summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ExpandPseudo.cpp
blob: 83a62b731b54a0d76844d7a8467a13b7f4f8c3b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalValue.h"
using namespace llvm;

#define DEBUG_TYPE "x86-pseudo"

namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
  static char ID;
  X86ExpandPseudo() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  const X86Subtarget *STI;
  const X86InstrInfo *TII;
  const X86RegisterInfo *TRI;
  const X86FrameLowering *X86FL;

  bool runOnMachineFunction(MachineFunction &Fn) override;

  const char *getPassName() const override {
    return "X86 pseudo instruction expansion pass";
  }

private:
  bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
  bool ExpandMBB(MachineBasicBlock &MBB);
};
char X86ExpandPseudo::ID = 0;
} // End anonymous namespace.

/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MBBI) {
  MachineInstr &MI = *MBBI;
  unsigned Opcode = MI.getOpcode();
  DebugLoc DL = MBBI->getDebugLoc();
  switch (Opcode) {
  default:
    return false;
  case X86::TCRETURNdi:
  case X86::TCRETURNri:
  case X86::TCRETURNmi:
  case X86::TCRETURNdi64:
  case X86::TCRETURNri64:
  case X86::TCRETURNmi64: {
    bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
    assert(StackAdjust.isImm() && "Expecting immediate value.");

    // Adjust stack pointer.
    int StackAdj = StackAdjust.getImm();

    if (StackAdj) {
      // Check for possible merge with preceding ADD instruction.
      StackAdj += X86FL->mergeSPUpdates(MBB, MBBI, true);
      X86FL->emitSPUpdate(MBB, MBBI, StackAdj, /*InEpilogue=*/true);
    }

    // Jump to label or value in register.
    bool IsWin64 = STI->isTargetWin64();
    if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdi64) {
      unsigned Op = (Opcode == X86::TCRETURNdi)
                        ? X86::TAILJMPd
                        : (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64);
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      if (JumpTarget.isGlobal())
        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
                             JumpTarget.getTargetFlags());
      else {
        assert(JumpTarget.isSymbol());
        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
                              JumpTarget.getTargetFlags());
      }
    } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
      unsigned Op = (Opcode == X86::TCRETURNmi)
                        ? X86::TAILJMPm
                        : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
      MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
      for (unsigned i = 0; i != 5; ++i)
        MIB.addOperand(MBBI->getOperand(i));
    } else if (Opcode == X86::TCRETURNri64) {
      BuildMI(MBB, MBBI, DL,
              TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
          .addReg(JumpTarget.getReg(), RegState::Kill);
    } else {
      BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
          .addReg(JumpTarget.getReg(), RegState::Kill);
    }

    MachineInstr *NewMI = std::prev(MBBI);
    NewMI->copyImplicitOps(*MBBI->getParent()->getParent(), MBBI);

    // Delete the pseudo instruction TCRETURN.
    MBB.erase(MBBI);

    return true;
  }
  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    MachineOperand &DestAddr = MBBI->getOperand(0);
    assert(DestAddr.isReg() && "Offset should be in register!");
    const bool Uses64BitFramePtr =
        STI->isTarget64BitLP64() || STI->isTargetNaCl64();
    unsigned StackPtr = TRI->getStackRegister();
    BuildMI(MBB, MBBI, DL,
            TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
        .addReg(DestAddr.getReg());
    // The EH_RETURN pseudo is really removed during the MC Lowering.
    return true;
  }

  case X86::EH_RESTORE: {
    // Restore ESP and EBP, and optionally ESI if required.
    bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(
        MBB.getParent()->getFunction()->getPersonalityFn()));
    X86FL->restoreWin32EHStackPointers(MBB, MBBI, DL, /*RestoreSP=*/IsSEH);
    MBBI->eraseFromParent();
    return true;
  }
  }
  llvm_unreachable("Previous switch has a fallthrough?");
}

/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
  bool Modified = false;

  // MBBI may be invalidated by the expansion.
  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    Modified |= ExpandMI(MBB, MBBI);
    MBBI = NMBBI;
  }

  return Modified;
}

bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
  STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  X86FL = STI->getFrameLowering();

  bool Modified = false;
  for (MachineBasicBlock &MBB : MF)
    Modified |= ExpandMBB(MBB);
  return Modified;
}

/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
  return new X86ExpandPseudo();
}