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops},
{NAND_MFR_ESMT, "ESMT"},
- {NAND_MFR_SAMSUNG, "Samsung"},
+ {NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops},
{NAND_MFR_FUJITSU, "Fujitsu"},
{NAND_MFR_NATIONAL, "National"},
{NAND_MFR_RENESAS, "Renesas"},
{NAND_MFR_STMICRO, "ST Micro"},
- {NAND_MFR_HYNIX, "Hynix"},
- {NAND_MFR_MICRON, "Micron"},
- {NAND_MFR_AMD, "AMD/Spansion"},
- {NAND_MFR_MACRONIX, "Macronix"},
+ {NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops},
+ {NAND_MFR_MICRON, "Micron", &micron_nand_manuf_ops},
+ {NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops},
+ {NAND_MFR_MACRONIX, "Macronix", &macronix_nand_manuf_ops},
{NAND_MFR_EON, "Eon"},
{NAND_MFR_SANDISK, "SanDisk"},
{NAND_MFR_INTEL, "Intel"},
{NAND_MFR_ATO, "ATO"},
{NAND_MFR_WINBOND, "Winbond"},
- {0x0, "Unknown"}
};
-EXPORT_SYMBOL(nand_manuf_ids);
-EXPORT_SYMBOL(nand_flash_ids);
+/**
+ * nand_get_manufacturer - Get manufacturer information from the manufacturer
+ * ID
+ * @id: manufacturer ID
+ *
+ * Returns a pointer a nand_manufacturer object if the manufacturer is defined
+ * in the NAND manufacturers database, NULL otherwise.
+ */
+const struct nand_manufacturer *nand_get_manufacturer(u8 id)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(nand_manufacturers); i++)
+ if (nand_manufacturers[i].id == id)
+ return &nand_manufacturers[i];
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
-MODULE_DESCRIPTION("Nand device & manufacturer IDs");
+ return NULL;
+}
diff --git a/drivers/mtd/nand/nand_macronix.c b/drivers/mtd/nand/nand_macronix.c
new file mode 100644
index 000000000000..84855c3e1a02
--- /dev/null
+++ b/drivers/mtd/nand/nand_macronix.c
@@ -0,0 +1,30 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+
+static int macronix_nand_init(struct nand_chip *chip)
+{
+ if (nand_is_slc(chip))
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ return 0;
+}
+
+const struct nand_manufacturer_ops macronix_nand_manuf_ops = {
+ .init = macronix_nand_init,
+};
diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/nand_micron.c
new file mode 100644
index 000000000000..877011069251
--- /dev/null
+++ b/drivers/mtd/nand/nand_micron.c
@@ -0,0 +1,86 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+
+struct nand_onfi_vendor_micron {
+ u8 two_plane_read;
+ u8 read_cache;
+ u8 read_unique_id;
+ u8 dq_imped;
+ u8 dq_imped_num_settings;
+ u8 dq_imped_feat_addr;
+ u8 rb_pulldown_strength;
+ u8 rb_pulldown_strength_feat_addr;
+ u8 rb_pulldown_strength_num_settings;
+ u8 otp_mode;
+ u8 otp_page_start;
+ u8 otp_data_prot_addr;
+ u8 otp_num_pages;
+ u8 otp_feat_addr;
+ u8 read_retry_options;
+ u8 reserved[72];
+ u8 param_revision;
+} __packed;
+
+static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
+
+ return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
+ feature);
+}
+
+/*
+ * Configure chip properties from Micron vendor-specific ONFI table
+ */
+static int micron_nand_onfi_init(struct nand_chip *chip)
+{
+ struct nand_onfi_params *p = &chip->onfi_params;
+ struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
+
+ if (!chip->onfi_version)
+ return 0;
+
+ if (le16_to_cpu(p->vendor_revision) < 1)
+ return 0;
+
+ chip->read_retries = micron->read_retry_options;
+ chip->setup_read_retry = micron_nand_setup_read_retry;
+
+ return 0;
+}
+
+static int micron_nand_init(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ ret = micron_nand_onfi_init(chip);
+ if (ret)
+ return ret;
+
+ if (mtd->writesize == 2048)
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ return 0;
+}
+
+const struct nand_manufacturer_ops micron_nand_manuf_ops = {
+ .init = micron_nand_init,
+};
diff --git a/drivers/mtd/nand/nand_samsung.c b/drivers/mtd/nand/nand_samsung.c
new file mode 100644
index 000000000000..9cfc4035a420
--- /dev/null
+++ b/drivers/mtd/nand/nand_samsung.c
@@ -0,0 +1,112 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+
+static void samsung_nand_decode_id(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ /* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */
+ if (chip->id.len == 6 && !nand_is_slc(chip) &&
+ chip->id.data[5] != 0x00) {
+ u8 extid = chip->id.data[3];
+
+ /* Get pagesize */
+ mtd->writesize = 2048 << (extid & 0x03);
+
+ extid >>= 2;
+
+ /* Get oobsize */
+ switch (((extid >> 2) & 0x4) | (extid & 0x3)) {
+ case 1:
+ mtd->oobsize = 128;
+ break;
+ case 2:
+ mtd->oobsize = 218;
+ break;
+ case 3:
+ mtd->oobsize = 400;
+ break;
+ case 4:
+ mtd->oobsize = 436;
+ break;
+ case 5:
+ mtd->oobsize = 512;
+ break;
+ case 6:
+ mtd->oobsize = 640;
+ break;
+ default:
+ /*
+ * We should never reach this case, but if that
+ * happens, this probably means Samsung decided to use
+ * a different extended ID format, and we should find
+ * a way to support it.
+ */
+ WARN(1, "Invalid OOB size value");
+ break;
+ }
+
+ /* Get blocksize */
+ extid >>= 2;
+ mtd->erasesize = (128 * 1024) <<
+ (((extid >> 1) & 0x04) | (extid & 0x03));
+
+ /* Extract ECC requirements from 5th id byte*/
+ extid = (chip->id.data[4] >> 4) & 0x07;
+ if (extid < 5) {
+ chip->ecc_step_ds = 512;
+ chip->ecc_strength_ds = 1 << extid;
+ } else {
+ chip->ecc_step_ds = 1024;
+ switch (extid) {
+ case 5:
+ chip->ecc_strength_ds = 24;
+ break;
+ case 6:
+ chip->ecc_strength_ds = 40;
+ break;
+ case 7:
+ chip->ecc_strength_ds = 60;
+ break;
+ }
+ }
+ } else {
+ nand_decode_ext_id(chip);
+ }
+}
+
+static int samsung_nand_init(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (mtd->writesize > 512)
+ chip->options |= NAND_SAMSUNG_LP_OPTIONS;
+
+ if (!nand_is_slc(chip))
+ chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+ else
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ return 0;
+}
+
+const struct nand_manufacturer_ops samsung_nand_manuf_ops = {
+ .detect = samsung_nand_decode_id,
+ .init = samsung_nand_init,
+};
diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/nand_toshiba.c
new file mode 100644
index 000000000000..fa787ba38dcd
--- /dev/null
+++ b/drivers/mtd/nand/nand_toshiba.c
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/nand.h>
+
+static void toshiba_nand_decode_id(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ nand_decode_ext_id(chip);
+
+ /*
+ * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
+ * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
+ * follows:
+ * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
+ * 110b -> 24nm
+ * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
+ */
+ if (chip->id.len >= 6 && nand_is_slc(chip) &&
+ (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
+ !(chip->id.data[4] & 0x80) /* !BENAND */)
+ mtd->oobsize = 32 * mtd->writesize >> 9;
+}
+
+static int toshiba_nand_init(struct nand_chip *chip)
+{
+ if (nand_is_slc(chip))
+ chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+ return 0;
+}
+
+const struct nand_manufacturer_ops toshiba_nand_manuf_ops = {
+ .detect = toshiba_nand_decode_id,
+ .init = toshiba_nand_init,
+};
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
index 092c9bd225be..03a0d057bf2f 100644
--- a/drivers/mtd/nand/nandsim.c
+++ b/drivers/mtd/nand/nandsim.c
@@ -902,7 +902,7 @@ static int parse_weakpages(void)
zero_ok = (*w == '0' ? 1 : 0);
page_no = simple_strtoul(w, &w, 0);
if (!zero_ok && !page_no) {
- NS_ERR("invalid weakpagess.\n");
+ NS_ERR("invalid weakpages.\n");
return -EINVAL;
}
max_writes = 3;
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index 2a52101120d4..084934a9f19c 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -1856,6 +1856,15 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->ecc.priv = NULL;
nand_set_flash_node(nand_chip, dev->of_node);
+ if (!mtd->name) {
+ mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
+ "omap2-nand.%d", info->gpmc_cs);
+ if (!mtd->name) {
+ dev_err(&pdev->dev, "Failed to set MTD name\n");
+ return -ENOMEM;
+ }
+ }
+
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nand_chip->IO_ADDR_R))
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c
index 4a91c5d000be..f8e463a97b9e 100644
--- a/drivers/mtd/nand/orion_nand.c
+++ b/drivers/mtd/nand/orion_nand.c
@@ -23,6 +23,11 @@
#include <asm/sizes.h>
#include <linux/platform_data/mtd-orion_nand.h>
+struct orion_nand_info {
+ struct nand_chip chip;
+ struct clk *clk;
+};
+
static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nc = mtd_to_nand(mtd);
@@ -75,20 +80,21 @@ static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
static int __init orion_nand_probe(struct platform_device *pdev)
{
+ struct orion_nand_info *info;
struct mtd_info *mtd;
struct nand_chip *nc;
struct orion_nand_data *board;
struct resource *res;
- struct clk *clk;
void __iomem *io_base;
int ret = 0;
u32 val = 0;
- nc = devm_kzalloc(&pdev->dev,
- sizeof(struct nand_chip),
+ info = devm_kzalloc(&pdev->dev,
+ sizeof(struct orion_nand_info),
GFP_KERNEL);
- if (!nc)
+ if (!info)
return -ENOMEM;
+ nc = &info->chip;
mtd = nand_to_mtd(nc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
@@ -145,16 +151,23 @@ static int __init orion_nand_probe(struct platform_device *pdev)
if (board->dev_ready)
nc->dev_ready = board->dev_ready;
- platform_set_drvdata(pdev, mtd);
+ platform_set_drvdata(pdev, info);
/* Not all platforms can gate the clock, so it is not
an error if the clock does not exists. */
- clk = clk_get(&pdev->dev, NULL);
- if (!IS_ERR(clk)) {
- clk_prepare_enable(clk);
- clk_put(clk);
+ info->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(info->clk)) {
+ ret = PTR_ERR(info->clk);
+ if (ret == -ENOENT) {
+ info->clk = NULL;
+ } else {
+ dev_err(&pdev->dev, "failed to get clock!\n");
+ return ret;
+ }
}
+ clk_prepare_enable(info->clk);
+
ret = nand_scan(mtd, 1);
if (ret)
goto no_dev;
@@ -169,26 +182,19 @@ static int __init orion_nand_probe(struct platform_device *pdev)
return 0;
no_dev:
- if (!IS_ERR(clk)) {
- clk_disable_unprepare(clk);
- clk_put(clk);
- }
-
+ clk_disable_unprepare(info->clk);
return ret;
}
static int orion_nand_remove(struct platform_device *pdev)
{
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct clk *clk;
+ struct orion_nand_info *info = platform_get_drvdata(pdev);
+ struct nand_chip *chip = &info->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
nand_release(mtd);
- clk = clk_get(&pdev->dev, NULL);
- if (!IS_ERR(clk)) {
- clk_disable_unprepare(clk);
- clk_put(clk);
- }
+ clk_disable_unprepare(info->clk);
return 0;
}
diff --git a/drivers/mtd/nand/oxnas_nand.c b/drivers/mtd/nand/oxnas_nand.c
index 3e3bf3b364d2..1b207aac840c 100644
--- a/drivers/mtd/nand/oxnas_nand.c
+++ b/drivers/mtd/nand/oxnas_nand.c
@@ -91,7 +91,7 @@ static int oxnas_nand_probe(struct platform_device *pdev)
int err = 0;
/* Allocate memory for the device structure (and zero it) */
- oxnas = devm_kzalloc(&pdev->dev, sizeof(struct nand_chip),
+ oxnas = devm_kzalloc(&pdev->dev, sizeof(*oxnas),
GFP_KERNEL);
if (!oxnas)
return -ENOMEM;
diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c
index 0eeeb8b889ea..118a26fff368 100644
--- a/drivers/mtd/nand/sunxi_nand.c
+++ b/drivers/mtd/nand/sunxi_nand.c
@@ -2212,17 +2212,17 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
goto out_ahb_clk_unprepare;
nfc->reset = devm_reset_control_get_optional(dev, "ahb");
- if (!IS_ERR(nfc->reset)) {
- ret = reset_control_deassert(nfc->reset);
- if (ret) {
- dev_err(dev, "reset err %d\n", ret);
- goto out_mod_clk_unprepare;
- }
- } else if (PTR_ERR(nfc->reset) != -ENOENT) {
+ if (IS_ERR(nfc->reset)) {
ret = PTR_ERR(nfc->reset);
goto out_mod_clk_unprepare;
}
+ ret = reset_control_deassert(nfc->reset);
+ if (ret) {
+ dev_err(dev, "reset err %d\n", ret);
+ goto out_mod_clk_unprepare;
+ }
+
ret = sunxi_nfc_rst(nfc);
if (ret)
goto out_ahb_reset_reassert;
@@ -2262,8 +2262,7 @@ out_release_dmac:
if (nfc->dmac)
dma_release_channel(nfc->dmac);
out_ahb_reset_reassert:
- if (!IS_ERR(nfc->reset))
- reset_control_assert(nfc->reset);
+ reset_control_assert(nfc->reset);
out_mod_clk_unprepare:
clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
@@ -2278,8 +2277,7 @@ static int sunxi_nfc_remove(struct platform_device *pdev)
sunxi_nand_chips_cleanup(nfc);
- if (!IS_ERR(nfc->reset))
- reset_control_assert(nfc->reset);
+ reset_control_assert(nfc->reset);
if (nfc->dmac)
dma_release_channel(nfc->dmac);
diff --git a/drivers/mtd/nand/tango_nand.c b/drivers/mtd/nand/tango_nand.c
index 4a5e948c62df..05b6e1065203 100644
--- a/drivers/mtd/nand/tango_nand.c
+++ b/drivers/mtd/nand/tango_nand.c
@@ -223,12 +223,13 @@ static void tango_dma_callback(void *arg)
complete(arg);
}
-static int do_dma(struct tango_nfc *nfc, int dir, int cmd, const void *buf,
- int len, int page)
+static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd,
+ const void *buf, int len, int page)
{
void __iomem *addr = nfc->reg_base + NFC_STATUS;
struct dma_chan *chan = nfc->chan;
struct dma_async_tx_descriptor *desc;
+ enum dma_transfer_direction tdir;
struct scatterlist sg;
struct completion tx_done;
int err = -EIO;
@@ -238,7 +239,8 @@ static int do_dma(struct tango_nfc *nfc, int dir, int cmd, const void *buf,
if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1)
return -EIO;
- desc = dmaengine_prep_slave_sg(chan, &sg, 1, dir, DMA_PREP_INTERRUPT);
+ tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
+ desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT);
if (!desc)
goto dma_unmap;