1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
/*
* Copyright © 2012 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Benjamin Segovia <benjamin.segovia@intel.com>
*/
#include "cl_command_queue.h"
#include "cl_context.h"
#include "cl_program.h"
#include "cl_kernel.h"
#include "cl_device_id.h"
#include "cl_mem.h"
#include "cl_event.h"
#include "cl_utils.h"
#include "cl_alloc.h"
#include "cl_device_enqueue.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#define MAX_GROUP_SIZE_IN_HALFSLICE 512
static INLINE size_t cl_kernel_compute_batch_sz(cl_kernel k) { return 256+256; }
/* "Varing" payload is the part of the curbe that changes accross threads in the
* same work group. Right now, it consists in local IDs and block IPs
*/
static cl_int
cl_set_varying_payload(const cl_kernel ker,
char *data,
const size_t *local_wk_sz,
size_t simd_sz,
size_t cst_sz,
size_t thread_n)
{
uint32_t *ids[3] = {NULL,NULL,NULL};
uint16_t *block_ips = NULL;
uint32_t *thread_ids = NULL;
size_t i, j, k, curr = 0;
int32_t id_offset[3], ip_offset, tid_offset;
cl_int err = CL_SUCCESS;
int32_t dw_ip_offset = -1;
id_offset[0] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_X, 0);
id_offset[1] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_Y, 0);
id_offset[2] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_Z, 0);
ip_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_BLOCK_IP, 0);
tid_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_THREAD_ID, 0);
if (ip_offset < 0)
dw_ip_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_DW_BLOCK_IP, 0);
assert(ip_offset < 0 || dw_ip_offset < 0);
assert(ip_offset >= 0 || dw_ip_offset >= 0);
if (id_offset[0] >= 0)
TRY_ALLOC(ids[0], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz));
if (id_offset[1] >= 0)
TRY_ALLOC(ids[1], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz));
if (id_offset[2] >= 0)
TRY_ALLOC(ids[2], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz));
TRY_ALLOC(block_ips, (uint16_t*) alloca(sizeof(uint16_t)*thread_n*simd_sz));
if (tid_offset >= 0) {
TRY_ALLOC(thread_ids, (uint32_t*) alloca(sizeof(uint32_t)*thread_n));
memset(thread_ids, 0, sizeof(uint32_t)*thread_n);
}
/* 0xffff means that the lane is inactivated */
memset(block_ips, 0xff, sizeof(int16_t)*thread_n*simd_sz);
/* Compute the IDs and the block IPs */
for (k = 0; k < local_wk_sz[2]; ++k)
for (j = 0; j < local_wk_sz[1]; ++j)
for (i = 0; i < local_wk_sz[0]; ++i, ++curr) {
if (id_offset[0] >= 0)
ids[0][curr] = i;
if (id_offset[1] >= 0)
ids[1][curr] = j;
if (id_offset[2] >= 0)
ids[2][curr] = k;
block_ips[curr] = 0;
if (thread_ids)
thread_ids[curr/simd_sz] = curr/simd_sz;
}
/* Copy them to the curbe buffer */
curr = 0;
for (i = 0; i < thread_n; ++i, data += cst_sz) {
uint32_t *ids0 = (uint32_t *) (data + id_offset[0]);
uint32_t *ids1 = (uint32_t *) (data + id_offset[1]);
uint32_t *ids2 = (uint32_t *) (data + id_offset[2]);
uint16_t *ips = (uint16_t *) (data + ip_offset);
uint32_t *dw_ips = (uint32_t *) (data + dw_ip_offset);
if (thread_ids)
*(uint32_t *)(data + tid_offset) = thread_ids[i];
for (j = 0; j < simd_sz; ++j, ++curr) {
if (id_offset[0] >= 0)
ids0[j] = ids[0][curr];
if (id_offset[1] >= 0)
ids1[j] = ids[1][curr];
if (id_offset[2] >= 0)
ids2[j] = ids[2][curr];
if (ip_offset >= 0)
ips[j] = block_ips[curr];
if (dw_ip_offset >= 0)
dw_ips[j] = block_ips[curr];
}
}
error:
return err;
}
static int
cl_upload_constant_buffer(cl_command_queue queue, cl_kernel ker, cl_gpgpu gpgpu)
{
if (interp_kernel_get_ocl_version(ker->opaque) >= 200) {
// pass the starting of constant address space
int32_t constant_addrspace = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_CONSTANT_ADDRSPACE, 0);
if (constant_addrspace >= 0) {
size_t global_const_size = interp_program_get_global_constant_size(ker->program->opaque);
if (global_const_size > 0) {
*(char **)(ker->curbe + constant_addrspace) = ker->program->global_data_ptr;
cl_gpgpu_bind_buf(gpgpu, ker->program->global_data, constant_addrspace, 0, ALIGN(global_const_size, getpagesize()), BTI_CONSTANT);
}
}
return 0;
}
// TODO this is only valid for OpenCL 1.2,
// under ocl1.2 we gather all constant into one dedicated surface.
// but in 2.0 we put program global into one surface, but constants
// pass through kernel argument in each separate buffer
int32_t arg;
size_t offset = 0;
uint32_t raw_size = 0, aligned_size =0;
gbe_program prog = ker->program->opaque;
const int32_t arg_n = interp_kernel_get_arg_num(ker->opaque);
size_t global_const_size = interp_program_get_global_constant_size(prog);
raw_size = global_const_size;
// Surface state need 4 byte alignment, and Constant argument's buffer size
// have align to 4 byte when alloc, so align global constant size to 4 can
// ensure the finally aligned_size align to 4.
aligned_size = ALIGN(raw_size, 4);
/* Reserve 8 bytes to get rid of 0 address */
if(global_const_size == 0) aligned_size = 8;
for (arg = 0; arg < arg_n; ++arg) {
const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg);
if (type == GBE_ARG_CONSTANT_PTR && ker->args[arg].mem) {
uint32_t alignment = interp_kernel_get_arg_align(ker->opaque, arg);
assert(alignment != 0);
cl_mem mem = ker->args[arg].mem;
raw_size += mem->size;
aligned_size = ALIGN(aligned_size, alignment);
aligned_size += mem->size;
}
}
if(raw_size == 0)
return 0;
cl_buffer bo = cl_gpgpu_alloc_constant_buffer(gpgpu, aligned_size, BTI_CONSTANT);
if (bo == NULL)
return -1;
cl_buffer_map(bo, 1);
char * cst_addr = cl_buffer_get_virtual(bo);
if (cst_addr == NULL)
return -1;
/* upload the global constant data */
if (global_const_size > 0) {
interp_program_get_global_constant_data(prog, (char*)(cst_addr+offset));
offset += global_const_size;
}
/* reserve 8 bytes to get rid of 0 address */
if(global_const_size == 0) {
offset = 8;
}
/* upload constant buffer argument */
int32_t curbe_offset = 0;
for (arg = 0; arg < arg_n; ++arg) {
const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg);
if (type == GBE_ARG_CONSTANT_PTR && ker->args[arg].mem) {
cl_mem mem = ker->args[arg].mem;
uint32_t alignment = interp_kernel_get_arg_align(ker->opaque, arg);
offset = ALIGN(offset, alignment);
curbe_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_KERNEL_ARGUMENT, arg);
if (curbe_offset < 0)
continue;
*(uint32_t *) (ker->curbe + curbe_offset) = offset;
cl_buffer_map(mem->bo, 1);
void * addr = cl_buffer_get_virtual(mem->bo);
memcpy(cst_addr + offset, addr, mem->size);
cl_buffer_unmap(mem->bo);
offset += mem->size;
}
}
cl_buffer_unmap(bo);
return 0;
}
/* Will return the total amount of slm used */
static int32_t
cl_curbe_fill(cl_kernel ker,
const uint32_t work_dim,
const size_t *global_wk_off,
const size_t *global_wk_sz,
const size_t *local_wk_sz,
const size_t *enqueued_local_wk_sz,
size_t thread_n)
{
int32_t offset;
#define UPLOAD(ENUM, VALUE) \
if ((offset = interp_kernel_get_curbe_offset(ker->opaque, ENUM, 0)) >= 0) \
*((uint32_t *) (ker->curbe + offset)) = VALUE;
UPLOAD(GBE_CURBE_LOCAL_SIZE_X, local_wk_sz[0]);
UPLOAD(GBE_CURBE_LOCAL_SIZE_Y, local_wk_sz[1]);
UPLOAD(GBE_CURBE_LOCAL_SIZE_Z, local_wk_sz[2]);
UPLOAD(GBE_CURBE_ENQUEUED_LOCAL_SIZE_X, enqueued_local_wk_sz[0]);
UPLOAD(GBE_CURBE_ENQUEUED_LOCAL_SIZE_Y, enqueued_local_wk_sz[1]);
UPLOAD(GBE_CURBE_ENQUEUED_LOCAL_SIZE_Z, enqueued_local_wk_sz[2]);
UPLOAD(GBE_CURBE_GLOBAL_SIZE_X, global_wk_sz[0]);
UPLOAD(GBE_CURBE_GLOBAL_SIZE_Y, global_wk_sz[1]);
UPLOAD(GBE_CURBE_GLOBAL_SIZE_Z, global_wk_sz[2]);
UPLOAD(GBE_CURBE_GLOBAL_OFFSET_X, global_wk_off[0]);
UPLOAD(GBE_CURBE_GLOBAL_OFFSET_Y, global_wk_off[1]);
UPLOAD(GBE_CURBE_GLOBAL_OFFSET_Z, global_wk_off[2]);
UPLOAD(GBE_CURBE_GROUP_NUM_X, global_wk_sz[0] / enqueued_local_wk_sz[0] + (global_wk_sz[0]%enqueued_local_wk_sz[0]?1:0));
UPLOAD(GBE_CURBE_GROUP_NUM_Y, global_wk_sz[1] / enqueued_local_wk_sz[1] + (global_wk_sz[1]%enqueued_local_wk_sz[1]?1:0));
UPLOAD(GBE_CURBE_GROUP_NUM_Z, global_wk_sz[2] / enqueued_local_wk_sz[2] + (global_wk_sz[2]%enqueued_local_wk_sz[2]?1:0));
UPLOAD(GBE_CURBE_THREAD_NUM, thread_n);
UPLOAD(GBE_CURBE_WORK_DIM, work_dim);
#undef UPLOAD
/* Handle the various offsets to SLM */
const int32_t arg_n = interp_kernel_get_arg_num(ker->opaque);
int32_t arg, slm_offset = interp_kernel_get_slm_size(ker->opaque);
ker->local_mem_sz = 0;
for (arg = 0; arg < arg_n; ++arg) {
const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg);
if (type != GBE_ARG_LOCAL_PTR)
continue;
uint32_t align = interp_kernel_get_arg_align(ker->opaque, arg);
assert(align != 0);
slm_offset = ALIGN(slm_offset, align);
offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_KERNEL_ARGUMENT, arg);
if (offset < 0)
continue;
uint32_t *slmptr = (uint32_t *) (ker->curbe + offset);
*slmptr = slm_offset;
slm_offset += ker->args[arg].local_sz;
ker->local_mem_sz += ker->args[arg].local_sz;
}
return slm_offset;
}
static void
cl_bind_stack(cl_gpgpu gpgpu, cl_kernel ker)
{
cl_context ctx = ker->program->ctx;
cl_device_id device = ctx->devices[0];
const int32_t per_lane_stack_sz = ker->stack_size;
const int32_t value = GBE_CURBE_EXTRA_ARGUMENT;
const int32_t sub_value = GBE_STACK_BUFFER;
const int32_t offset_stack_buffer = interp_kernel_get_curbe_offset(ker->opaque, value, sub_value);
int32_t stack_sz = per_lane_stack_sz;
/* No stack required for this kernel */
if (per_lane_stack_sz == 0)
return;
/* The stack size is given for *each* SIMD lane. So, we accordingly compute
* the size we need for the complete machine
*/
assert(offset_stack_buffer >= 0);
stack_sz *= interp_kernel_get_simd_width(ker->opaque);
stack_sz *= device->max_compute_unit * ctx->devices[0]->max_thread_per_unit;
/* for some hardware, part of EUs are disabled with EU id reserved,
* it makes the active EU id larger than count of EUs within a subslice,
* need to enlarge stack size for such case to avoid out of range.
*/
cl_driver_enlarge_stack_size(ctx->drv, &stack_sz);
const int32_t offset_stack_size = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_STACK_SIZE, 0);
if (offset_stack_size >= 0) {
*(uint64_t *)(ker->curbe + offset_stack_size) = stack_sz;
}
cl_gpgpu_set_stack(gpgpu, offset_stack_buffer, stack_sz, BTI_PRIVATE);
}
static int
cl_bind_profiling(cl_gpgpu gpgpu, uint32_t simd_sz, cl_kernel ker, size_t global_sz, size_t local_sz, uint32_t bti) {
int32_t offset;
int i = 0;
int thread_num;
if (simd_sz == 16) {
for(i = 0; i < 3; i++) {
offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_PROFILING_TIMESTAMP0 + i, 0);
assert(offset >= 0);
memset(ker->curbe + offset, 0x0, sizeof(uint32_t)*8*2);
thread_num = (local_sz + 15)/16;
}
} else {
assert(simd_sz == 8);
for(i = 0; i < 5; i++) {
offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_PROFILING_TIMESTAMP0 + i, 0);
assert(offset >= 0);
memset(ker->curbe + offset, 0x0, sizeof(uint32_t)*8);
thread_num = (local_sz + 7)/8;
}
}
offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_PROFILING_BUF_POINTER, 0);
thread_num = thread_num*(global_sz/local_sz);
if (cl_gpgpu_set_profiling_buffer(gpgpu, thread_num*128 + 4, offset, bti))
return -1;
return 0;
}
static int
cl_alloc_printf(cl_gpgpu gpgpu, cl_kernel ker, void* printf_info, int printf_num, size_t global_sz) {
/* An guess size. */
size_t buf_size = global_sz * sizeof(int) * 16 * printf_num;
if (buf_size > 16*1024*1024) //at most.
buf_size = 16*1024*1024;
if (buf_size < 1*1024*1024) // at least.
buf_size = 1*1024*1024;
if (cl_gpgpu_set_printf_buffer(gpgpu, buf_size, interp_get_printf_buf_bti(printf_info)) != 0)
return -1;
return 0;
}
LOCAL cl_int
cl_command_queue_ND_range_gen7(cl_command_queue queue,
cl_kernel ker,
cl_event event,
const uint32_t work_dim,
const size_t *global_wk_off,
const size_t *global_dim_off,
const size_t *global_wk_sz,
const size_t *global_wk_sz_use,
const size_t *local_wk_sz,
const size_t *local_wk_sz_use)
{
cl_gpgpu gpgpu = cl_gpgpu_new(queue->ctx->drv);
cl_context ctx = queue->ctx;
char *final_curbe = NULL; /* Includes them and one sub-buffer per group */
cl_gpgpu_kernel kernel;
const uint32_t simd_sz = cl_kernel_get_simd_width(ker);
size_t i, batch_sz = 0u, local_sz = 0u;
size_t cst_sz = interp_kernel_get_curbe_size(ker->opaque);
int32_t scratch_sz = interp_kernel_get_scratch_size(ker->opaque);
size_t thread_n = 0u;
int printf_num = 0;
cl_int err = CL_SUCCESS;
size_t global_size = global_wk_sz[0] * global_wk_sz[1] * global_wk_sz[2];
void* printf_info = NULL;
uint32_t max_bti = 0;
if (ker->exec_info_n > 0) {
cst_sz += ker->exec_info_n * sizeof(void *);
cst_sz = (cst_sz + 31) / 32 * 32; //align to register size, hard code here.
ker->curbe = cl_realloc(ker->curbe, cst_sz);
}
ker->curbe_sz = cst_sz;
/* Setup kernel */
kernel.name = interp_kernel_get_name(ker->opaque);
kernel.grf_blocks = 128;
kernel.bo = ker->bo;
kernel.barrierID = 0;
kernel.slm_sz = 0;
kernel.use_slm = interp_kernel_use_slm(ker->opaque);
/* Compute the number of HW threads we need */
if(UNLIKELY(err = cl_kernel_work_group_sz(ker, local_wk_sz_use, 3, &local_sz) != CL_SUCCESS)) {
DEBUGP(DL_ERROR, "Work group size exceed Kernel's work group size.");
return err;
}
kernel.thread_n = thread_n = (local_sz + simd_sz - 1) / simd_sz;
kernel.curbe_sz = cst_sz;
if (scratch_sz > ker->program->ctx->devices[0]->scratch_mem_size) {
DEBUGP(DL_ERROR, "Out of scratch memory %d.", scratch_sz);
return CL_OUT_OF_RESOURCES;
}
/* Curbe step 1: fill the constant urb buffer data shared by all threads */
if (ker->curbe) {
kernel.slm_sz = cl_curbe_fill(ker, work_dim, global_wk_off, global_wk_sz,local_wk_sz_use ,local_wk_sz, thread_n);
if (kernel.slm_sz > ker->program->ctx->devices[0]->local_mem_size) {
DEBUGP(DL_ERROR, "Out of shared local memory %d.", kernel.slm_sz);
return CL_OUT_OF_RESOURCES;
}
}
printf_info = interp_dup_printfset(ker->opaque);
cl_gpgpu_set_printf_info(gpgpu, printf_info);
/* Setup the kernel */
if (queue->props & CL_QUEUE_PROFILING_ENABLE)
err = cl_gpgpu_state_init(gpgpu, ctx->devices[0]->max_compute_unit * ctx->devices[0]->max_thread_per_unit, cst_sz / 32, 1);
else
err = cl_gpgpu_state_init(gpgpu, ctx->devices[0]->max_compute_unit * ctx->devices[0]->max_thread_per_unit, cst_sz / 32, 0);
if (err != 0)
goto error;
printf_num = interp_get_printf_num(printf_info);
if (printf_num) {
if (cl_alloc_printf(gpgpu, ker, printf_info, printf_num, global_size) != 0)
goto error;
}
if (interp_get_profiling_bti(ker->opaque) != 0) {
if (cl_bind_profiling(gpgpu, simd_sz, ker, global_size, local_sz, interp_get_profiling_bti(ker->opaque)))
goto error;
cl_gpgpu_set_profiling_info(gpgpu, interp_dup_profiling(ker->opaque));
} else {
cl_gpgpu_set_profiling_info(gpgpu, NULL);
}
/* Bind user buffers */
cl_command_queue_bind_surface(queue, ker, gpgpu, &max_bti);
/* Bind user images */
if(UNLIKELY(err = cl_command_queue_bind_image(queue, ker, gpgpu, &max_bti) != CL_SUCCESS))
return err;
/* Bind all exec infos */
cl_command_queue_bind_exec_info(queue, ker, gpgpu, &max_bti);
/* Bind device enqueue buffer */
cl_device_enqueue_bind_buffer(gpgpu, ker, &max_bti, &kernel);
/* Bind all samplers */
if (ker->vme)
cl_gpgpu_bind_vme_state(gpgpu, ker->accel);
else
cl_gpgpu_bind_sampler(gpgpu, ker->samplers, ker->sampler_sz);
if (cl_gpgpu_set_scratch(gpgpu, scratch_sz) != 0)
goto error;
/* Bind a stack if needed */
cl_bind_stack(gpgpu, ker);
if (cl_upload_constant_buffer(queue, ker, gpgpu) != 0)
goto error;
cl_gpgpu_states_setup(gpgpu, &kernel);
/* Curbe step 2. Give the localID and upload it to video memory */
if (ker->curbe) {
assert(cst_sz > 0);
TRY_ALLOC (final_curbe, (char*) alloca(thread_n * cst_sz));
for (i = 0; i < thread_n; ++i) {
memcpy(final_curbe + cst_sz * i, ker->curbe, cst_sz);
}
TRY (cl_set_varying_payload, ker, final_curbe, local_wk_sz_use, simd_sz, cst_sz, thread_n);
if (cl_gpgpu_upload_curbes(gpgpu, final_curbe, thread_n*cst_sz) != 0)
goto error;
}
/* Start a new batch buffer */
batch_sz = cl_kernel_compute_batch_sz(ker);
if (cl_gpgpu_batch_reset(gpgpu, batch_sz) != 0)
goto error;
//cl_set_thread_batch_buf(queue, cl_gpgpu_ref_batch_buf(gpgpu));
cl_gpgpu_batch_start(gpgpu);
/* Issue the GPGPU_WALKER command */
cl_gpgpu_walker(gpgpu, simd_sz, thread_n, global_wk_off,global_dim_off, global_wk_sz_use, local_wk_sz_use);
/* Close the batch buffer and submit it */
cl_gpgpu_batch_end(gpgpu, 0);
event->exec_data.queue = queue;
event->exec_data.gpgpu = gpgpu;
event->exec_data.type = EnqueueNDRangeKernel;
return CL_SUCCESS;
error:
/* only some command/buffer internal error reach here, so return error code OOR */
return CL_OUT_OF_RESOURCES;
}
|