summaryrefslogtreecommitdiff
path: root/backend/src/libocl/tmpl/ocl_math_common.tmpl.cl
diff options
context:
space:
mode:
Diffstat (limited to 'backend/src/libocl/tmpl/ocl_math_common.tmpl.cl')
-rw-r--r--backend/src/libocl/tmpl/ocl_math_common.tmpl.cl3436
1 files changed, 3435 insertions, 1 deletions
diff --git a/backend/src/libocl/tmpl/ocl_math_common.tmpl.cl b/backend/src/libocl/tmpl/ocl_math_common.tmpl.cl
index 63dd202d..e82b7f55 100644
--- a/backend/src/libocl/tmpl/ocl_math_common.tmpl.cl
+++ b/backend/src/libocl/tmpl/ocl_math_common.tmpl.cl
@@ -1,5 +1,5 @@
/*
- * Copyright © 2012 - 2014 Intel Corporation
+ * Copyright © 2012 - 2017 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
@@ -32,6 +32,3440 @@
* is preserved.
* ====================================================
*/
+
+extern constant int __ocl_math_fastpath_flag;
+
+CONST float __gen_ocl_fabs(float x) __asm("llvm.fabs" ".f32");
+CONST float __gen_ocl_sin(float x) __asm("llvm.sin" ".f32");
+CONST float __gen_ocl_cos(float x) __asm("llvm.cos" ".f32");
+CONST float __gen_ocl_sqrt(float x) __asm("llvm.sqrt" ".f32");
+PURE CONST float __gen_ocl_rsqrt(float x);
+CONST float __gen_ocl_log(float x) __asm("llvm.log2" ".f32");
+CONST float __gen_ocl_exp(float x) __asm("llvm.exp2" ".f32");
+PURE CONST float __gen_ocl_pow(float x, float y) __asm("llvm.pow" ".f32");
+PURE CONST float __gen_ocl_rcp(float x);
+CONST float __gen_ocl_rndz(float x) __asm("llvm.trunc" ".f32");
+CONST float __gen_ocl_rnde(float x) __asm("llvm.rint" ".f32");
+CONST float __gen_ocl_rndu(float x) __asm("llvm.ceil" ".f32");
+CONST float __gen_ocl_rndd(float x) __asm("llvm.floor" ".f32");
+
+
+/* native functions */
+OVERLOADABLE float native_cos(float x) { return __gen_ocl_cos(x); }
+OVERLOADABLE float native_sin(float x) { return __gen_ocl_sin(x); }
+OVERLOADABLE float native_sqrt(float x) { return __gen_ocl_sqrt(x); }
+OVERLOADABLE float native_rsqrt(float x) { return __gen_ocl_rsqrt(x); }
+OVERLOADABLE float native_log2(float x) { return __gen_ocl_log(x); }
+OVERLOADABLE float native_log(float x) {
+ return native_log2(x) * 0.6931472002f;
+}
+OVERLOADABLE float native_log10(float x) {
+ return native_log2(x) * 0.3010299956f;
+}
+OVERLOADABLE float native_powr(float x, float y) { return __gen_ocl_pow(x,y); }
+OVERLOADABLE float native_recip(float x) { return __gen_ocl_rcp(x); }
+OVERLOADABLE float native_tan(float x) {
+ return native_sin(x) / native_cos(x);
+}
+OVERLOADABLE float native_exp2(float x) { return __gen_ocl_exp(x); }
+OVERLOADABLE float native_exp(float x) { return __gen_ocl_exp(M_LOG2E_F*x); }
+OVERLOADABLE float native_exp10(float x) { return __gen_ocl_exp(M_LOG210_F*x); }
+OVERLOADABLE float native_divide(float x, float y) { return x/y; }
+
+/* Fast path */
+OVERLOADABLE float __gen_ocl_internal_fastpath_acosh (float x) {
+ return native_log(x + native_sqrt(x + 1) * native_sqrt(x - 1));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_asinh (float x) {
+ return native_log(x + native_sqrt(x * x + 1));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_atanh (float x) {
+ return 0.5f * native_log((1 + x) / (1 - x));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_cbrt (float x) {
+ return __gen_ocl_pow(x, 0.3333333333f);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_cos (float x) {
+ return native_cos(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_cosh (float x) {
+ return (1 + native_exp(-2 * x)) / (2 * native_exp(-x));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_cospi (float x) {
+ return __gen_ocl_cos(x * M_PI_F);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_exp (float x) {
+ return native_exp(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_exp10 (float x) {
+ return native_exp10(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_expm1 (float x) {
+ return __gen_ocl_pow(M_E_F, x) - 1;
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_fmod (float x, float y) {
+ return x-y*__gen_ocl_rndz(x/y);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_hypot (float x, float y) {
+ return __gen_ocl_sqrt(x*x + y*y);
+}
+OVERLOADABLE int __gen_ocl_internal_fastpath_ilogb (float x) {
+ return __gen_ocl_rndd(native_log2(x));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_ldexp (float x, int n) {
+ return __gen_ocl_pow(2, n) * x;
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_log (float x) {
+ return native_log(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_log2 (float x) {
+ return native_log2(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_log10 (float x) {
+ return native_log10(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_log1p (float x) {
+ return native_log(x + 1);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_logb (float x) {
+ return __gen_ocl_rndd(native_log2(x));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_remainder (float x, float y) {
+ return x-y*__gen_ocl_rnde(x/y);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_rootn(float x, int n) {
+ return __gen_ocl_pow(x, 1.f / n);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_sin (float x) {
+ return native_sin(x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_fastpath_sinh (float x) {
+ return (1 - native_exp(-2 * x)) / (2 * native_exp(-x));
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_sinpi (float x) {
+ return __gen_ocl_sin(x * M_PI_F);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_tan (float x) {
+ return native_tan(x);
+}
+OVERLOADABLE float __gen_ocl_internal_fastpath_tanh (float x) {
+ float y = native_exp(-2 * x);
+ return (1 - y) / (1 + y);
+}
+
+
+/* Internal implement, high accuracy. */
+OVERLOADABLE float __gen_ocl_internal_floor(float x) { return __gen_ocl_rndd(x); }
+OVERLOADABLE float __gen_ocl_internal_copysign(float x, float y) {
+ union { unsigned u; float f; } ux, uy;
+ ux.f = x;
+ uy.f = y;
+ ux.u = (ux.u & 0x7fffffff) | (uy.u & 0x80000000u);
+ return ux.f;
+}
+
+OVERLOADABLE float inline __gen_ocl_internal_log_valid(float x) {
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+ union { unsigned int i; float f; } u;
+ const float
+ ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+ two25 = 3.355443200e+07, /* 0x4c000000 */
+ Lg1 = 6.6666668653e-01, /* 3F2AAAAB */
+ Lg2 = 4.0000000596e-01, /* 3ECCCCCD */
+ Lg3 = 2.8571429849e-01, /* 3E924925 */
+ Lg4 = 2.2222198546e-01; /* 3E638E29 */
+
+ const float zero = 0.0;
+ float fsq, f, s, z, R, w, t1, t2, partial;
+ int k, ix, i, j;
+
+ u.f = x; ix = u.i;
+ k = 0;
+
+ k += (ix>>23) - 127;
+ ix &= 0x007fffff;
+ i = (ix + (0x95f64<<3)) & 0x800000;
+ u.i = ix | (i^0x3f800000); x = u.f;
+ k += (i>>23);
+ f = x - 1.0f;
+ fsq = f * f;
+
+ if((0x007fffff & (15 + ix)) < 16) { /* |f| < 2**-20 */
+ R = fsq * (0.5f - 0.33333333333333333f * f);
+ return k * ln2_hi + k * ln2_lo + f - R;
+ }
+
+ s = f / (2.0f + f);
+ z = s * s;
+ i = ix - (0x6147a << 3);
+ w = z * z;
+ j = (0x6b851 << 3) - ix;
+ t1= w * mad(w, Lg4, Lg2);
+ t2= z * mad(w, Lg3, Lg1);
+ i |= j;
+ R = t2 + t1;
+ partial = (i > 0) ? -mad(s, 0.5f * fsq, -0.5f * fsq) : (s * f);
+
+ return mad(s, R, f) - partial + k * ln2_hi + k * ln2_lo;;
+}
+
+OVERLOADABLE float __gen_ocl_internal_log(float x)
+{
+ union { unsigned int i; float f; } u;
+ u.f = x;
+ int ix = u.i;
+
+ if (ix < 0 )
+ return NAN; /* log(-#) = NaN */
+ if (ix >= 0x7f800000)
+ return NAN;
+
+ return __gen_ocl_internal_log_valid(x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_log10(float x)
+{
+ union { float f; unsigned i; } u;
+ const float
+ ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */
+ log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
+ log10_2lo = 7.9034151668e-07; /* 0x355427db */
+
+ float y, z;
+ int i, k, hx;
+
+ u.f = x; hx = u.i;
+
+ if (hx<0)
+ return NAN; /* log(-#) = NaN */
+ if (hx >= 0x7f800000)
+ return NAN;
+
+ k = (hx >> 23) - 127;
+ i = ((unsigned)k & 0x80000000) >> 31;
+ hx = (hx&0x007fffff) | ((0x7f-i) << 23);
+ y = (float)(k + i);
+ u.i = hx; x = u.f;
+
+ return y * log10_2lo + y * log10_2hi + ivln10 * __gen_ocl_internal_log_valid(x);
+}
+
+
+OVERLOADABLE float __gen_ocl_internal_log2(float x)
+{
+ const float zero = 0.0,
+ invln2 = 0x1.715476p+0f;
+ int ix;
+
+ union { float f; int i; } u;
+ u.f = x; ix = u.i;
+
+ if (ix < 0)
+ return NAN; /** log(-#) = NaN */
+ if (ix >= 0x7f800000)
+ return NAN;
+
+ return invln2 * __gen_ocl_internal_log_valid(x);
+}
+
+
+float __gen_ocl_scalbnf (float x, int n){
+ /* copy from fdlibm */
+ float two25 = 3.355443200e+07, /* 0x4c000000 */
+ twom25 = 2.9802322388e-08, /* 0x33000000 */
+ huge = 1.0e+30,
+ tiny = 1.0e-30;
+ int k,ix;
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ k = (ix&0x7f800000)>>23; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
+ if ((ix&0x7fffffff)==0) return x; /* +-0 */
+ x *= two25;
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ k = ((ix&0x7f800000)>>23) - 25;
+ }
+ if (k==0xff) return x+x; /* NaN or Inf */
+ if (n< -50000)
+ return tiny*__gen_ocl_internal_copysign(tiny,x); /*underflow*/
+ if (n> 50000 || k+n > 0xfe)
+ return huge*__gen_ocl_internal_copysign(huge,x); /* overflow */
+ /* Now k and n are bounded we know that k = k+n does not overflow. */
+ k = k+n;
+ if (k > 0) { /* normal result */
+ GEN_OCL_SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
+ return x;
+ }
+ if (k <= -25)
+ return tiny*__gen_ocl_internal_copysign(tiny,x); /*underflow*/
+ k += 25; /* subnormal result */
+ GEN_OCL_SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
+ return x*twom25;
+}
+
+const __constant unsigned int two_over_pi[] = {
+0, 0, 0xA2F, 0x983, 0x6E4, 0xe44, 0x152, 0x9FC,
+0x275, 0x7D1, 0xF53, 0x4DD, 0xC0D, 0xB62,
+0x959, 0x93C, 0x439, 0x041, 0xFE5, 0x163,
+};
+
+// The main idea is from "Radian Reduction for Trigonometric Functions"
+// written by Mary H. Payne and Robert N. Hanek. Also another reference
+// is "A Continued-Fraction Analysis of Trigonometric Argument Reduction"
+// written by Roger Alan Smith, who gave the worst case in this paper.
+// for single float, worst x = 0x1.47d0fep34, and there are 29 bit
+// leading zeros in the fraction part of x*(2.0/pi). so we need at least
+// 29 (leading zero)+ 24 (fraction )+12 (integer) + guard bits. that is,
+// 65 + guard bits, as we calculate in 12*7 = 84bits, which means we have
+// about 19 guard bits. If we need further precision, we may need more
+// guard bits
+// Note we place two 0 in two_over_pi, which is used to handle input less
+// than 0x1.0p23
+
+int payne_hanek(float x, float *y) {
+ union { float f; unsigned u;} ieee;
+ ieee.f = x;
+ unsigned u = ieee.u;
+ int k = ((u & 0x7f800000) >> 23)-127;
+ int ma = (u & 0x7fffff) | 0x800000;
+ unsigned high, low;
+ high = (ma & 0xfff000) >> 12;
+ low = ma & 0xfff;
+
+ // Two tune below macro, you need to fully understand the algorithm
+#define CALC_BLOCKS 7
+#define ZERO_BITS 2
+
+ unsigned result[CALC_BLOCKS];
+
+ // round down, note we need 2 bits integer precision
+ int index = (k-23-2) < 0 ? (k-23-2-11)/12 : (k-23-2)/12;
+
+ for (int i = 0; i < CALC_BLOCKS; i++) {
+ result[i] = low * two_over_pi[index+i+ZERO_BITS] ;
+ result[i] += high * two_over_pi[index+i+1+ZERO_BITS];
+ }
+
+ for (int i = CALC_BLOCKS-1; i > 0; i--) {
+ int temp = result[i] >> 12;
+ result[i] -= temp << 12;
+ result[i-1] += temp;
+ }
+#undef CALC_BLOCKS
+#undef ZERO_BITS
+
+ // get number of integer digits in result[0], note we only consider 12 valid bits
+ // and also it means the fraction digits in result[0] is (12-intDigit)
+
+ int intDigit = index*(-12) + (k-23);
+
+ // As the integer bits may be all included in result[0], and also maybe
+ // some bits in result[0], and some in result[1]. So we merge succesive bits,
+ // which makes easy coding.
+
+ unsigned b0 = (result[0] << 12) | result[1];
+ unsigned b1 = (result[2] << 12) | result[3];
+ unsigned b2 = (result[4] << 12) | result[5];
+ unsigned b3 = (result[6] << 12);
+
+ unsigned intPart = b0 >> (24-intDigit);
+
+ unsigned fract1 = ((b0 << intDigit) | (b1 >> (24-intDigit))) & 0xffffff;
+ unsigned fract2 = ((b1 << intDigit) | (b2 >> (24-intDigit))) & 0xffffff;
+ unsigned fract3 = ((b2 << intDigit) | (b3 >> (24-intDigit))) & 0xffffff;
+
+ // larger than 0.5? which mean larger than pi/4, we need
+ // transform from [0,pi/2] to [-pi/4, pi/4] through -(1.0-fract)
+ int largerPiBy4 = ((fract1 & 0x800000) != 0);
+ int sign = largerPiBy4 ? 1 : 0;
+ intPart = largerPiBy4 ? (intPart+1) : intPart;
+
+ fract1 = largerPiBy4 ? (fract1 ^ 0x00ffffff) : fract1;
+ fract2 = largerPiBy4 ? (fract2 ^ 0x00ffffff) : fract2;
+ fract3 = largerPiBy4 ? (fract3 ^ 0x00ffffff) : fract3;
+
+ int leadingZero = (fract1 == 0);
+
+ // +1 is for the hidden bit 1 in floating-point format
+ int exponent = leadingZero ? -(24+1) : -(0+1);
+
+ fract1 = leadingZero ? fract2 : fract1;
+ fract2 = leadingZero ? fract3 : fract2;
+
+ // fract1 may have leading zeros, add it
+ int shift = clz(fract1)-8;
+ exponent += -shift;
+
+ float pio2 = 0x1.921fb6p+0;
+ unsigned fdigit = ((fract1 << shift) | (fract2 >> (24-shift))) & 0xffffff;
+
+ // we know that denormal number will not appear here
+ ieee.u = (sign << 31) | ((exponent+127) << 23) | (fdigit & 0x7fffff);
+ *y = ieee.f * pio2;
+ return intPart;
+}
+
+int argumentReduceSmall(float x, float * remainder) {
+ union {
+ float f;
+ unsigned u;
+ } ieee;
+
+ float twoByPi = 2.0f/3.14159265f;
+ float piBy2_1h = (float) 0xc90/0x1.0p11,
+ piBy2_1l = (float) 0xfda/0x1.0p23,
+ piBy2_2h = (float) 0xa22/0x1.0p35,
+ piBy2_2l = (float) 0x168/0x1.0p47,
+ piBy2_3h = (float) 0xc23/0x1.0p59,
+ piBy2_3l = (float) 0x4c4/0x1.0p71;
+
+ float y = (float)(int)(twoByPi * x + 0.5f);
+ ieee.f = y;
+ ieee.u = ieee.u & 0xfffff000;
+
+ float yh = ieee.f;
+ float yl = y - yh;
+ float rem = x - yh*piBy2_1h - yh*piBy2_1l - yl*piBy2_1h - yl*piBy2_1l;
+ rem = rem - yh*piBy2_2h - yh*piBy2_2l + yl*piBy2_2h + yl*piBy2_2l;
+ rem = rem - yh*piBy2_3h - yh*piBy2_3l - yl*piBy2_3h - yl*piBy2_3l;
+
+ *remainder = rem;
+ return (int)y;
+}
+
+
+int __ieee754_rem_pio2f(float x, float *y) {
+ if (x < 4000.0f) {
+ return argumentReduceSmall(x, y);
+ } else {
+ return payne_hanek(x, y);
+ }
+}
+
+OVERLOADABLE float __kernel_sinf(float x)
+{
+ /* copied from fdlibm */
+ const float
+ S1 = -1.6666667163e-01, /* 0xbe2aaaab */
+ S2 = 8.3333337680e-03, /* 0x3c088889 */
+ S3 = -1.9841270114e-04, /* 0xb9500d01 */
+ S4 = 2.7557314297e-06; /* 0x3638ef1b */
+ float z,r,v;
+ z = x*x;
+ v = z*x;
+ r = mad(z, mad(z, mad(z, S4, S3), S2), S1);
+
+ return mad(v, r, x);
+}
+
+float __kernel_cosf(float x, float y)
+{
+ /* copied from fdlibm */
+ const float
+ one = 1.0000000000e+00, /* 0x3f800000 */
+ C1 = 4.1666667908e-02, /* 0x3d2aaaab */
+ C2 = -1.3888889225e-03, /* 0xbab60b61 */
+ C3 = 2.4801587642e-05; /* 0x37d00d01 */
+ float a,hz,z,r,qx;
+ int ix;
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/
+ z = x*x;
+ r = z * mad(z, mad(z, C3, C2), C1);
+
+ if(ix < 0x3e99999a) /* if |x| < 0.3 */
+ return one - ((float)0.5*z - (z*r - x*y));
+ else {
+ GEN_OCL_SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
+ hz = (float)0.5*z-qx;
+ a = one-qx;
+ return a - (hz - (z*r-x*y));
+ }
+}
+
+OVERLOADABLE float sin(float x)
+{
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_sin(x);
+
+ const float pio4 = 7.8539812565e-01; /* 0x3f490fda */
+ float y,z=0.0;
+ int n, ix;
+
+ float negative = x < 0.0f? -1.0f : 1.0f;
+ x = fabs(x);
+
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff;
+
+ /* sin(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000) return x-x;
+
+ if(x <= pio4)
+ return negative * __kernel_sinf(x);
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,&y);
+ float s = __kernel_sinf(y);
+ float c = __kernel_cosf(y,0.0f);
+ float ret = (n&1) ? negative*c : negative*s;
+ return (n&3)> 1? -1.0f*ret : ret;
+ }
+}
+
+OVERLOADABLE float cos(float x)
+{
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_cos(x);
+
+ const float pio4 = 7.8539812565e-01; /* 0x3f490fda */
+ float y,z=0.0;
+ int n, ix;
+ x = __gen_ocl_fabs(x);
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+
+ ix &= 0x7fffffff;
+
+ /* cos(Inf or NaN) is NaN */
+ if (ix >= 0x7f800000) return x-x;
+
+ if(x <= pio4)
+ return __kernel_cosf(x, 0.f);
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,&y);
+ n &= 3;
+ float c = __kernel_cosf(y, 0.0f);
+ float s = __kernel_sinf(y);
+ float v = (n&1) ? s : c;
+ /* n&3 return
+ 0 cos(y)
+ 1 -sin(y)
+ 2 -cos(y)
+ 3 sin(y)
+ */
+ int mask = (n>>1) ^ n;
+ float sign = (mask&1) ? -1.0f : 1.0f;
+ return sign * v;
+ }
+}
+
+float __kernel_tanf(float x, float y, int iy)
+{
+ /* copied from fdlibm */
+ float z,r,v,w,s;
+ int ix,hx;
+ const float
+ one = 1.0000000000e+00, /* 0x3f800000 */
+ pio4 = 7.8539812565e-01, /* 0x3f490fda */
+ pio4lo= 3.7748947079e-08; /* 0x33222168 */
+ float T[13];// = {
+ T[0] = 3.3333334327e-01; /* 0x3eaaaaab */
+ T[1] = 1.3333334029e-01; /* 0x3e088889 */
+ T[2] = 5.3968254477e-02; /* 0x3d5d0dd1 */
+ T[3] = 2.1869488060e-02; /* 0x3cb327a4 */
+ T[4] = 8.8632395491e-03; /* 0x3c11371f */
+ T[5] = 3.5920790397e-03; /* 0x3b6b6916 */
+ T[6] = 1.4562094584e-03; /* 0x3abede48 */
+ T[7] = 5.8804126456e-04; /* 0x3a1a26c8 */
+
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff; /* high word of |x| */
+ if(ix<0x31800000) /* x < 2**-28 */
+ {if((int)x==0) { /* generate inexact */
+ if((ix|(iy+1))==0) return one/__gen_ocl_fabs(x);
+ else return (iy==1)? x: -one/x;
+ }
+ }
+ if(ix>=0x3f2ca140) { /* |x|>=0.6744 */
+ if(hx<0) {x = -x; y = -y;}
+ z = pio4-x;
+ w = pio4lo-y;
+ x = z+w; y = 0.0;
+ }
+ z = x*x;
+ w = z*z;
+ /* Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+
+ r = mad(w, mad(w, mad(w, T[7], T[5]), T[3]), T[1]);
+ v = z* mad(w, mad(w, T[6], T[4]), T[2]);
+
+ s = z*x;
+ r = mad(z, mad(s, r + v, y), y);
+ r += T[0]*s;
+ w = x+r;
+ if(ix>=0x3f2ca140) {
+ v = (float)iy;
+ return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
+ }
+ if(iy==1) return w;
+ else
+ return -1.0/(x+r);
+}
+
+OVERLOADABLE float tan(float x)
+{
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_tan(x);
+
+ float y,z=0.0;
+ int n, ix;
+ float negative = x < 0.0f? -1.0f : 1.0f;
+ x = negative * x;
+
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+
+ ix &= 0x7fffffff;
+
+ /* tan(Inf or NaN) is NaN */
+ if (ix>=0x7f800000) return x-x; /* NaN */
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,&y);
+ return negative * __kernel_tanf(y,0.0f,1-((n&1)<<1)); /* 1 -- n even
+ -1 -- n odd */
+ }
+}
+
+OVERLOADABLE float __gen_ocl_internal_cospi(float x) {
+ int ix;
+ if(isinf(x) || isnan(x)) { return NAN; }
+ if(x < 0.0f) { x = -x; }
+ GEN_OCL_GET_FLOAT_WORD(ix, x);
+ if(x> 0x1.0p24) return 1.0f;
+ float m = __gen_ocl_internal_floor(x);
+ ix = (int)m;
+ m = x-m;
+ if((ix&0x1) != 0) m+=1.0f;
+ ix = __gen_ocl_internal_floor(m*4.0f);
+
+ switch(ix) {
+ case 0:
+ return __kernel_cosf(m*M_PI_F, 0.0f);
+ case 1:
+ case 2:
+ return __kernel_sinf((0.5f-m)*M_PI_F);
+ case 3:
+ case 4:
+ return -__kernel_cosf((m-1.0f)*M_PI_F, 0.0f);
+ case 5:
+ case 6:
+ return __kernel_sinf((m-1.5f)*M_PI_F);
+ default:
+ return __kernel_cosf((2.0f-m)*M_PI_F, 0.0f);
+ }
+}
+
+OVERLOADABLE float __gen_ocl_internal_sinpi(float x) {
+ float sign = 1.0f;
+ int ix;
+ if(isinf(x)) return NAN;
+ if(x < 0.0f) { x = -x; sign = -1.0f; }
+ GEN_OCL_GET_FLOAT_WORD(ix, x);
+ if(x> 0x1.0p24) return 0.0f;
+ float m = __gen_ocl_internal_floor(x);
+ ix = (int)m;
+ m = x-m;
+ if((ix&0x1) != 0) m+=1.0f;
+ ix = __gen_ocl_internal_floor(m*4.0f);
+
+ switch(ix) {
+ case 0:
+ return sign*__kernel_sinf(m*M_PI_F);
+ case 1:
+ case 2:
+ return sign*__kernel_cosf((m-0.5f)*M_PI_F, 0.0f);
+ case 3:
+ case 4:
+ return -sign*__kernel_sinf((m-1.0f)*M_PI_F);
+ case 5:
+ case 6:
+ return -sign*__kernel_cosf((m-1.5f)*M_PI_F, 0.0f);
+ default:
+ return -sign*__kernel_sinf((2.0f-m)*M_PI_F);
+ }
+
+}
+
+OVERLOADABLE float lgamma(float x) {
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+ const float
+ zero= 0.,
+ one = 1.0000000000e+00,
+ pi = 3.1415927410e+00,
+ a0 = 7.7215664089e-02,
+ a1 = 3.2246702909e-01,
+ a2 = 6.7352302372e-02,
+ a3 = 2.0580807701e-02,
+ a4 = 7.3855509982e-03,
+ a5 = 2.8905137442e-03,
+ a6 = 1.1927076848e-03,
+ a7 = 5.1006977446e-04,
+ a8 = 2.2086278477e-04,
+ a9 = 1.0801156895e-04,
+ a10 = 2.5214456400e-05,
+ a11 = 4.4864096708e-05,
+ tc = 1.4616321325e+00,
+ tf = -1.2148628384e-01,
+ tt = 6.6971006518e-09,
+ t0 = 4.8383611441e-01,
+ t1 = -1.4758771658e-01,
+ t2 = 6.4624942839e-02,
+ t3 = -3.2788541168e-02,
+ t4 = 1.7970675603e-02,
+ t5 = -1.0314224288e-02,
+ t6 = 6.1005386524e-03,
+ t7 = -3.6845202558e-03,
+ t8 = 2.2596477065e-03,
+ t9 = -1.4034647029e-03,
+ t10 = 8.8108185446e-04,
+ t11 = -5.3859531181e-04,
+ t12 = 3.1563205994e-04,
+ t13 = -3.1275415677e-04,
+ t14 = 3.3552918467e-04,
+ u0 = -7.7215664089e-02,
+ u1 = 6.3282704353e-01,
+ u2 = 1.4549225569e+00,
+ u3 = 9.7771751881e-01,
+ u4 = 2.2896373272e-01,
+ u5 = 1.3381091878e-02,
+ v1 = 2.4559779167e+00,
+ v2 = 2.1284897327e+00,
+ v3 = 7.6928514242e-01,
+ v4 = 1.0422264785e-01,
+ v5 = 3.2170924824e-03,
+ s0 = -7.7215664089e-02,
+ s1 = 2.1498242021e-01,
+ s2 = 3.2577878237e-01,
+ s3 = 1.4635047317e-01,
+ s4 = 2.6642270386e-02,
+ s5 = 1.8402845599e-03,
+ s6 = 3.1947532989e-05,
+ r1 = 1.3920053244e+00,
+ r2 = 7.2193557024e-01,
+ r3 = 1.7193385959e-01,
+ r4 = 1.8645919859e-02,
+ r5 = 7.7794247773e-04,
+ r6 = 7.3266842264e-06,
+ w0 = 4.1893854737e-01,
+ w1 = 8.3333335817e-02,
+ w2 = -2.7777778450e-03,
+ w3 = 7.9365057172e-04,
+ w4 = -5.9518753551e-04,
+ w5 = 8.3633989561e-04,
+ w6 = -1.6309292987e-03;
+ float t, y, z, nadj, p, p1, p2, p3, q, r, w;
+ int i, hx, ix;
+ nadj = 0;
+ hx = *(int *)&x;
+ ix = hx & 0x7fffffff;
+ if (ix >= 0x7f800000)
+ return x * x;
+ if (ix == 0)
+ return ((x + one) / zero);
+ if (ix < 0x1c800000) {
+ if (hx < 0) {
+ return -native_log(-x);
+ } else
+ return -native_log(x);
+ }
+ if (hx < 0) {
+ if (ix >= 0x4b000000)
+ return ((-x) / zero);
+ t = __gen_ocl_internal_sinpi(x);
+ if (t == zero)
+ return ((-x) / zero);
+ nadj = native_log(pi / __gen_ocl_fabs(t * x));
+ x = -x;
+ }
+ if (ix == 0x3f800000 || ix == 0x40000000)
+ r = 0;
+ else if (ix < 0x40000000) {
+ if (ix <= 0x3f666666) {
+ r = -native_log(x);
+ if (ix >= 0x3f3b4a20) {
+ y = one - x;
+ i = 0;
+ } else if (ix >= 0x3e6d3308) {
+ y = x - (tc - one);
+ i = 1;
+ } else {
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = zero;
+ if (ix >= 0x3fdda618) {
+ y = (float) 2.0 - x;
+ i = 0;
+ }
+ else if (ix >= 0x3F9da620) {
+ y = x - tc;
+ i = 1;
+ }
+ else {
+ y = x - one;
+ i = 2;
+ }
+ }
+ switch (i) {
+ case 0:
+ z = y * y;
+ p1 = mad(z, mad(z, mad(z, mad(z, mad(z, a10, a8), a6), a4), a2), a0);
+ p2 = z * mad(z, mad(z, mad(z, mad(z, mad(z, a11, a9), a7), a5), a3), a1);
+ p = mad(y, p1, p2);
+ r += (p - (float) 0.5 * y);
+ break;
+ case 1:
+ z = y * y;
+ w = z * y;
+ p1 = mad(w, mad(w, mad(w, mad(w, t12, t9), t6), t3), t0);
+ p2 = mad(w, mad(w, mad(w, mad(w, t13, t10), t7), t4), t1);
+ p3 = mad(w, mad(w, mad(w, mad(w, t14, t11), t8), t5), t2);
+ p = mad(p1, z, mad(w, mad(y, p3, p2), -tt));
+ r += (tf + p);
+ break;
+ case 2:
+ p1 = y * mad(y, mad(y, mad(y, mad(y, mad(y, u5, u4), u3), u2), u1), u0);
+ p2 = mad(y, mad(y, mad(y, mad(y, mad(y, v5, v4), v3), v2), v1), one);
+ r += (-(float) 0.5 * y + p1 / p2);
+ }
+ } else if (ix < 0x41000000) {
+ i = (int) x;
+ t = zero;
+ y = x - (float) i;
+
+ p =y * mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, s6, s5), s4), s3), s2), s1), s0);
+ q = mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, r6, r5), r4), r3), r2), r1), one);
+ r = .5f * y + p / q;
+ z = one;
+
+ switch (i) {
+ case 7:
+ z *= (y + 6.0f);
+ case 6:
+ z *= (y + 5.0f);
+ case 5:
+ z *= (y + 4.0f);
+ case 4:
+ z *= (y + 3.0f);
+ case 3:
+ z *= (y + 2.0f);
+ r += native_log(z);
+ break;
+ }
+
+ } else if (ix < 0x5c800000) {
+ t = native_log(x);
+ z = one / x;
+ y = z * z;
+ w = mad(z, mad(y, mad(y, mad(y, mad(y, mad(y, w6, w5), w4), w3), w2), w1), w0);
+ r = (x - .5f) * (t - one) + w;
+ } else
+ r = x * (native_log(x) - one);
+ if (hx < 0)
+ r = nadj - r;
+ return r;
+}
+
+OVERLOADABLE float log1p(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_log1p(x);
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+ const float
+ ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+ two25 = 3.355443200e+07, /* 0x4c000000 */
+ Lp1 = 6.6666668653e-01, /* 3F2AAAAB */
+ Lp2 = 4.0000000596e-01, /* 3ECCCCCD */
+ Lp3 = 2.8571429849e-01, /* 3E924925 */
+ Lp4 = 2.2222198546e-01; /* 3E638E29 */
+ const float zero = 0.0;
+ float hfsq,f,c,s,z,R,u;
+ int k,hx,hu,ax;
+ union {float f; unsigned i;} un;
+ un.f = x; hx = un.i;
+ ax = hx&0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3ed413d7) { /* x < 0.41422 */
+ if(ax>=0x3f800000) { /* x <= -1.0 */
+ if(x==(float)-1.0) return -two25/zero; /* log1p(-1)=+inf */
+ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ }
+ if(ax<0x31000000) { /* |x| < 2**-29 */
+ if(two25+x>zero /* raise inexact */
+ &&ax<0x24800000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x*x*(float)0.5;
+ }
+ if(hx>0||hx<=((int)0xbe95f61f)) {
+ k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
+ }
+ if (hx >= 0x7f800000) return x+x;
+ if(k!=0) {
+ if(hx<0x5a000000) {
+ u = (float)1.0+x;
+
+ un.f = u; hu = un.i;
+ k = (hu>>23)-127;
+ /* correction term */
+ c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
+ c /= u;
+ } else {
+ u = x;
+ un.f = u; hu = un.i;
+ k = (hu>>23)-127;
+ c = 0;
+ }
+ hu &= 0x007fffff;
+ if(hu<0x3504f7) {
+ un.i = hu|0x3f800000; u = un.f;/* normalize u */
+ } else {
+ k += 1;
+ un.i = hu|0x3f000000; u = un.f; /* normalize u/2 */
+ hu = (0x00800000-hu)>>2;
+ }
+ f = u-(float)1.0;
+ }
+ hfsq=(float)0.5*f*f;
+ if(hu==0)
+ { /* |f| < 2**-20 */
+ if(f==zero)
+ {
+ if(k==0) return zero;
+ else {c = mad(k , ln2_lo, c); return mad(k, ln2_hi, c);}
+ }
+ R = mad(hfsq, 1.0f, -0.66666666666666666f * f);
+ if(k==0) return f-R; else
+ return k * ln2_hi - (R - mad(k, ln2_lo, c) - f);
+ }
+ s = f/((float)2.0+f);
+ z = s*s;
+ R = z * mad(z, mad(z, mad(z, Lp4, Lp3), Lp2), Lp1);
+ if(k==0)
+ return f + mad(hfsq + R, s, -hfsq);
+ else
+ return k*ln2_hi-( (hfsq - mad(s, hfsq + R, mad(k, ln2_lo, c))) - f);
+}
+
+OVERLOADABLE float logb(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_logb(x);
+
+ union {float f; unsigned i;} u;
+ u.f = x;
+ int e = ((u.i & 0x7f800000) >> 23);
+ float r1 = e-127;
+ float r2 = -INFINITY;
+ float r3 = x*x;
+ /* sub normal or +/-0 */
+ float r = e == 0 ? r2 : r1;
+ /* inf & nan */
+ return e == 0xff ? r3 : r;
+}
+
+OVERLOADABLE int ilogb(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_ilogb(x);
+
+ union { int i; float f; } u;
+ if (isnan(x))
+ return FP_ILOGBNAN;
+ if (isinf(x))
+ return 0x7FFFFFFF;
+ u.f = x;
+ u.i &= 0x7fffffff;
+ if (u.i == 0)
+ return FP_ILOGB0;
+ if (u.i >= 0x800000)
+ return (u.i >> 23) - 127;
+ int r = -126;
+ int a = u.i & 0x7FFFFF;
+ while(a < 0x800000) {
+ a <<= 1;
+ r --;
+ }
+ return r;
+}
+OVERLOADABLE float nan(uint code) {
+ return NAN;
+}
+OVERLOADABLE float __gen_ocl_internal_tanpi(float x) {
+ float sign = 1.0f;
+ int ix;
+ if(isinf(x)) return NAN;
+ if(x < 0.0f) { x = -x; sign = -1.0f; }
+ GEN_OCL_GET_FLOAT_WORD(ix, x);
+ if(x> 0x1.0p24) return 0.0f;
+ float m = __gen_ocl_internal_floor(x);
+ ix = (int)m;
+ m = x-m;
+ int n = __gen_ocl_internal_floor(m*4.0f);
+ if(m == 0.5f) {
+ return (ix&0x1) == 0 ? sign*INFINITY : sign*-INFINITY;
+ }
+ if(m == 0.0f) {
+ return (ix&0x1) == 0 ? 0.0f : -0.0f;
+ }
+
+ switch(n) {
+ case 0:
+ return sign * __kernel_tanf(m*M_PI_F, 0.0f, 1);
+ case 1:
+ return sign * 1.0f/__kernel_tanf((0.5f-m)*M_PI_F, 0.0f, 1);
+ case 2:
+ return sign * 1.0f/__kernel_tanf((0.5f-m)*M_PI_F, 0.0f, 1);
+ default:
+ return sign * -1.0f*__kernel_tanf((1.0f-m)*M_PI_F, 0.0f, 1);
+ }
+}
+OVERLOADABLE float __gen_ocl_internal_cbrt(float x) {
+ /* copied from fdlibm */
+ const unsigned
+ B1 = 709958130, /* B1 = (84+2/3-0.03306235651)*2**23 */
+ B2 = 642849266; /* B2 = (76+2/3-0.03306235651)*2**23 */
+
+ const float
+ C = 5.4285717010e-01, /* 19/35 = 0x3f0af8b0 */
+ D = -7.0530611277e-01, /* -864/1225 = 0xbf348ef1 */
+ E = 1.4142856598e+00, /* 99/70 = 0x3fb50750 */
+ F = 1.6071428061e+00, /* 45/28 = 0x3fcdb6db */
+ G = 3.5714286566e-01; /* 5/14 = 0x3eb6db6e */
+
+ float r,s,t, w;
+ int hx;
+ uint sign;
+ uint high;
+
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ sign=hx&0x80000000; /* sign= sign(x) */
+ hx ^=sign;
+ if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
+ if(hx==0)
+ return(x); /* cbrt(0) is itself */
+
+ GEN_OCL_SET_FLOAT_WORD(x,hx); /* x <- |x| */
+ /* rough cbrt to 5 bits */
+ if(hx<0x00800000) /* subnormal number */
+ {
+ //SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
+ //t*=x; GET_FLOAT_WORD(high,t); SET_FLOAT_WORD(t,high/3+B2);
+ t = (sign = 0) ? 0.0f : -0.0f;
+ return t;
+ }
+ else
+ GEN_OCL_SET_FLOAT_WORD(t,hx/3+B1);
+
+
+ /* new cbrt to 23 bits */
+ r=t*t/x;
+ s=mad(r, t, C);
+ t*=G+F/(s+E+D/s);
+ /* one step newton iteration to 53 bits with error less than 0.667 ulps */
+ s=t*t; /* t*t is exact */
+ r=x/s;
+ w=t+t;
+ r=(r-t)/(w+r); /* r-s is exact */
+ t=mad(t, r, t);
+
+ /* retore the sign bit */
+ GEN_OCL_GET_FLOAT_WORD(high,t);
+ GEN_OCL_SET_FLOAT_WORD(t,high|sign);
+ return(t);
+}
+
+INLINE float __gen_ocl_asin_util(float x) {
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+ float
+ pS0 = 1.66666666666666657415e-01,
+ pS1 = -3.25565818622400915405e-01,
+ pS2 = 2.01212532134862925881e-01,
+ pS3 = -4.00555345006794114027e-02,
+ pS4 = 7.91534994289814532176e-04,
+ qS1 = -2.40339491173441421878e+00,
+ qS2 = 2.02094576023350569471e+00,
+ qS3 = -6.88283971605453293030e-01,
+ qS4 = 7.70381505559019352791e-02;
+
+ float t = x*x;
+ float p = t * mad(t, mad(t, mad(t, mad(t, pS4, pS3), pS2), pS1), pS0);
+ float q = mad(t, mad(t, mad(t, mad(t, qS4, qS3), qS2), qS1), 1.0f);
+ float w = p / q;
+ return mad(x, w, x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_asin(float x) {
+ uint ix;
+ union { uint i; float f; } u;
+ u.f = x;
+ ix = u.i & 0x7fffffff;
+ if(ix == 0x3f800000) {
+ return x * M_PI_2_F; /* asin(|1|)=+-pi/2 with inexact */
+ }
+ if(ix > 0x3f800000) { /* |x|>= 1 */
+ return NAN; /* asin(|x|>1) is NaN */
+ }
+
+ if(ix < 0x32000000) { /* if |x| < 2**-27 */
+ if(HUGE_VALF + x > FLT_ONE) return x; /* return x with inexact if x!=0*/
+ }
+
+ if(x < -0.5) {
+ return 2 * __gen_ocl_asin_util(native_sqrt((1+x) / 2)) - M_PI_2_F;
+ } else if(x > 0.5) {
+ return M_PI_2_F - 2 * __gen_ocl_asin_util(native_sqrt((1-x) / 2));
+ } else {
+ return __gen_ocl_asin_util(x);
+ }
+}
+OVERLOADABLE float __gen_ocl_internal_asinpi(float x) {
+ return __gen_ocl_internal_asin(x) / M_PI_F;
+}
+OVERLOADABLE float __gen_ocl_internal_acos(float x) {
+ if(x > 0.5)
+ return 2 * __gen_ocl_asin_util(native_sqrt((1-x)/2));
+ else
+ return M_PI_2_F - __gen_ocl_internal_asin(x);
+}
+OVERLOADABLE float __gen_ocl_internal_acospi(float x) {
+ return __gen_ocl_internal_acos(x) / M_PI_F;
+}
+__constant float atanhi[4] = {
+ 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+ 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+ 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+ 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+};
+__constant float atanlo[4] = {
+ 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+ 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+ 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+ 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+};
+
+OVERLOADABLE float __gen_ocl_internal_atan(float x) {
+ /* copied from fdlibm */
+ float aT[11];
+ aT[0] = 3.3333334327e-01; /* 0x3eaaaaaa */
+ aT[1] = -2.0000000298e-01; /* 0xbe4ccccd */
+ aT[2] = 1.4285714924e-01; /* 0x3e124925 */
+ aT[3] = -1.1111110449e-01; /* 0xbde38e38 */
+ aT[4] = 9.0908870101e-02; /* 0x3dba2e6e */
+ aT[5] = -7.6918758452e-02; /* 0xbd9d8795 */
+ aT[6] = 6.6610731184e-02; /* 0x3d886b35 */
+ const float one = 1.0, huge = 1.0e30;
+
+ float w,s1,s2,z;
+ int ix,hx,id;
+
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x50800000) { /* if |x| >= 2^34 */
+ if(ix>0x7f800000)
+ return x+x; /* NaN */
+ if(hx>0) return atanhi[3]+atanlo[3];
+ else return -atanhi[3]-atanlo[3];
+ } if (ix < 0x3ee00000) { /* |x| < 0.4375 */
+ if (ix < 0x31000000) { /* |x| < 2^-29 */
+ if(huge+x>one) return x; /* raise inexact */
+ }
+ id = -1;
+ } else {
+ x = __gen_ocl_fabs(x);
+ if (ix < 0x3f980000) { /* |x| < 1.1875 */
+ if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */
+ id = 0; x = ((float)2.0*x-one)/((float)2.0+x);
+ } else { /* 11/16<=|x|< 19/16 */
+ id = 1; x = (x-one)/(x+one);
+ }
+ } else {
+ if (ix < 0x401c0000) { /* |x| < 2.4375 */
+ id = 2; x = (x-(float)1.5)/(one+(float)1.5*x);
+ } else { /* 2.4375 <= |x| < 2^66 */
+ id = 3; x = -(float)1.0/x;
+ }
+ }}
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ s1 = z * mad(w, mad(w, mad(w, aT[6], aT[4]), aT[2]), aT[0]);
+ s2 = w * mad(w, mad(w, aT[5], aT[3]), aT[1]);
+ if (id<0) return x - x*(s1+s2);
+ else {
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return (hx<0)? -z:z;
+ }
+
+}
+OVERLOADABLE float __gen_ocl_internal_atanpi(float x) {
+ return __gen_ocl_internal_atan(x) / M_PI_F;
+}
+
+// XXX work-around PTX profile
+OVERLOADABLE float sqrt(float x) { return native_sqrt(x); }
+OVERLOADABLE float rsqrt(float x) { return native_rsqrt(x); }
+
+/*
+ * Copyright (c) 2014 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+OVERLOADABLE float __gen_ocl_internal_atan2(float y, float x) {
+ const float pi = 0x1.921fb6p+1f;
+ const float piby2 = 0x1.921fb6p+0f;
+ const float piby4 = 0x1.921fb6p-1f;
+ const float threepiby4 = 0x1.2d97c8p+1f;
+
+ float ax = fabs(x);
+ float ay = fabs(y);
+ float v = min(ax, ay);
+ float u = max(ax, ay);
+
+ // Scale since u could be large, as in "regular" divide
+ float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
+ float vbyu = s * v/ (s*u);
+
+ float vbyu2 = vbyu * vbyu;
+
+ float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
+ float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
+
+ // Octant 0 result
+ float a = mad(p, 1.0f/q, vbyu);
+
+ // Fix up 3 other octants
+ float at = piby2 - a;
+ a = ay > ax ? at : a;
+ at = pi - a;
+ a = x < 0.0F ? at : a;
+
+ // y == 0 => 0 for x >= 0, pi for x < 0
+ int hx = as_int(x);
+ at = (hx < 0) ? pi : 0.0f;
+ a = y == 0.0f ? at : a;
+
+ at = x > 0.0f ? piby4 : threepiby4;
+ a = ax == INFINITY & ay == INFINITY ? at : a;
+
+ // x or y is NaN
+ a = isnan(x) | isnan(y) ? NAN : a;
+
+ // Fixup sign and return
+ return copysign(a, y);
+}
+
+OVERLOADABLE float __gen_ocl_internal_atan2pi(float y, float x) {
+ return __gen_ocl_internal_atan2(y, x) / M_PI_F;
+}
+OVERLOADABLE float __gen_ocl_internal_fabs(float x) { return __gen_ocl_fabs(x); }
+OVERLOADABLE float __gen_ocl_internal_trunc(float x) { return __gen_ocl_rndz(x); }
+OVERLOADABLE float __gen_ocl_internal_round(float x) {
+ float y = __gen_ocl_rndz(x);
+ if (__gen_ocl_fabs(x - y) >= 0.5f)
+ y += __gen_ocl_internal_copysign(1.f, x);
+ return y;
+}
+OVERLOADABLE float __gen_ocl_internal_ceil(float x) { return __gen_ocl_rndu(x); }
+OVERLOADABLE float __gen_ocl_internal_rint(float x) {
+ return __gen_ocl_rnde(x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_exp(float x) {
+ float o_threshold = 8.8721679688e+01, /* 0x42b17180 */
+ u_threshold = -1.0397208405e+02, /* 0xc2cff1b5 */
+ twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
+ ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ one = 1.0,
+ huge = 1.0e+30,
+ P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+ P2 = -2.7777778450e-03; /* 0xbb360b61 */
+ float y,hi=0.0,lo=0.0,c,t;
+ int k=0,xsb;
+ unsigned hx;
+ float ln2HI_0 = 6.9313812256e-01; /* 0x3f317180 */
+ float ln2HI_1 = -6.9313812256e-01; /* 0xbf317180 */
+ float ln2LO_0 = 9.0580006145e-06; /* 0x3717f7d1 */
+ float ln2LO_1 = -9.0580006145e-06; /* 0xb717f7d1 */
+ float half_0 = 0.5;
+ float half_1 = -0.5;
+
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ xsb = (hx>>31)&1; /* sign bit of x */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out non-finite argument */
+ if(hx >= 0x42b17218) { /* if |x|>=88.721... */
+ if(hx>0x7f800000)
+ return x+x; /* NaN */
+ if(hx==0x7f800000)
+ return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
+ if(x > o_threshold) return huge*huge; /* overflow */
+ if(x < u_threshold) return twom100*twom100; /* underflow */
+ }
+ /* argument reduction */
+ if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
+ hi = x-(xsb ==1 ? ln2HI_1 : ln2HI_0); lo= xsb == 1? ln2LO_1 : ln2LO_0; k = 1-xsb-xsb;
+ } else {
+ float tmp = xsb == 1 ? half_1 : half_0;
+ k = ivln2*x+tmp;
+ t = k;
+ hi = x - t*ln2HI_0; /* t*ln2HI is exact here */
+ lo = t*ln2LO_0;
+ }
+ x = hi - lo;
+ }
+ else if(hx < 0x31800000) { /* when |x|<2**-28 */
+ if(huge+x>one) return one+x;/* trigger inexact */
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ t = x*x;
+ c = x - t*(P1+t*P2);
+ if(k==0)
+ return one-((x*c)/(c-(float)2.0)-x);
+ else
+ y = one-((lo-(x*c)/((float)2.0-c))-hi);
+ if(k >= -125) {
+ unsigned hy;
+ GEN_OCL_GET_FLOAT_WORD(hy,y);
+ GEN_OCL_SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
+ return y;
+ } else {
+ unsigned hy;
+ GEN_OCL_GET_FLOAT_WORD(hy,y);
+ GEN_OCL_SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
+ return y*twom100;
+ }
+}
+
+/* erf,erfc from glibc s_erff.c -- float version of s_erf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+INLINE_OVERLOADABLE float __gen_ocl_internal_erf(float x) {
+/*...*/
+const float
+tiny = 1.0e-30,
+half_val= 5.0000000000e-01, /* 0x3F000000 */
+one = 1.0000000000e+00, /* 0x3F800000 */
+two = 2.0000000000e+00, /* 0x40000000 */
+ /* c = (subfloat)0.84506291151 */
+erx = 8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx = 1.2837916613e-01, /* 0x3e0375d4 */
+efx8= 1.0270333290e+00, /* 0x3f8375d4 */
+pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
+pp1 = -3.2504209876e-01, /* 0xbea66beb */
+pp2 = -2.8481749818e-02, /* 0xbce9528f */
+pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
+qq2 = 6.5022252500e-02, /* 0x3d852a63 */
+qq3 = 5.0813062117e-03, /* 0x3ba68116 */
+qq4 = 1.3249473704e-04, /* 0x390aee49 */
+qq5 = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1 = 4.1485610604e-01, /* 0x3ed46805 */
+pa2 = -3.7220788002e-01, /* 0xbebe9208 */
+pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
+pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
+pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
+qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
+qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
+qa4 = 1.2617121637e-01, /* 0x3e013307 */
+qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
+qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
+ /*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */ra0 = -9.8649440333e-03, /* 0xbc21a093 */
+ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2 = -1.0558626175e+01, /* 0xc128f022 */
+ra3 = -6.2375331879e+01, /* 0xc2798057 */
+ra4 = -1.6239666748e+02, /* 0xc322658c */
+ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6 = -8.1287437439e+01, /* 0xc2a2932b */
+ra7 = -9.8143291473e+00, /* 0xc11d077e */
+sa1 = 1.9651271820e+01, /* 0x419d35ce */
+sa2 = 1.3765776062e+02, /* 0x4309a863 */
+sa3 = 4.3456588745e+02, /* 0x43d9486f */
+sa4 = 6.4538726807e+02, /* 0x442158c9 */
+sa5 = 4.2900814819e+02, /* 0x43d6810b */
+sa6 = 1.0863500214e+02, /* 0x42d9451f */
+sa7 = 6.5702495575e+00, /* 0x40d23f7c */
+sa8 = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.8649431020e-03, /* 0xbc21a092 */
+rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2 = -1.7757955551e+01, /* 0xc18e104b */
+rb3 = -1.6063638306e+02, /* 0xc320a2ea */
+rb4 = -6.3756646729e+02, /* 0xc41f6441 */
+rb5 = -1.0250950928e+03, /* 0xc480230b */
+rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1 = 3.0338060379e+01, /* 0x41f2b459 */
+sb2 = 3.2579251099e+02, /* 0x43a2e571 */
+sb3 = 1.5367296143e+03, /* 0x44c01759 */
+sb4 = 3.1998581543e+03, /* 0x4547fdbb */
+sb5 = 2.5530502930e+03, /* 0x451f90ce */
+sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
+sb7 = -2.2440952301e+01; /* 0xc1b38712 */
+
+ int hx,ix,i;
+ float R,S,P,Q,s,y,z,r;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) { /* erf(nan)=nan */
+ i = ((unsigned int)hx>>31)<<1;
+ return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
+ }
+
+ if(ix < 0x3f580000) { /* |x|<0.84375 */
+ if(ix < 0x31800000) { /* |x|<2**-28 */
+ if (ix < 0x04000000)
+ /*avoid underflow */
+ return (float)0.125*((float)8.0*x+efx8*x);
+ return x + efx*x;
+ }
+ z = x*x;
+ r = mad(z, mad(z, mad(z, mad(z, pp4, pp3), pp2), pp1), pp0);
+ s = mad(z, mad(z, mad(z, mad(z, mad(z, qq5,qq4), qq3), qq2), qq1), one);
+ y = r / s;
+ return mad(x, y, x);
+ }
+ if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
+ s = __gen_ocl_internal_fabs(x)-one;
+ P = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, pa6, pa5), pa4), pa3), pa2), pa1), pa0);
+ Q = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, qa6, qa5), qa4), qa3), qa2), qa1), one);
+ if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+ }
+ if (ix >= 0x40c00000) { /* inf>|x|>=6 */
+ if(hx>=0) return one-tiny; else return tiny-one;
+ }
+ x = __gen_ocl_internal_fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
+ R = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ ra7, ra6), ra5), ra4), ra3), ra2), ra1), ra0);
+ S = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ sa8, sa7), sa6), sa5), sa4), sa3), sa2), sa1), one);
+ } else { /* |x| >= 1/0.35 */
+ R = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ rb6, rb5), rb4), rb3), rb2), rb1), rb0);
+ S = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ sb7, sb6), sb5), sb4), sb3), sb2), sb1), one);
+ }
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ GEN_OCL_SET_FLOAT_WORD(z,ix&0xfffff000);
+ r = __gen_ocl_internal_exp(-z*z-(float)0.5625)*__gen_ocl_internal_exp((z-x)*(z+x)+R/S);
+ if(hx>=0) return one-r/x; else return r/x-one;
+}
+INLINE_OVERLOADABLE float __gen_ocl_internal_erfc(float x) {
+/*...*/
+const float
+tiny = 1.0e-30,
+half_val= 5.0000000000e-01, /* 0x3F000000 */
+one = 1.0000000000e+00, /* 0x3F800000 */
+two = 2.0000000000e+00, /* 0x40000000 */
+ /* c = (subfloat)0.84506291151 */
+erx = 8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx = 1.2837916613e-01, /* 0x3e0375d4 */
+efx8= 1.0270333290e+00, /* 0x3f8375d4 */
+pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
+pp1 = -3.2504209876e-01, /* 0xbea66beb */
+pp2 = -2.8481749818e-02, /* 0xbce9528f */
+pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
+qq2 = 6.5022252500e-02, /* 0x3d852a63 */
+qq3 = 5.0813062117e-03, /* 0x3ba68116 */
+qq4 = 1.3249473704e-04, /* 0x390aee49 */
+qq5 = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1 = 4.1485610604e-01, /* 0x3ed46805 */
+pa2 = -3.7220788002e-01, /* 0xbebe9208 */
+pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
+pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
+pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
+qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
+qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
+qa4 = 1.2617121637e-01, /* 0x3e013307 */
+qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
+qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
+ /*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */ra0 = -9.8649440333e-03, /* 0xbc21a093 */
+ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2 = -1.0558626175e+01, /* 0xc128f022 */
+ra3 = -6.2375331879e+01, /* 0xc2798057 */
+ra4 = -1.6239666748e+02, /* 0xc322658c */
+ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6 = -8.1287437439e+01, /* 0xc2a2932b */
+ra7 = -9.8143291473e+00, /* 0xc11d077e */
+sa1 = 1.9651271820e+01, /* 0x419d35ce */
+sa2 = 1.3765776062e+02, /* 0x4309a863 */
+sa3 = 4.3456588745e+02, /* 0x43d9486f */
+sa4 = 6.4538726807e+02, /* 0x442158c9 */
+sa5 = 4.2900814819e+02, /* 0x43d6810b */
+sa6 = 1.0863500214e+02, /* 0x42d9451f */
+sa7 = 6.5702495575e+00, /* 0x40d23f7c */
+sa8 = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.8649431020e-03, /* 0xbc21a092 */
+rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2 = -1.7757955551e+01, /* 0xc18e104b */
+rb3 = -1.6063638306e+02, /* 0xc320a2ea */
+rb4 = -6.3756646729e+02, /* 0xc41f6441 */
+rb5 = -1.0250950928e+03, /* 0xc480230b */
+rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1 = 3.0338060379e+01, /* 0x41f2b459 */
+sb2 = 3.2579251099e+02, /* 0x43a2e571 */
+sb3 = 1.5367296143e+03, /* 0x44c01759 */
+sb4 = 3.1998581543e+03, /* 0x4547fdbb */
+sb5 = 2.5530502930e+03, /* 0x451f90ce */
+sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
+sb7 = -2.2440952301e+01; /* 0xc1b38712 */
+ int hx,ix;
+ float R,S,P,Q,s,y,z,r;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) { /* erfc(nan)=nan */
+ /* erfc(+-inf)=0,2 */
+ return (float)(((unsigned int)hx>>31)<<1)+one/x;
+ }
+
+ if(ix < 0x3f580000) { /* |x|<0.84375 */
+ if(ix < 0x23800000) /* |x|<2**-56 */
+ return one-x;
+ z = x*x;
+ r = mad(z, mad(z, mad(z, mad(z, pp4, pp3), pp2), pp1), pp0);
+ s = mad(z, mad(z, mad(z, mad(z, mad(z, qq5, qq4), qq3), qq2), qq1), one);
+ y = r/s;
+ if(hx < 0x3e800000) { /* x<1/4 */
+ return one-(x+x*y);
+ } else {
+ r = x*y;
+ r += (x-half_val);
+ return half_val - r ;
+ }
+ }
+ if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
+ s = __gen_ocl_internal_fabs(x)-one;
+ P = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, pa6, pa5), pa4), pa3), pa2), pa1), pa0);
+ Q = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, qa6, qa5), qa4), qa3), qa2), qa1), one);
+ if(hx>=0) {
+ z = one-erx; return z - P/Q;
+ } else {
+ z = erx+P/Q; return one+z;
+ }
+ }
+ if (ix < 0x41e00000) { /* |x|<28 */
+ x = __gen_ocl_internal_fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
+ R = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ ra7, ra6), ra5), ra4), ra3), ra2), ra1), ra0);
+ S = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ sa8, sa7), sa6), sa5), sa4), sa3), sa2), sa1), one);
+ } else { /* |x| >= 1/.35 ~ 2.857143 */
+ if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
+ R = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ rb6, rb5), rb4), rb3), rb2), rb1), rb0);
+ S = mad(s, mad(s, mad(s, mad(s, mad(s, mad(s, mad(s,
+ sb7, sb6), sb5), sb4), sb3), sb2), sb1), one);
+ }
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ GEN_OCL_SET_FLOAT_WORD(z,ix&0xffffe000);
+ r = __gen_ocl_internal_exp(-z*z-(float)0.5625)*
+ __gen_ocl_internal_exp((z-x)*(z+x)+R/S);
+ if(hx>0) {
+ float ret = r/x;
+ return ret;
+ } else
+ return two-r/x;
+ } else {
+ if(hx>0) {
+ return tiny*tiny;
+ } else
+ return two-tiny;
+ }
+}
+
+OVERLOADABLE float __gen_ocl_internal_fmod (float x, float y) {
+ //return x-y*__gen_ocl_rndz(x/y);
+ float one = 1.0;
+ float Zero[2];
+ int n,hx,hy,hz,ix,iy,sx,i;
+ Zero[0] = 0.0;
+ Zero[1] = -0.0;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ GEN_OCL_GET_FLOAT_WORD(hy,y);
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+ /* purge off exception values */
+ if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
+ (hy>0x7f800000)) /* or y is NaN */
+ return (x*y)/(x*y);
+ if(hx<hy) return x; /* |x|<|y| return x */
+ if(hx==hy)
+ return Zero[(unsigned)sx>>31]; /* |x|=|y| return x*0*/
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00800000) { /* subnormal x */
+ for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
+ } else ix = (hx>>23)-127;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00800000) { /* subnormal y */
+ for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
+ } else iy = (hy>>23)-127;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -126)
+ hx = 0x00800000|(0x007fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -126-ix;
+ hx = hx<<n;
+ }
+ if(iy >= -126)
+ hy = 0x00800000|(0x007fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -126-iy;
+ hy = hy<<n;
+ }
+ /* fix point fmod */
+ n = ix - iy;
+ while(n--) {
+ hz=hx-hy;
+ if(hz<0){hx = hx+hx;}
+ else {
+ if(hz==0) /* return sign(x)*0 */
+ return Zero[(unsigned)sx>>31];
+ hx = hz+hz;
+ }
+ }
+ hz=hx-hy;
+ if(hz>=0) {hx=hz;}
+
+ /* convert back to floating value and restore the sign */
+ if(hx==0) /* return sign(x)*0 */
+ return Zero[(unsigned)sx>>31];
+ while(hx<0x00800000) { /* normalize x */
+ hx = hx+hx;
+ iy -= 1;
+ }
+ if(iy>= -126) { /* normalize output */
+ hx = ((hx-0x00800000)|((iy+127)<<23));
+ GEN_OCL_SET_FLOAT_WORD(x,hx|sx);
+ } else { /* subnormal output */
+ n = -126 - iy;
+ hx >>= n;
+ GEN_OCL_SET_FLOAT_WORD(x,hx|sx);
+ x *= one; /* create necessary signal */
+ }
+ return x; /* exact output */
+}
+
+OVERLOADABLE float __gen_ocl_internal_expm1(float x) {
+ //return __gen_ocl_pow(M_E_F, x) - 1;
+ float Q1 = -3.3333335072e-02, /* 0xbd088889 */
+ ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+ Q2 = 1.5873016091e-03, /* 0x3ad00d01 */
+ huge = 1.0e30,
+ tiny = 1.0e-30,
+ ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ one = 1.0,
+ o_threshold= 8.8721679688e+01; /* 0x42b17180 */
+ float y,hi,lo,c,t,e,hxs,hfx,r1;
+ int k,xsb;
+ int hx;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ xsb = hx&0x80000000;
+ /* sign bit of x */
+ //if(xsb==0)
+ //y=x;
+ //else
+ //y= -x; /* y = |x| */
+ y = __gen_ocl_internal_fabs(x);
+ hx &= 0x7fffffff; /* high word of |x| */
+ /* filter out huge and non-finite argument */
+ if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */
+ if(hx >= 0x42b17218) { /* if |x|>=88.721... */
+ if(hx>0x7f800000)
+ return x+x; /* NaN */
+ if(hx==0x7f800000)
+ return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+ if(x > o_threshold)
+ return huge*huge; /* overflow */
+ }
+ if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */
+ if(x+tiny<(float)0.0) /* raise inexact */
+ return tiny-one; /* return -1 */
+ }
+ }
+ /* argument reduction */
+ if(hx > 0x3eb17218) {/* if |x| > 0.5 ln2 */
+ if(hx < 0x3F851592) {/* and |x| < 1.5 ln2 */
+ if(xsb==0){
+ hi = x - ln2_hi; lo = ln2_lo; k = 1;
+ } else {
+ hi = x + ln2_hi; lo = -ln2_lo; k = -1;
+ }
+ } else {
+ k = ivln2*x+((xsb==0)?(float)0.5:(float)-0.5);
+ t = k;
+ hi = x - t*ln2_hi;/* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi-x)-lo;
+ } else if(hx < 0x33000000) { /* when |x|<2**-25, return x */
+ //t = huge+x; /* return x with inexact flags when x!=0 */
+ //return x - (t-(huge+x));
+ return x;
+ } else k = 0;
+ /* x is now in primary range */
+ hfx = (float)0.5*x;
+ hxs = x*hfx;
+ r1 = one+hxs*(Q1+hxs*Q2);
+ t = (float)3.0-r1*hfx;
+ e = hxs*((r1-t)/((float)6.0 - x*t));
+ if(k==0)
+ return x - (x*e-hxs); /* c is 0 */
+ else{
+ e = (x*(e-c)-c);
+ e -= hxs;
+ if(k== -1)return (float)0.5*(x-e)-(float)0.5;
+ if(k==1){
+ if(x < (float)-0.25)
+ return -(float)2.0*(e-(x+(float)0.5));
+ else
+ return (one+(float)2.0*(x-e));
+ }
+ if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
+ int i;
+ y = one-(e-x);
+ GEN_OCL_GET_FLOAT_WORD(i,y);
+ GEN_OCL_SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ return y-one;
+ }
+ t = one;
+ if(k<23) {
+ int i;
+ GEN_OCL_SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */
+ y = t-(e-x);
+ GEN_OCL_GET_FLOAT_WORD(i,y);
+ GEN_OCL_SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ } else {
+ int i;
+ GEN_OCL_SET_FLOAT_WORD(t,((0x7f-k)<<23)); /* 2^-k */
+ y = x-(e+t);
+ y += one;
+ GEN_OCL_GET_FLOAT_WORD(i,y);
+ GEN_OCL_SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ }
+ }
+ return y;
+}
+
+OVERLOADABLE float __gen_ocl_internal_acosh(float x) {
+ //return native_log(x + native_sqrt(x + 1) * native_sqrt(x - 1));
+ float one = 1.0,
+ ln2 = 6.9314718246e-01;/* 0x3f317218 */
+ float t;
+ int hx;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ if(hx<0x3f800000) { /* x < 1 */
+ return (x-x)/(x-x);
+ } else if(hx >=0x4d800000) { /* x > 2**28 */
+ if(hx >=0x7f800000) {/* x is inf of NaN */
+ return x+x;
+ } else
+ return __gen_ocl_internal_log(x)+ln2;/* acosh(huge)=log(2x) */
+ } else if (hx==0x3f800000) {
+ return 0.0; /* acosh(1) = 0 */
+ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
+ t=x*x;
+ return __gen_ocl_internal_log((float)2.0*x-one/(x+__gen_ocl_sqrt(t-one)));
+ } else { /* 1<x<2 */
+ t = x-one;
+ return log1p(t+__gen_ocl_sqrt((float)2.0*t+t*t));
+ }
+}
+
+OVERLOADABLE float __gen_ocl_internal_asinh(float x){
+ //return native_log(x + native_sqrt(x * x + 1));
+ float one = 1.0000000000e+00, /* 0x3F800000 */
+ ln2 = 6.9314718246e-01, /* 0x3f317218 */
+ huge= 1.0000000000e+30;
+ float w;
+ int hx,ix;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix< 0x38000000) { /* |x|<2**-14 */
+ if(huge+x>one) return x; /* return x inexact except 0 */
+ }
+ if(ix>0x47000000) {/* |x| > 2**14 */
+ if(ix>=0x7f800000) return x+x;/* x is inf or NaN */
+ w = __gen_ocl_internal_log(__gen_ocl_internal_fabs(x))+ln2;
+ } else {
+ float xa = __gen_ocl_internal_fabs(x);
+ if (ix>0x40000000) {/* 2**14 > |x| > 2.0 */
+ w = __gen_ocl_internal_log(mad(xa, 2.0f, one / (__gen_ocl_sqrt(mad(xa, xa, one)) + xa)));
+ } else { /* 2.0 > |x| > 2**-14 */
+ float t = xa*xa;
+ w =log1p(xa+t/(one+__gen_ocl_sqrt(one+t)));
+ }
+ }
+ return __gen_ocl_internal_copysign(w, x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_sinh(float x){
+ //return (1 - native_exp(-2 * x)) / (2 * native_exp(-x));
+ float one = 1.0,
+ shuge = 1.0e37;
+ float t,w,h;
+ int ix,jx;
+ GEN_OCL_GET_FLOAT_WORD(jx,x);
+ ix = jx&0x7fffffff;
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) return x+x;
+ h = 0.5;
+ if (jx<0) h = -h;
+ /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+ if (ix < 0x41b00000) { /* |x|<22 */
+ if (ix<0x31800000) /* |x|<2**-28 */
+ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+ t = __gen_ocl_internal_expm1(__gen_ocl_internal_fabs(x));
+ if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
+ return h*(t+t/(t+one));
+ }
+ /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+ if (ix < 0x42b17180) return h*__gen_ocl_internal_exp(__gen_ocl_internal_fabs(x));
+ /* |x| in [log(maxdouble), overflowthresold] */
+ if (ix<=0x42b2d4fc) {
+ w = __gen_ocl_internal_exp((float)0.5*__gen_ocl_internal_fabs(x));
+ t = h*w;
+ return t*w;
+ }
+ /* |x| > overflowthresold, sinh(x) overflow */
+ return x*shuge;
+}
+
+OVERLOADABLE float __gen_ocl_internal_tanh(float x) {
+ //float y = native_exp(-2 * x);
+ //return (1 - y) / (1 + y);
+ float one=1.0, two=2.0, tiny = 1.0e-30;
+ float t,z;
+ int jx,ix;
+ GEN_OCL_GET_FLOAT_WORD(jx,x);
+ ix = jx&0x7fffffff;
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) {
+ if (jx>=0)
+ return one/x+one; /* tanh(+-inf)=+-1 */
+ else
+ return one/x-one; /* tanh(NaN) = NaN */
+ }
+
+ if (ix < 0x41b00000) { /* |x|<22 */
+ if (ix == 0)
+ return x; /* x == +-0 */
+ if (ix<0x24000000) /* |x|<2**-55 */
+ return x*(one+x); /* tanh(small) = small */
+ if (ix>=0x3f800000) { /* |x|>=1 */
+ t = __gen_ocl_internal_expm1(two*__gen_ocl_internal_fabs(x));
+ z = one - two/(t+two);
+ } else {
+ t = __gen_ocl_internal_expm1(-two*__gen_ocl_internal_fabs(x));
+ z= -t/(t+two);
+ }
+ } else { /* |x| > 22, return +-1 */
+ z = one - tiny; /* raised inexact flag */
+ }
+ return (jx>=0)? z: -z;
+}
+
+OVERLOADABLE float __gen_ocl_internal_cosh(float x) {
+ //return (1 + native_exp(-2 * x)) / (2 * native_exp(-x));
+ float halF = 0.5,
+ huge = 1.0e+30,
+ tiny = 1.0e-30,
+ one = 1.0;
+ float t,w;
+ int ix;
+ GEN_OCL_GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff;
+ /* |x| in [0,22] */
+ if (ix < 0x41b00000) {
+ /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+ if(ix<0x3eb17218) {
+ t = __gen_ocl_internal_expm1(__gen_ocl_fabs(x));
+ w = one+t;
+ if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
+ return one+(t*t)/(w+w);
+ }
+ /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+ t = __gen_ocl_internal_exp(__gen_ocl_fabs(x));
+ return halF*t+halF/t;
+ }
+ /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+ if (ix < 0x42b17180) return halF*__gen_ocl_internal_exp(__gen_ocl_fabs(x));
+ /* |x| in [log(maxdouble), overflowthresold] */
+ if (ix<=0x42b2d4fc) {
+ w = __gen_ocl_internal_exp(halF*__gen_ocl_fabs(x));
+ t = halF*w;
+ return t*w;
+ }
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) return x*x;
+ /* |x| > overflowthresold, cosh(x) overflow */
+ return huge*huge;
+}
+
+OVERLOADABLE float __gen_ocl_internal_remainder(float x, float p){
+ //return x-y*__gen_ocl_rnde(x/y);
+ float zero = 0.0;
+ int hx,hp;
+ unsigned sx;
+ float p_half;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ GEN_OCL_GET_FLOAT_WORD(hp,p);
+ sx = hx&0x80000000;
+ hp &= 0x7fffffff;
+ hx &= 0x7fffffff;
+ /* purge off exception values */
+ if(hp==0) return (x*p)/(x*p); /* p = 0 */
+ if((hx>=0x7f800000)|| /* x not finite */
+ ((hp>0x7f800000))) /* p is NaN */
+ return (x*p)/(x*p);
+ if (hp<=0x7effffff) x = __gen_ocl_internal_fmod(x,p+p); /* now x < 2p */
+ if ((hx-hp)==0) return zero*x;
+ x = __gen_ocl_fabs(x);
+ p = __gen_ocl_fabs(p);
+ if (hp<0x01000000) {
+ if(x+x>p) {
+ x-=p;
+ if(x+x>=p) x -= p;
+ }
+ } else {
+ p_half = (float)0.5*p;
+ if(x>p_half) {
+ x-=p;
+ if(x>=p_half) x -= p;
+ }
+ }
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ GEN_OCL_SET_FLOAT_WORD(x,hx^sx);
+ return x;
+}
+
+OVERLOADABLE float __gen_ocl_internal_ldexp(float x, int n) {
+ x = __gen_ocl_scalbnf(x,n);
+ return x;
+}
+
+OVERLOADABLE float __gen_ocl_internal_atanh(float x) {
+ //return 0.5f * native_sqrt((1 + x) / (1 - x));
+ float xa = __gen_ocl_fabs (x);
+ float t;
+ if (isless (xa, 0.5f)){
+ if (xa < 0x1.0p-28f) return x;
+ t = xa + xa;
+ t = 0.5f * log1p (t + t * xa / (1.0f - xa));
+ } else if (isless (xa, 1.0f)){
+ t = 0.5f * log1p ((xa + xa) / (1.0f - xa));
+ } else{
+ if (isgreater (xa, 1.0f)) return (x - x) / (x - x);
+ return x / 0.0f;
+ }
+ return __gen_ocl_internal_copysign(t, x);
+}
+
+OVERLOADABLE float __gen_ocl_internal_exp10(float x){
+ float px, qx,ans;
+ short n;
+ int i;
+ float*p;
+ float MAXL10 = 38.230809449325611792;
+ float LOG210 = 3.32192809488736234787e0;
+ float LG102A = 3.00781250000000000000E-1;
+ float LG102B = 2.48745663981195213739E-4;
+ float P[6];
+ P[0] = 2.063216740311022E-001;
+ P[1] = 5.420251702225484E-001;
+ P[2] = 1.171292686296281E+000;
+ P[3] = 2.034649854009453E+000;
+ P[4] = 2.650948748208892E+000;
+ P[5] = 2.302585167056758E+000;
+
+ if( x < -MAXL10 ) return 0.0;
+
+ if( isinf(x)) return INFINITY;
+ /* The following is necessary because range reduction blows up: */
+ if( x == 0 )return 1.0;
+
+ /* Express 10**x = 10**g 2**n
+ * = 10**g 10**( n log10(2) )
+ * = 10**( g + n log10(2) )
+ */
+ px = x * LOG210;
+ qx = __gen_ocl_internal_floor( px + 0.5 );
+ n = qx;
+ x -= qx * LG102A;
+ x -= qx * LG102B;
+
+ /* rational approximation for exponential
+ * of the fractional part:
+ * 10**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) )
+ */
+ p = P;
+ ans = *p++;
+ i = 5;
+ do{
+ ans = ans * x + *p++;
+ }
+ while( --i );
+ px = 1.0 + x * ans;
+
+ /* multiply by power of 2 */
+ x = __gen_ocl_internal_ldexp( px, n );
+ return x;
+}
+
+OVERLOADABLE float cospi(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_cospi(x);
+
+ return __gen_ocl_internal_cospi(x);
+}
+
+OVERLOADABLE float cosh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_cosh(x);
+
+ return __gen_ocl_internal_cosh(x);
+}
+
+OVERLOADABLE float acos(float x) {
+ return __gen_ocl_internal_acos(x);
+}
+
+OVERLOADABLE float acospi(float x) {
+ return __gen_ocl_internal_acospi(x);
+}
+
+OVERLOADABLE float acosh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_acosh(x);
+
+ return __gen_ocl_internal_acosh(x);
+}
+
+OVERLOADABLE float sinpi(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_sinpi(x);
+
+ return __gen_ocl_internal_sinpi(x);
+}
+
+OVERLOADABLE float sinh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_sinh(x);
+
+ return __gen_ocl_internal_sinh(x);
+}
+
+OVERLOADABLE float asin(float x) {
+ return __gen_ocl_internal_asin(x);
+}
+
+OVERLOADABLE float asinpi(float x) {
+ return __gen_ocl_internal_asinpi(x);
+}
+
+OVERLOADABLE float asinh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_asinh(x);
+
+ return __gen_ocl_internal_asinh(x);
+}
+
+OVERLOADABLE float tanpi(float x) {
+ return __gen_ocl_internal_tanpi(x);
+}
+
+OVERLOADABLE float tanh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_tanh(x);
+
+ return __gen_ocl_internal_tanh(x);
+}
+
+OVERLOADABLE float atan(float x) {
+ return __gen_ocl_internal_atan(x);
+}
+
+OVERLOADABLE float atan2(float y, float x) {
+ return __gen_ocl_internal_atan2(y, x);
+}
+
+OVERLOADABLE float atan2pi(float y, float x) {
+ return __gen_ocl_internal_atan2pi(y, x);
+}
+
+OVERLOADABLE float atanpi(float x) {
+ return __gen_ocl_internal_atanpi(x);
+}
+
+OVERLOADABLE float atanh(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_atanh(x);
+
+ return __gen_ocl_internal_atanh(x);
+}
+
+OVERLOADABLE float cbrt(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_cbrt(x);
+
+ return __gen_ocl_internal_cbrt(x);
+}
+
+OVERLOADABLE float rint(float x) {
+ return __gen_ocl_internal_rint(x);
+}
+
+OVERLOADABLE float copysign(float x, float y) {
+ return __gen_ocl_internal_copysign(x, y);
+}
+
+OVERLOADABLE float erf(float x) {
+ return __gen_ocl_internal_erf(x);
+}
+
+OVERLOADABLE float erfc(float x) {
+ return __gen_ocl_internal_erfc(x);
+}
+
+OVERLOADABLE float fmod (float x, float y) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_fmod(x, y);
+
+ return __gen_ocl_internal_fmod(x, y);
+}
+
+OVERLOADABLE float remainder(float x, float p) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_remainder(x, p);
+
+ return __gen_ocl_internal_remainder(x, p);
+}
+
+OVERLOADABLE float ldexp(float x, int n) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_ldexp(x, n);
+
+ if (x == (float)0.0f) x = 0.0f;
+ return __gen_ocl_internal_ldexp(x, n);
+}
+
+CONST OVERLOADABLE float __gen_ocl_mad(float a, float b, float c) __asm("llvm.fma" ".f32");
+CONST OVERLOADABLE half __gen_ocl_mad(half a, half b, half c) __asm("llvm.fma" ".f16");
+PURE CONST float __gen_ocl_fmax(float a, float b);
+PURE CONST float __gen_ocl_fmin(float a, float b);
+
+OVERLOADABLE float mad(float a, float b, float c) {
+ return __gen_ocl_mad(a, b, c);
+}
+
+OVERLOADABLE float __gen_ocl_internal_fmax(float a, float b) { return max(a,b); }
+OVERLOADABLE float __gen_ocl_internal_fmin(float a, float b) { return min(a,b); }
+OVERLOADABLE float __gen_ocl_internal_fmax(half a, half b) { return max(a,b); }
+OVERLOADABLE float __gen_ocl_internal_fmin(half a, half b) { return min(a,b); }
+OVERLOADABLE float __gen_ocl_internal_maxmag(float x, float y) {
+ float a = __gen_ocl_fabs(x), b = __gen_ocl_fabs(y);
+ return a > b ? x : b > a ? y : max(x, y);
+}
+OVERLOADABLE float __gen_ocl_internal_minmag(float x, float y) {
+ float a = __gen_ocl_fabs(x), b = __gen_ocl_fabs(y);
+ return a < b ? x : b < a ? y : min(x, y);
+}
+OVERLOADABLE float __gen_ocl_internal_fdim(float x, float y) {
+ if(isnan(x))
+ return x;
+ if(isnan(y))
+ return y;
+ return x > y ? (x - y) : +0.f;
+}
+/*
+ * the pow/pown high precision implementation are copied from msun library.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+OVERLOADABLE float __gen_ocl_internal_pow(float x, float y) {
+ float z,ax,z_h,z_l,p_h,p_l;
+ float y1,t1,t2,r,s,sn,t,u,v,w;
+ int i,j,k,yisint,n;
+ int hx,hy,ix,iy,is;
+ float bp[2],dp_h[2],dp_l[2],
+ zero = 0.0,
+ one = 1.0,
+ two = 2.0,
+ two24 = 16777216.0, /* 0x4b800000 */
+ huge = 1.0e30,
+ tiny = 1.0e-30,
+ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+ L1 = 6.0000002384e-01, /* 0x3f19999a */
+ L2 = 4.2857143283e-01, /* 0x3edb6db7 */
+ P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+ P2 = -2.7777778450e-03, /* 0xbb360b61 */
+ lg2 = 6.9314718246e-01, /* 0x3f317218 */
+ lg2_h = 6.93145752e-01, /* 0x3f317200 */
+ lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
+ ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
+ cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
+ cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
+ cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
+ ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+ ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+ bp[0] = 1.0,bp[1] = 1.5,
+ dp_h[0] = 0.0,dp_h[1] = 5.84960938e-01,
+ dp_l[0] = 0.0,dp_l[1] = 1.56322085e-06;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ GEN_OCL_GET_FLOAT_WORD(hy,y);
+ ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+ if (ix < 0x00800000) { /* x < 2**-126 */
+ ix = 0;/* Gen does not support subnormal number now */
+ }
+ if (iy < 0x00800000) { /* y < 2**-126 */
+ iy = 0;/* Gen does not support subnormal number now */
+ }
+ /* y==zero: x**0 = 1 */
+ if(iy==0) return one;
+ /* pow(+1, y) returns 1 for any y, even a NAN */
+ if(hx==0x3f800000) return one;
+ /* +-NaN return x+y */
+ if(ix > 0x7f800000 || iy > 0x7f800000)
+ return (x+0.0f)+y+(0.0f);
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if(hx<0) {
+ if(iy>=0x4b800000) yisint = 2; /* even integer y */
+ else if(iy>=0x3f800000) {
+ k = (iy>>23)-0x7f; /* exponent */
+ j = iy>>(23-k);
+ if((j<<(23-k))==iy) yisint = 2-(j&1);
+ }
+ }
+ /* special value of y */
+ if (iy==0x7f800000) { /* y is +-inf */
+ if (ix==0x3f800000)
+ //return y - y; /* inf**+-1 is NaN */
+ return one;
+ else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
+ return (hy>=0)? y: zero;
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy<0)?-y: zero;
+ }
+ if(iy==0x3f800000) { /* y is +-1 */
+ if(hy<0) return one/x; else return x;
+ }
+ if(hy==0x40000000) return x*x; /* y is 2 */
+ if(hy==0x3f000000) { /* y is 0.5 */
+ if(hx>=0)return __gen_ocl_sqrt(x);
+ }
+
+ ax = __gen_ocl_fabs(x);
+ /* special value of x */
+ if(ix==0x7f800000||ix==0||ix==0x3f800000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(hy<0) z = one/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(((ix-0x3f800000)|yisint)==0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ n = ((uint)hx>>31)-1;
+
+ /* (x<0)**(non-int) is NaN */
+ if((n|yisint)==0) return (x-x)/(x-x);
+
+ sn = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if((n|(yisint-1))==0) sn = -one;/* (-ve)**(odd int) */
+
+ /* |y| is huge */
+ if(iy>0x4d000000) { /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if(ix<0x3f7ffff8) return (hy<0)? sn*huge*huge:sn*tiny*tiny;
+ if(ix>0x3f800007) return (hy>0)? sn*huge*huge:sn*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax-1; /* t has 20 trailing zeros */
+ w = (t*t)*((float)0.5-t*(0.333333333333f-t*0.25f));
+ u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
+ v = t*ivln2_l-w*ivln2;
+ t1 = u+v;
+ GEN_OCL_GET_FLOAT_WORD(is,t1);
+ GEN_OCL_SET_FLOAT_WORD(t1,is&0xfffff000);
+ t2 = v-(t1-u);
+ } else {
+ float s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ //if(ix<0x00800000)
+ //{ax *= two24; n -= 24; GEN_OCL_GET_FLOAT_WORD(ix,ax); }
+ n += ((ix)>>23)-0x7f;
+ j = ix&0x007fffff;
+ /* determine interval */
+ ix = j|0x3f800000; /* normalize ix */
+ if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00800000;}
+ GEN_OCL_SET_FLOAT_WORD(ax,ix);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one/(ax+bp[k]);
+ s = u*v;
+ s_h = s;
+ GEN_OCL_GET_FLOAT_WORD(is,s_h);
+ GEN_OCL_SET_FLOAT_WORD(s_h,is&0xfffff000);
+ /* t_h=ax+bp[k] High */
+ is = ((ix>>1)&0xfffff000)|0x20000000;
+ GEN_OCL_SET_FLOAT_WORD(t_h,is+0x00400000+(k<<21));
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+
+ /* compute log(ax) */
+ s2 = s*s;
+ r = s2*s2*(L1+s2*L2);
+ r += s_l*(s_h+s);
+ s2 = s_h*s_h;
+ t_h = 3.0f+s2+r;
+ GEN_OCL_GET_FLOAT_WORD(is,t_h);
+ GEN_OCL_SET_FLOAT_WORD(t_h,is&0xffffe000);
+ t_l = r-((t_h-3.0f)-s2);
+ /* u+v = s*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u+v;
+ GEN_OCL_GET_FLOAT_WORD(is,p_h);
+ GEN_OCL_SET_FLOAT_WORD(p_h,is&0xffffe000);
+ p_l = v-(p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp+dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (float)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ GEN_OCL_GET_FLOAT_WORD(is,t1);
+ GEN_OCL_SET_FLOAT_WORD(t1,is&0xffffe000);
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ GEN_OCL_GET_FLOAT_WORD(is,y);
+ GEN_OCL_SET_FLOAT_WORD(y1,is&0xffffe000);
+ p_l = (y-y1)*t1+y*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+ GEN_OCL_GET_FLOAT_WORD(j,z);
+ if (j>0x43000000) /* if z > 128 */
+ return sn*huge*huge; /* overflow */
+ else if (j==0x43000000) { /* if z == 128 */
+ if(p_l+ovt>z-p_h) return sn*huge*huge; /* overflow */
+ }
+ else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */
+ return sn*tiny*tiny; /* underflow */
+ else if (j==0xc3160000){ /* z == -150 */
+ if(p_l<=z-p_h) return sn*tiny*tiny; /* underflow */
+ }
+
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j&0x7fffffff;
+ k = (i>>23)-0x7f;
+ n = 0;
+ if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00800000>>(k+1));
+ k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
+ GEN_OCL_SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
+ n = ((n&0x007fffff)|0x00800000)>>(23-k);
+ if(j<0) n = -n;
+ p_h -= t;
+ }
+ t = p_l+p_h;
+ GEN_OCL_GET_FLOAT_WORD(is,t);
+ GEN_OCL_SET_FLOAT_WORD(t,is&0xffff8000);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2+t*lg2_l;
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*P2);
+ r = (z*t1)/(t1-two)-(w+z*w);
+ z = one-(r-z);
+ GEN_OCL_GET_FLOAT_WORD(j,z);
+ j += (n<<23);
+ if((j>>23)<=0) z = __gen_ocl_scalbnf(z,n); /* subnormal output */
+ else GEN_OCL_SET_FLOAT_WORD(z,j);
+ return sn*z;
+}
+
+#define BODY \
+ if (isnan(x_abs) || isinf(x_abs)) { \
+ x_log2 = 0; \
+ return x_abs; \
+ } \
+ uint u = as_uint(x_abs); \
+ uint a = u & 0x7FFFFFFFu; \
+ if (a == 0) { \
+ x_log2 = 0; \
+ return x_abs; \
+ } \
+ if (a >= 0x800000) { \
+ x_log2 = (a >> 23) - 126; \
+ return as_float((u & (0x807FFFFFu)) | 0x3F000000); \
+ } \
+ int e = -126; \
+ while (a < 0x400000) { \
+ e --; \
+ a <<= 1; \
+ } \
+ a <<= 1; \
+ x_log2 = e; \
+ float x_mant = as_float((a & (0x807FFFFFu)) | (u & 0x80000000u) | 0x3F000000);
+
+OVERLOADABLE float tgamma (float x)
+{
+ /* based on glibc __ieee754_gammaf_r by Ulrich Drepper <drepper@cygnus.com> */
+
+ unsigned int hx;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ if (hx == 0xff800000)
+ {
+ /* x == -Inf. According to ISO this is NaN. */
+ return NAN;
+ }
+ if ((hx & 0x7f800000) == 0x7f800000)
+ {
+ /* Positive infinity (return positive infinity) or NaN (return
+ NaN). */
+ return x;
+ }
+ if (x < 0.0f && __gen_ocl_internal_floor (x) == x)
+ {
+ /* integer x < 0 */
+ return NAN;
+ }
+
+ if (x >= 36.0f)
+ {
+ /* Overflow. */
+ return INFINITY;
+ }
+ else if (x <= 0.0f && x >= -FLT_EPSILON / 4.0f)
+ {
+ return 1.0f / x;
+ }
+ else
+ {
+ float sinpix = __gen_ocl_internal_sinpi(x);
+ if (x <= -42.0f)
+ /* Underflow. */
+ {return 0.0f * sinpix /*for sign*/;}
+ int exp2_adj = 0;
+ float x_abs = __gen_ocl_fabs(x);
+ float gam0;
+
+ if (x_abs < 4.0f) {
+ /* gamma = exp(lgamma) is only accurate for small lgamma */
+ float prod,x_adj;
+ if (x_abs < 0.5f) {
+ prod = 1.0f / x_abs;
+ x_adj = x_abs + 1.0f;
+ } else if (x_abs <= 1.5f) {
+ prod = 1.0f;
+ x_adj = x_abs;
+ } else if (x_abs < 2.5f) {
+ x_adj = x_abs - 1.0f;
+ prod = x_adj;
+ } else {
+ x_adj = x_abs - 2.0f;
+ prod = x_adj * (x_abs - 1.0f);
+ }
+ gam0 = __gen_ocl_internal_exp (lgamma (x_adj)) * prod;
+ }
+ else {
+ /* Compute gamma (X) using Stirling's approximation,
+ starting by computing pow (X, X) with a power of 2
+ factored out to avoid intermediate overflow. */
+ float x_int = __gen_ocl_internal_round (x_abs);
+ float x_frac = x_abs - x_int;
+ int x_log2;
+
+ BODY
+
+ if (x_mant < M_SQRT1_2_F)
+ {
+ x_log2--;
+ x_mant *= 2.0f;
+ }
+ exp2_adj = x_log2 * (int) x_int;
+ float ret = (__gen_ocl_internal_pow(x_mant, x_abs)
+ * exp2 (x_log2 * x_frac)
+ * __gen_ocl_internal_exp (-x_abs)
+ * sqrt (2.0f * M_PI_F / x_abs) );
+
+ float x2 = x_abs * x_abs;
+ float bsum = (0x3.403404p-12f / x2 -0xb.60b61p-12f) / x2 + 0x1.555556p-4f;
+ gam0 = ret + ret * __gen_ocl_internal_expm1 (bsum / x_abs);
+ }
+ if (x > 0.0f) {return __gen_ocl_internal_ldexp (gam0, exp2_adj);}
+ float gam1 = M_PI_F / (-x * sinpix * gam0);
+ return __gen_ocl_internal_ldexp (gam1, -exp2_adj);
+ }
+}
+#undef BODY
+
+float __gen_ocl_internal_pown(float x, int y) {
+ const float
+ bp[] = {1.0, 1.5,},
+ dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
+ dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
+ zero = 0.0,
+ one = 1.0,
+ two = 2.0,
+ two24 = 16777216.0, /* 0x4b800000 */
+ huge = 1.0e30,
+ tiny = 1.0e-30,
+ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+ L1 = 6.0000002384e-01, /* 0x3f19999a */
+ L2 = 4.2857143283e-01, /* 0x3edb6db7 */
+ P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+ P2 = -2.7777778450e-03, /* 0xbb360b61 */
+ lg2 = 6.9314718246e-01, /* 0x3f317218 */
+ lg2_h = 0x1.62ep-1,
+ lg2_l = 0x1.0bfbe8p-15,
+ ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
+ cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
+ cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
+ cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
+ ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+ ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+
+ float z,ax,z_h,z_l,p_h,p_l;
+ float y1,t1,t2,r,s,t,u,v,w;
+ int i,j,k,yisint,n;
+ int hx,ix,iy,is;
+
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ iy = y > 0 ? y&0x7fffffff : (-y)&0x7fffffff;
+ /* y==zero: x**0 = 1 */
+ if(y==0) return one;
+
+ /* +-NaN return NAN */
+ if(ix > 0x7f800000)
+ return NAN;
+
+ /* determine if y is an odd int
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = y&1 ? 1 : 2;
+
+ if (y == 1) return x;
+ if (y == -1) return one/x;
+ if (y == 2) return x*x;
+
+ ax = __gen_ocl_fabs(x);
+
+ /* special value of x */
+ if(ix==0x7f800000||ix==0||ix==0x3f800000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(y<0) z = one/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+
+ float sn = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if(((((unsigned)hx>>31)-1)|(yisint-1))==0)
+ sn = -one; /* (-ve)**(odd int) */
+
+ /* |y| is huge */
+ if(iy>0x08000000) { /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if(ix<0x3f7ffff8) return (y<0)? sn*huge*huge:tiny*tiny;
+ if(ix>0x3f800007) return (y>0)? sn*huge*huge:tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax-1; /* t has 20 trailing zeros */
+ w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
+ u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
+ v = t*ivln2_l-w*ivln2;
+ t1 = u+v;
+ GEN_OCL_GET_FLOAT_WORD(is,t1);
+ GEN_OCL_SET_FLOAT_WORD(t1,is&0xfffff000);
+ t2 = v-(t1-u);
+ } else {
+ float s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+// if(ix<0x00800000)
+// {ax *= two24; n -= 24; GEN_OCL_GET_FLOAT_WORD(ix,ax); }
+ n += ((ix)>>23)-0x7f;
+ j = ix&0x007fffff;
+ /* determine interval */
+ ix = j|0x3f800000; /* normalize ix */
+ if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00800000;}
+ GEN_OCL_SET_FLOAT_WORD(ax,ix);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one/(ax+bp[k]);
+ s = u*v;
+ s_h = s;
+ GEN_OCL_GET_FLOAT_WORD(is,s_h);
+ GEN_OCL_SET_FLOAT_WORD(s_h,is&0xfffff000);
+
+ /* t_h=ax+bp[k] High */
+ GEN_OCL_SET_FLOAT_WORD(t_h, (((ix>>1)|0x20000000)+0x00400000+(k<<21)) &0xfffff000);
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+
+
+ /* compute log(ax) */
+ s2 = s*s;
+ r = s2*s2*(L1+s2*L2);
+ r += s_l*(s_h+s);
+ s2 = s_h*s_h;
+ t_h = (float)3.0+s2+r;
+ GEN_OCL_GET_FLOAT_WORD(is,t_h);
+ GEN_OCL_SET_FLOAT_WORD(t_h,is&0xffffe000);
+ t_l = r-((t_h-(float)3.0)-s2);
+ /* u+v = s*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u+v;
+ GEN_OCL_GET_FLOAT_WORD(is,p_h);
+ GEN_OCL_SET_FLOAT_WORD(p_h,is&0xffffe000);
+ p_l = v-(p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp+dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (float)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ GEN_OCL_GET_FLOAT_WORD(is,t1);
+ GEN_OCL_SET_FLOAT_WORD(t1,is&0xffffe000);
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
+
+ /* split up y into y1+y2+y3 and compute (y1+y2+y3)*(t1+t2) */
+
+ float fy = (float)y;
+ float y3 = (float)(y-(int)fy);
+ GEN_OCL_GET_FLOAT_WORD(is,fy);
+ GEN_OCL_SET_FLOAT_WORD(y1,is&0xfffff000);
+
+ p_l = (fy-y1)*t1 + y3*t1 + fy*t2 + y3*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+
+ GEN_OCL_GET_FLOAT_WORD(j,z);
+ if (j>0x43000000) /* if z > 128 */
+ return sn*huge*huge; /* overflow */
+ else if (j==0x43000000) { /* if z == 128 */
+ if(p_l+ovt>z-p_h) return sn*huge*huge; /* overflow */
+ }
+ else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */
+ return sn*tiny*tiny; /* underflow */
+ else if (j==0xc3160000){ /* z == -150 */
+ if(p_l<=z-p_h) return sn*tiny*tiny; /* underflow */
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j&0x7fffffff;
+ k = (i>>23)-0x7f;
+ n = 0;
+ if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00800000>>(k+1));
+ k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
+ GEN_OCL_SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
+ n = ((n&0x007fffff)|0x00800000)>>(23-k);
+ if(j<0) n = -n;
+ p_h -= t;
+
+ z -= n;
+ }
+
+ t = z;
+ GEN_OCL_GET_FLOAT_WORD(is,t);
+ GEN_OCL_SET_FLOAT_WORD(t,is&0xfffff000);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2+t*lg2_l;
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*P2);
+ r = (z*t1)/(t1-two)-(w+z*w);
+ z = one-(r-z);
+ GEN_OCL_GET_FLOAT_WORD(j,z);
+ j += (n<<23);
+ if((j>>23)<=0) z = __gen_ocl_scalbnf(z,n); /* subnormal output */
+ else GEN_OCL_SET_FLOAT_WORD(z,j);
+ return sn*z;
+}
+
+#define BODY \
+ if (isnan(x) || isinf(x)) { \
+ *exp = 0; \
+ return x; \
+ } \
+ uint u = as_uint(x); \
+ uint a = u & 0x7FFFFFFFu; \
+ if (a == 0) { \
+ *exp = 0; \
+ return x; \
+ } \
+ if (a >= 0x800000) { \
+ *exp = (a >> 23) - 126; \
+ return as_float((u & (0x807FFFFFu)) | 0x3F000000); \
+ } \
+ int e = -126; \
+ while (a < 0x400000) { \
+ e --; \
+ a <<= 1; \
+ } \
+ a <<= 1; \
+ *exp = e; \
+ return as_float((a & (0x807FFFFFu)) | (u & 0x80000000u) | 0x3F000000);
+float __gen_ocl_internal_frexp(float x, int *exp) { BODY; }
+
+OVERLOADABLE float hypot(float x, float y) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_hypot(x, y);
+
+ //return __gen_ocl_sqrt(x*x + y*y);
+ float a,b,an,bn,cn;
+ int e;
+ if (isfinite (x) && isfinite (y)){ /* Determine absolute values. */
+ x = __gen_ocl_fabs (x);
+ y = __gen_ocl_fabs (y);
+ /* Find the bigger and the smaller one. */
+ a = max(x,y);
+ b = min(x,y);
+ /* Now 0 <= b <= a. */
+ /* Write a = an * 2^e, b = bn * 2^e with 0 <= bn <= an < 1. */
+ an = __gen_ocl_internal_frexp (a, &e);
+ bn = ldexp (b, - e);
+ /* Through the normalization, no unneeded overflow or underflow will occur here. */
+ cn = __gen_ocl_sqrt (an * an + bn * bn);
+ return ldexp (cn, e);
+ }else{
+ if (isinf (x) || isinf (y)) /* x or y is infinite. Return +Infinity. */
+ return INFINITY;
+ else /* x or y is NaN. Return NaN. */
+ return x + y;
+ }
+}
+
+OVERLOADABLE float powr(float x, float y) {
+ unsigned int hx, sx, hy, sy;
+
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_pow(x,y);
+ else {
+ if (isnan(x) || isnan(y)) return NAN;
+ GEN_OCL_GET_FLOAT_WORD(hx,x);
+ GEN_OCL_GET_FLOAT_WORD(hy,y);
+ sx = (hx & 0x80000000) >> 31;
+ sy = (hy & 0x80000000) >> 31;
+
+ if ((hx&0x7fffffff) < 0x00800000) { /* x < 2**-126 */
+ x = 0.0f;/* Gen does not support subnormal number now */
+ hx = hx &0x80000000;
+ }
+ if ((hy&0x7fffffff) < 0x00800000) { /* y < 2**-126 */
+ y = 0.0;/* Gen does not support subnormal number now */
+ hy = hy &0x80000000;
+ }
+
+ // (x < 0) ** y = NAN (y!=0)
+ if ((sx && (hx & 0x7fffffff))) return NAN;
+
+ // +/-0 ** +/-0 = NAN
+ if ( !(hx&0x7fffffff) && !(hy&0x7fffffff)) return NAN;
+
+ // +inf ** +/-0 = NAN
+ if ( ((hx & 0x7f800000) ==0x7f800000) && !(hy&0x7fffffff)) return NAN;
+
+ // others except nan/inf/0 ** 0 = 1.0
+ if (!(hy&0x7fffffff)) return 1.0f;
+
+ // +1 ** inf = NAN; +1 ** finite = 1;
+ if (hx == 0x3f800000) {
+ return isinf(y) ? NAN : 1.0f;
+ }
+
+ if ( !(hx & 0x7fffffff)) {
+ // +/-0 ** y<0 = +inf
+ // +/-0 ** y>0 = +0
+ return sy ? INFINITY : 0.0f;
+ }
+
+ return __gen_ocl_internal_pow(x,y);
+ }
+}
+
+OVERLOADABLE float pown(float x, int n) {
+ if (__ocl_math_fastpath_flag) {
+ if (x == 0.f && n == 0)
+ return 1.f;
+ if (x < 0.f && (n&1) )
+ return -powr(-x, n);
+ return powr(x, n);
+ } else {
+ int ix;
+ GEN_OCL_GET_FLOAT_WORD(ix, x);
+ float sign = ix < 0 ? -1.0f : 1.0f;
+ if (x == 0.0f) x = sign * 0.0f;
+
+ return __gen_ocl_internal_pown(x, n);
+ }
+}
+
+OVERLOADABLE float pow(float x, float y) {
+ if (!__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_pow(x,y);
+ else {
+ int n;
+ if (x == 0.f && y == 0.f)
+ return 1.f;
+ if (x >= 0.f)
+ return powr(x, y);
+ n = y;
+ if ((float)n == y)//is exact integer
+ return pown(x, n);
+ return NAN;
+ }
+}
+
+OVERLOADABLE float rootn(float x, int n) {
+ float ax,re;
+ int sign = 0;
+ int hx;
+ if( n == 0 )return NAN;
+
+ GEN_OCL_GET_FLOAT_WORD(hx, x);
+ // Gen does not support denorm, flush to zero
+ if ((hx & 0x7fffffff) < 0x00800000) {
+ x = hx < 0 ? -0.0f : 0.0f;
+ }
+
+ //rootn ( x, n ) returns a NaN for x < 0 and n is even.
+ if( x < 0 && 0 == (n&1) )
+ return NAN;
+ if( x == 0.0 ){
+ switch( n & 0x80000001 ){
+ //rootn ( +-0, n ) is +0 for even n > 0.
+ case 0:
+ return 0.0f;
+ //rootn ( +-0, n ) is +-0 for odd n > 0.
+ case 1:
+ return x;
+ //rootn ( +-0, n ) is +inf for even n < 0.
+ case 0x80000000:
+ return INFINITY;
+
+ //rootn ( +-0, n ) is +-inf for odd n < 0.
+ case 0x80000001:
+ return __gen_ocl_internal_copysign(INFINITY, x);
+ }
+ }
+ ax = __gen_ocl_fabs(x);
+ if(x <0.0f && (n&1))
+ sign = 1;
+ if (__ocl_math_fastpath_flag)
+ re = __gen_ocl_pow(ax, 1.f/n);
+ else
+ re = __gen_ocl_internal_pow(ax,1.f/n);
+ if(sign)
+ re = -re;
+ return re;
+}
+
+OVERLOADABLE float fabs(float x) {
+ return __gen_ocl_internal_fabs(x);
+}
+
+OVERLOADABLE float trunc(float x) {
+ return __gen_ocl_internal_trunc(x);
+}
+
+OVERLOADABLE float round(float x) {
+ return __gen_ocl_internal_round(x);
+}
+
+OVERLOADABLE float floor(float x) {
+ return __gen_ocl_internal_floor(x);
+}
+
+OVERLOADABLE float ceil(float x) {
+ return __gen_ocl_internal_ceil(x);
+}
+
+OVERLOADABLE float log(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_log(x);
+
+ /* Use native instruction when it has enough precision */
+ if((x > 0x1.1p0) || (x <= 0))
+ return __gen_ocl_internal_fastpath_log(x);
+
+ return __gen_ocl_internal_log(x);
+}
+
+OVERLOADABLE float log2(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_log2(x);
+
+ /* Use native instruction when it has enough precision */
+ if((x > 0x1.1p0) || (x <= 0))
+ return __gen_ocl_internal_fastpath_log2(x);
+
+ return __gen_ocl_internal_log2(x);
+}
+
+OVERLOADABLE float log10(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_log10(x);
+
+ /* Use native instruction when it has enough precision */
+ if((x > 0x1.1p0) || (x <= 0))
+ return __gen_ocl_internal_fastpath_log10(x);
+
+ return __gen_ocl_internal_log10(x);
+}
+
+OVERLOADABLE float exp(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_exp(x);
+
+ /* Use native instruction when it has enough precision */
+ if (x > -0x1.6p1 && x < 0x1.6p1)
+ return __gen_ocl_internal_fastpath_exp(x);
+
+ return __gen_ocl_internal_exp(x);
+}
+
+OVERLOADABLE float exp2(float x) {
+ /* Use native instruction when it has enough precision, exp2 always */
+ return native_exp2(x);
+}
+
+OVERLOADABLE float exp10(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_exp10(x);
+
+ return __gen_ocl_internal_exp10(x);
+}
+
+OVERLOADABLE float expm1(float x) {
+ if (__ocl_math_fastpath_flag)
+ return __gen_ocl_internal_fastpath_expm1(x);
+
+ return __gen_ocl_internal_expm1(x);
+}
+
+OVERLOADABLE float fmin(float a, float b) {
+ return __gen_ocl_internal_fmin(a, b);
+}
+
+OVERLOADABLE float fmax(float a, float b) {
+ return __gen_ocl_internal_fmax(a, b);
+}
+
+OVERLOADABLE float fma(float a, float b, float c) {
+ return mad(a, b, c);
+}
+
+OVERLOADABLE float fdim(float x, float y) {
+ return __gen_ocl_internal_fdim(x, y);
+}
+
+OVERLOADABLE float maxmag(float x, float y) {
+ return __gen_ocl_internal_maxmag(x, y);
+}
+
+OVERLOADABLE float minmag(float x, float y) {
+ return __gen_ocl_internal_minmag(x, y);
+}
+
+OVERLOADABLE float nextafter(float x, float y) {
+ int hx, hy, ix, iy;
+ hx = as_int(x);
+ hy = as_int(y);
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+ if(ix == 0)
+ ix = hx & 0x7fffff;
+ if(iy == 0)
+ iy = hy & 0x7fffff;
+ if(ix>0x7f800000 || iy>0x7f800000)
+ return x+y;
+ if(hx == hy)
+ return y;
+ if(ix == 0) {
+ if(iy == 0)
+ return y;
+ else
+ return as_float((hy&0x80000000) | 1);
+ }
+ if(hx >= 0) {
+ if(hx > hy) {
+ hx -= 1;
+ } else {
+ hx += 1;
+ }
+ } else {
+ if(hy >= 0 || hx > hy){
+ hx -= 1;
+ } else {
+ hx += 1;
+ }
+ }
+ return as_float(hx);
+}
+
+/* So far, the HW do not support half float math function.
+ We just do the conversion and call the float version here. */
+OVERLOADABLE half cospi(half x) {
+ float _x = (float)x;
+ return (half)cospi(_x);
+}
+OVERLOADABLE half cosh(half x) {
+ float _x = (float)x;
+ return (half)cosh(_x);
+}
+OVERLOADABLE half acos(half x) {
+ float _x = (float)x;
+ return (half)acos(_x);
+}
+OVERLOADABLE float half_cos(float x) {
+ return (float)cos(x);
+}
+OVERLOADABLE float half_divide(float x, float y) {
+ return (float)native_divide(x, y);
+}
+OVERLOADABLE float half_exp(float x) {
+ return (float)native_exp(x);
+}
+OVERLOADABLE float half_exp2(float x){
+ return (float)native_exp2(x);
+}
+OVERLOADABLE float half_exp10(float x){
+ return (float)native_exp10(x);
+}
+OVERLOADABLE float half_log(float x){
+ return (float)native_log(x);
+}
+OVERLOADABLE float half_log2(float x){
+ return (float)native_log2(x);
+}
+OVERLOADABLE float half_log10(float x){
+ return (float)native_log10(x);
+}
+OVERLOADABLE float half_powr(float x, float y){
+ return (float)powr(x, y);
+}
+OVERLOADABLE float half_recip(float x){
+ return (float)native_recip(x);
+}
+OVERLOADABLE float half_rsqrt(float x){
+ return (float)native_rsqrt(x);
+}
+OVERLOADABLE float half_sin(float x){
+ return (float)sin(x);
+}
+OVERLOADABLE float half_sqrt(float x){
+ return (float)native_sqrt(x);
+}
+OVERLOADABLE float half_tan(float x){
+ return (float)tan(x);
+}
+OVERLOADABLE half acospi(half x) {
+ float _x = (float)x;
+ return (half)acospi(_x);
+}
+OVERLOADABLE half acosh(half x) {
+ float _x = (float)x;
+ return (half)acosh(_x);
+}
+OVERLOADABLE half sinpi(half x) {
+ float _x = (float)x;
+ return (half)sinpi(_x);
+}
+OVERLOADABLE half sinh(half x) {
+ float _x = (float)x;
+ return (half)sinh(_x);
+}
+OVERLOADABLE half asin(half x) {
+ float _x = (float)x;
+ return (half)asin(_x);
+}
+OVERLOADABLE half asinpi(half x) {
+ float _x = (float)x;
+ return (half)asinpi(_x);
+}
+OVERLOADABLE half asinh(half x) {
+ float _x = (float)x;
+ return (half)asinh(_x);
+}
+OVERLOADABLE half tanpi(half x) {
+ float _x = (float)x;
+ return (half)tanpi(_x);
+}
+OVERLOADABLE half tanh(half x) {
+ float _x = (float)x;
+ return (half)tanh(_x);
+}
+OVERLOADABLE half atan(half x) {
+ float _x = (float)x;
+ return (half)atan(_x);
+}
+OVERLOADABLE half atan2(half y, half x) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)atan2(_x, _y);
+}
+OVERLOADABLE half atan2pi(half y, half x) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)atan2pi(_x, _y);
+}
+OVERLOADABLE half atanpi(half x) {
+ float _x = (float)x;
+ return (half)atanpi(_x);
+}
+OVERLOADABLE half atanh(half x) {
+ float _x = (float)x;
+ return (half)atanh(_x);
+}
+OVERLOADABLE half cbrt(half x) {
+ float _x = (float)x;
+ return (half)cbrt(_x);
+}
+OVERLOADABLE half rint(half x) {
+ float _x = (float)x;
+ return (half)rint(_x);
+}
+OVERLOADABLE half copysign(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)copysign(_x, _y);
+}
+OVERLOADABLE half erf(half x) {
+ float _x = (float)x;
+ return (half)erf(_x);
+}
+OVERLOADABLE half erfc(half x) {
+ float _x = (float)x;
+ return (half)erfc(_x);
+}
+OVERLOADABLE half fmod(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)fmod(_x, _y);
+}
+OVERLOADABLE half remainder(half x, half p) {
+ float _x = (float)x;
+ float _p = (float)p;
+ return (half)remainder(_x, _p);
+}
+OVERLOADABLE half ldexp(half x, int n) {
+ float _x = (float)x;
+ return (half)ldexp(_x, n);
+}
+OVERLOADABLE half powr(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)powr(_x, _y);
+}
+OVERLOADABLE half pow(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)pow(_x, _y);
+}
+//no pow, we use powr instead
+OVERLOADABLE half fabs(half x) {
+ float _x = (float)x;
+ return (half)fabs(_x);
+}
+OVERLOADABLE half trunc(half x) {
+ float _x = (float)x;
+ return (half)trunc(_x);
+}
+OVERLOADABLE half round(half x) {
+ float _x = (float)x;
+ return (half)round(_x);
+}
+OVERLOADABLE half floor(half x) {
+ float _x = (float)x;
+ return (half)floor(_x);
+}
+OVERLOADABLE half ceil(half x) {
+ float _x = (float)x;
+ return (half)ceil(_x);
+}
+OVERLOADABLE half log(half x) {
+ float _x = (float)x;
+ return (half)log(_x);
+}
+OVERLOADABLE half log2(half x) {
+ float _x = (float)x;
+ return (half)log2(_x);
+}
+OVERLOADABLE half log10(half x) {
+ float _x = (float)x;
+ return (half)log10(_x);
+}
+OVERLOADABLE half exp(half x) {
+ float _x = (float)x;
+ return (half)exp(_x);
+}
+OVERLOADABLE half exp10(half x) {
+ float _x = (float)x;
+ return (half)exp10(_x);
+}
+OVERLOADABLE half expm1(half x) {
+ float _x = (float)x;
+ return (half)expm1(_x);
+}
+OVERLOADABLE half fmin(half a, half b) {
+ return __gen_ocl_internal_fmin(a, b);
+}
+OVERLOADABLE half fmax(half a, half b) {
+ return __gen_ocl_internal_fmax(a, b);
+}
+OVERLOADABLE half fma(half a, half b, half c) {
+ float _a = (float)a;
+ float _b = (float)b;
+ float _c = (float)c;
+ return (half)fma(_a, _b, _c);
+}
+OVERLOADABLE half fdim(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)fdim(_x, _y);
+}
+OVERLOADABLE half maxmag(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)maxmag(_x, _y);
+}
+OVERLOADABLE half minmag(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)minmag(_x, _y);
+}
+OVERLOADABLE half exp2(half x) {
+ float _x = (float)x;
+ return (half)exp2(_x);
+}
+OVERLOADABLE half mad(half a, half b, half c) {
+ return __gen_ocl_mad(a,b,c);
+}
+OVERLOADABLE half sin(half x) {
+ float _x = (float)x;
+ return (half)sin(_x);
+}
+OVERLOADABLE half cos(half x) {
+ float _x = (float)x;
+ return (half)cos(_x);
+}
+OVERLOADABLE half tan(half x) {
+ float _x = (float)x;
+ return (half)tan(_x);
+}
+OVERLOADABLE half tgamma(half x) {
+ float _x = (float)x;
+ return (half)tgamma(_x);
+}
+OVERLOADABLE half lgamma(half x) {
+ float _x = (float)x;
+ return (half)lgamma(_x);
+}
+
+OVERLOADABLE half log1p(half x) {
+ float _x = (float)x;
+ return (half)log1p(_x);
+}
+OVERLOADABLE half logb(half x) {
+ float _x = (float)x;
+ return (half)logb(_x);
+}
+OVERLOADABLE int ilogb(half x) {
+ float _x = (float)x;
+ return ilogb(_x);
+}
+OVERLOADABLE half nan(ushort code) {
+ return (half)NAN;
+}
+
+OVERLOADABLE half sqrt(half x) {
+ float _x = (float)x;
+ return (half)sqrt(_x);
+}
+OVERLOADABLE half rsqrt(half x) {
+ float _x = (float)x;
+ return (half)rsqrt(_x);
+}
+
+OVERLOADABLE half nextafter(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)nextafter(_x, _y);
+}
+
+OVERLOADABLE half hypot(half x, half y) {
+ float _x = (float)x;
+ float _y = (float)y;
+ return (half)hypot(_x, _y);
+}
+
+OVERLOADABLE half pown(half x, int n) {
+ float _x = (float)x;
+ return (half)pown(_x, n);
+}
+OVERLOADABLE half rootn(half x, int n) {
+ float _x = (float)x;
+ return (half)rootn(_x, n);
+}
+
INLINE int __HI(double x){
long x64 = as_long(x);
int high = convert_int((x64 >> 32) & 0xFFFFFFFF);