summaryrefslogtreecommitdiff
path: root/backend/src/ir/instruction.hpp
blob: ddcefceef1e53210c15acdcf4bccc3a673f72c64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*
 * Copyright © 2012 Intel Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 *
 * Author: Benjamin Segovia <benjamin.segovia@intel.com>
 */

/**
 * \file instruction.hpp
 * \author Benjamin Segovia <benjamin.segovia@intel.com>
 */
#ifndef __GBE_IR_INSTRUCTION_HPP__
#define __GBE_IR_INSTRUCTION_HPP__

#include "ir/register.hpp"
#include "ir/immediate.hpp"
#include "ir/type.hpp"
#include "sys/platform.hpp"
#include "sys/intrusive_list.hpp"

#include <ostream>
#define MAX_MIXED_POINTER 4

namespace gbe {
namespace ir {
  struct BTI {
    uint8_t bti[MAX_MIXED_POINTER];
    uint8_t count;
    BTI() : count(0) {
      memset(bti, 0, MAX_MIXED_POINTER);
    }
    ~BTI() {}
  };

  /*! All opcodes */
  enum Opcode : uint8_t {
#define DECL_INSN(INSN, FAMILY) OP_##INSN,
#include "ir/instruction.hxx"
#undef DECL_INSN
    OP_INVALID
  };

  /*! Different memory spaces */
  enum AddressSpace : uint8_t {
    MEM_GLOBAL = 0, //!< Global memory (a la OCL)
    MEM_LOCAL,      //!< Local memory (thread group memory)
    MEM_CONSTANT,   //!< Immutable global memory
    MEM_PRIVATE,    //!< Per thread private memory
    MEM_INVALID
  };

  enum AtomicOps {
    ATOMIC_OP_AND       = 1,
    ATOMIC_OP_OR        = 2,
    ATOMIC_OP_XOR       = 3,
    ATOMIC_OP_XCHG      = 4,
    ATOMIC_OP_INC       = 5,
    ATOMIC_OP_DEC       = 6,
    ATOMIC_OP_ADD       = 7,
    ATOMIC_OP_SUB       = 8,
    ATOMIC_OP_IMAX      = 10,
    ATOMIC_OP_IMIN      = 11,
    ATOMIC_OP_UMAX      = 12,
    ATOMIC_OP_UMIN      = 13,
    ATOMIC_OP_CMPXCHG   = 14,
    ATOMIC_OP_INVALID
  };

  /* Vote function per hardware thread */
  enum VotePredicate : uint8_t {
    VOTE_ALL = 0,
    VOTE_ANY
  };

  /*! Output the memory space */
  std::ostream &operator<< (std::ostream &out, AddressSpace addrSpace);

  /*! A label is identified with an unsigned short */
  TYPE_SAFE(LabelIndex, uint32_t)

  /*! Function class contains the register file and the register tuple. Any
   *  information related to the registers may therefore require a function
   */
  class Function;

  /*! Contains the stream of instructions */
  class BasicBlock;

  ///////////////////////////////////////////////////////////////////////////
  /// All public instruction classes as manipulated by all public classes
  ///////////////////////////////////////////////////////////////////////////

  /*! Stores instruction internal data and opcode */
  class ALIGNED(sizeof(uint64_t)*4) InstructionBase
  {
  public:
    /*! Initialize the instruction from a 8 bytes stream */
    INLINE InstructionBase(const char *stream) {
      opcode = Opcode(stream[0]);
      for (uint32_t byte = 0; byte < opaqueSize; ++byte)
        opaque[byte] = stream[byte+1];
    }
    /*! Uninitialized instruction */
    INLINE InstructionBase(void) {}
    /*! Get the instruction opcode */
    INLINE Opcode getOpcode(void) const { return opcode; }
  protected:
    enum { opaqueSize = sizeof(uint64_t)*4-sizeof(uint8_t) };
    Opcode opcode;               //!< Idendifies the instruction
    char opaque[opaqueSize];     //!< Remainder of it
    GBE_CLASS(InstructionBase);  //!< Use internal allocators
  };

  /*! Store the instruction description in 32 bytes */
  class Instruction : public InstructionBase, public intrusive_list_node
  {
  public:
    /*! Initialize the instruction from a 8 bytes stream */
    INLINE Instruction(const char *stream) : InstructionBase(stream) {
      parent = NULL;
    }
    /*! Copy the private fields and give it the same parent */
    INLINE Instruction(const Instruction &other) :
      InstructionBase(reinterpret_cast<const char*>(&other.opcode)) {
      parent = other.parent;
    }

  private:
    /*! To be consistant with copy constructor */
    INLINE Instruction &operator= (const Instruction &other) { return *this; }
  public:
    /*! Nothing to do here */
    INLINE ~Instruction(void) {}
    /*! Uninitialized instruction */
    INLINE Instruction(void) {}
    /*! Get the number of sources for this instruction  */
    uint32_t getSrcNum(void) const;
    /*! Get the number of destination for this instruction */
    uint32_t getDstNum(void) const;
    /*! Get the register index of the given source */
    Register getSrc(uint32_t ID = 0u) const;
    /*! Get the register index of the given destination */
    Register getDst(uint32_t ID = 0u) const;
    /*! Get the register of the given source */
    RegisterData getDstData(uint32_t ID = 0u) const;
    /*! Get the register of the given destination */
    RegisterData getSrcData(uint32_t ID = 0u) const;
    /*! Set a register in src srcID */
    void setSrc(uint32_t srcID, Register reg);
    /*! Set a register in dst dstID */
    void setDst(uint32_t dstID, Register reg);
    /*! Is there any side effect in the memory sub-system? */
    bool hasSideEffect(void) const;
    /*! Get / set the parent basic block */
    BasicBlock *getParent(void) { return parent; }
    const BasicBlock *getParent(void) const { return parent; }
    void setParent(BasicBlock *block) { this->parent = block; }
    /*! Get the function from the parent basic block */
    const Function &getFunction(void) const;
    Function &getFunction(void);
    /*! Check that the instruction is well formed (type properly match,
     *  registers not of bound and so on). If not well formed, provide a reason
     *  in string why
     */
    bool wellFormed(std::string &why) const;
    /*! Replace other by this instruction */
    void replace(Instruction *other) const;
    /*! Remove the instruction from the instruction stream */
    void remove(void);
    /* Insert the instruction after the previous one. */
    void insert(Instruction *prev, Instruction ** new_ins = NULL);
    /*! Indicates if the instruction belongs to instruction type T. Typically, T
     *  can be BinaryInstruction, UnaryInstruction, LoadInstruction and so on
     */
    template <typename T> INLINE bool isMemberOf(void) const {
      return T::isClassOf(*this);
    }
    /*! max_src for store instruction (vec16 + addr) */
    static const uint32_t MAX_SRC_NUM = 32;
    static const uint32_t MAX_DST_NUM = 32;
  protected:
    BasicBlock *parent;      //!< The basic block containing the instruction
    GBE_CLASS(Instruction);  //!< Use internal allocators
  };

  /*! Output the instruction string in the given stream */
  std::ostream &operator<< (std::ostream &out, const Instruction &proxy);

  /*! Unary instructions are typed. dst and sources share the same type */
  class UnaryInstruction : public Instruction {
  public:
    /*! Get the type manipulated by the instruction */
    Type getType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Binary instructions are typed. dst and sources share the same type */
  class BinaryInstruction : public Instruction {
  public:
    /*! Get the type manipulated by the instruction */
    Type getType(void) const;
    /*! Commutative instructions can allow better optimizations */
    bool commutes(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Ternary instructions are typed. dst and sources share the same type */
  class TernaryInstruction : public Instruction {
   public:
    Type getType(void) const;
    static bool isClassOf(const Instruction &insn);
  };

  /*! Select instructions writes src0 to dst if cond is true. Otherwise, it
   *  writes src1
   */
  class SelectInstruction : public Instruction {
  public:
    /*! Predicate is in slot 0. So first source to selec is in slot 1 */
    static const uint32_t src0Index = 1;
    /*! Second source to select is in slot 2 */
    static const uint32_t src1Index = 2;
    /*! Get the predicate of the selection instruction */
    INLINE Register getPredicate(void) const { return this->getSrc(0); }
    /*! Get the type of both sources */
    Type getType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Compare instructions compare anything from the same type and return a
   *  boolean value
   */
  class CompareInstruction : public Instruction {
  public:
    /*! Get the type of the source registers */
    Type getType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! BitCast instruction converts from one type to another */
  class BitCastInstruction : public Instruction {
  public:
    /*! Get the type of the source */
    Type getSrcType(void) const;
    /*! Get the type of the destination */
    Type getDstType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Conversion instruction converts from one type to another */
  class ConvertInstruction : public Instruction {
  public:
    /*! Get the type of the source */
    Type getSrcType(void) const;
    /*! Get the type of the destination */
    Type getDstType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Atomic instruction */
  class AtomicInstruction : public Instruction {
  public:
    /*! Where the address register goes */
    static const uint32_t addressIndex = 0;
    /*! Address space that is manipulated here */
    AddressSpace getAddressSpace(void) const;
    BTI getBTI(void) const;
    /*! Return the atomic function code */
    AtomicOps getAtomicOpcode(void) const;
    /*! Return the register that contains the addresses */
    INLINE Register getAddress(void) const { return this->getSrc(addressIndex); }
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Store instruction. First source is the address. Next sources are the
   *  values to store contiguously at the given address
   */
  class StoreInstruction : public Instruction {
  public:
    /*! Where the address register goes */
    static const uint32_t addressIndex = 0;
    /*! Return the types of the values to store */
    Type getValueType(void) const;
    /*! Give the number of values the instruction is storing (srcNum-1) */
    uint32_t getValueNum(void) const;
    BTI getBTI(void) const;
    /*! Address space that is manipulated here */
    AddressSpace getAddressSpace(void) const;
    /*! DWORD aligned means untyped read for Gen. That is what matters */
    bool isAligned(void) const;
    /*! Return the register that contains the addresses */
    INLINE Register getAddress(void) const { return this->getSrc(addressIndex); }
    /*! Return the register that contain value valueID */
    INLINE Register getValue(uint32_t valueID) const {
      GBE_ASSERT(valueID < this->getValueNum());
      return this->getSrc(valueID + 1u);
    }
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Load instruction. The source is simply the address where to get the data.
   *  The multiple destinations are the contiguous values loaded at the given
   *  address
   */
  class LoadInstruction : public Instruction {
  public:
    /*! Type of the loaded values (ie type of all the destinations) */
    Type getValueType(void) const;
    /*! Number of values loaded (ie number of destinations) */
    uint32_t getValueNum(void) const;
    /*! Address space that is manipulated here */
    AddressSpace getAddressSpace(void) const;
    /*! DWORD aligned means untyped read for Gen. That is what matters */
    bool isAligned(void) const;
    /*! Return the register that contains the addresses */
    INLINE Register getAddress(void) const { return this->getSrc(0u); }
    BTI getBTI(void) const;
    /*! Return the register that contain value valueID */
    INLINE Register getValue(uint32_t valueID) const {
      return this->getDst(valueID);
    }
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Load immediate instruction loads an typed immediate value into the given
   *  register. Since double and uint64_t values will not fit into an
   *  instruction, the immediate themselves are stored in the function core.
   *  Contrary to regular load instructions, there is only one destination
   *  possible
   */
  class LoadImmInstruction : public Instruction {
  public:
    /*! Return the value stored in the instruction */
    Immediate getImmediate(void) const;
    /*! Return the type of the stored value */
    Type getType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Store data in an texture */
  class TypedWriteInstruction : public Instruction {
  public:
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
    uint8_t getImageIndex() const;
    Type getSrcType(void) const;
    Type getCoordType(void) const;
  };

  /*! Load texels from a texture */
  class SampleInstruction : public Instruction {
  public:
    uint8_t getImageIndex() const;
    uint8_t getSamplerIndex(void) const;
    uint8_t getSamplerOffset(void) const;
    Type getSrcType(void) const;
    Type getDstType(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  typedef union _ImageInfoKey{
    _ImageInfoKey(uint8_t i, uint8_t t) : index(i), type(t) {};
    struct {
     uint8_t index; /*! the allocated image index */
     uint8_t  type;  /*! the information type */
    };
    uint16_t data;
  } ImageInfoKey;

  /*! Get image information */
  class GetImageInfoInstruction : public Instruction {
  public:
    enum {
     WIDTH = 0,
     HEIGHT = 1,
     DEPTH = 2,
     CHANNEL_DATA_TYPE = 3,
     CHANNEL_ORDER = 4,
    };

    static INLINE uint32_t getDstNum4Type(int infoType) {
      switch (infoType) {
        case WIDTH:
        case HEIGHT:
        case DEPTH:
        case CHANNEL_DATA_TYPE:
        case CHANNEL_ORDER:
          return 1;
        break;
        default:
          GBE_ASSERT(0);
     }
     return 0;
   }

    uint8_t getImageIndex() const;
    uint32_t getInfoType() const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Branch instruction is the unified way to branch (with or without
   *  predicate)
   */
  class BranchInstruction : public Instruction {
  public:
    /*! Indicate if the branch is predicated */
    bool isPredicated(void) const;
    /*! Indicate if the branch is inverse predicated */
    bool getInversePredicated(void) const;
    /*! Return the predicate register (if predicated) */
    RegisterData getPredicate(void) const {
      GBE_ASSERTM(this->isPredicated() == true, "Branch is not predicated");
      return this->getSrcData(0);
    }
    /*! Return the predicate register index (if predicated) */
    Register getPredicateIndex(void) const {
      GBE_ASSERTM(this->isPredicated() == true, "Branch is not predicated");
      return this->getSrc(0);
    }
    /*! Return the label index pointed by the branch */
    LabelIndex getLabelIndex(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Label instruction are actual no-op but are referenced by branches as their
   *  targets
   */
  class LabelInstruction : public Instruction {
  public:
    /*! Return the label index of the instruction */
    LabelIndex getLabelIndex(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Texture instruction are used for any texture mapping requests */
  class TextureInstruction : public Instruction {
  public:
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Mapped to OpenCL (mem_fence, read_mem_fence, write_mem_fence, barrier) */
  enum {
    SYNC_WORKGROUP_EXEC     = 1<<0,
    SYNC_LOCAL_READ_FENCE   = 1<<1,
    SYNC_LOCAL_WRITE_FENCE  = 1<<2,
    SYNC_GLOBAL_READ_FENCE  = 1<<3,
    SYNC_GLOBAL_WRITE_FENCE = 1<<4,
    SYNC_INVALID            = 1<<5
  };

  /*! 5 bits to encode all possible synchronization capablities */
  static const uint32_t syncFieldNum = 5u;

  /*! When barrier(CLK_LOCAL_MEM_FENCE) is issued */
  static const uint32_t syncLocalBarrier = SYNC_WORKGROUP_EXEC |SYNC_LOCAL_WRITE_FENCE | SYNC_LOCAL_READ_FENCE;

  /*! When barrier(CLK_GLOBAL_MEM_FENCE) is issued */
  static const uint32_t syncGlobalBarrier = SYNC_WORKGROUP_EXEC | SYNC_GLOBAL_WRITE_FENCE | SYNC_GLOBAL_READ_FENCE;

  /*! Sync instructions are used to order loads and stores for a given memory
   *  space and/or to serialize threads at a given point in the program
   */
  class SyncInstruction : public Instruction {
  public:
    /*! Get the parameters (bitfields) of the sync instructions (see above) */
    uint32_t getParameters(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Read one register (8 DWORD) in arf */
  class ReadARFInstruction : public Instruction {
  public:
    Type getType() const;
    ir::ARFRegister getARFRegister() const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! return a region of a register, make sure the offset does not exceed the register size */
  class RegionInstruction : public Instruction {
  public:
    uint32_t getOffset(void) const;
    /*! Return true if the given instruction is an instance of this class */
    static bool isClassOf(const Instruction &insn);
  };

  /*! Specialize the instruction. Also performs typechecking first based on the
   *  opcode. Crashes if it fails
   */
  template <typename T>
  INLINE T *cast(Instruction *insn) {
    if(insn->isMemberOf<T>())
      return reinterpret_cast<T*>(insn);
    else
      return NULL;
  }
  template <typename T>
  INLINE const T *cast(const Instruction *insn) {
    if(insn->isMemberOf<T>())
      return reinterpret_cast<const T*>(insn);
    else
      return NULL;
  }
  template <typename T>
  INLINE T &cast(Instruction &insn) {
    GBE_ASSERTM(insn.isMemberOf<T>() == true, "Invalid instruction type");
    return reinterpret_cast<T&>(insn);
  }
  template <typename T>
  INLINE const T &cast(const Instruction &insn) {
    GBE_ASSERTM(insn.isMemberOf<T>() == true, "Invalid instruction type");
    return reinterpret_cast<const T&>(insn);
  }

  /*! Indicates if the given opcode belongs the given instruction family */
  template <typename T, typename U> struct EqualType {enum {value = false};};
  template <typename T> struct EqualType<T,T> { enum {value = true};};
  template <typename T>
  INLINE bool isOpcodeFrom(Opcode op) {
    switch (op) {
#define DECL_INSN(OPCODE, FAMILY) \
      case OP_##OPCODE: return EqualType<T, FAMILY>::value;
#include "instruction.hxx"
#undef DECL_INSN
      default: NOT_SUPPORTED; return false;
    }
  }

  ///////////////////////////////////////////////////////////////////////////
  /// All emission functions
  ///////////////////////////////////////////////////////////////////////////

  /*! alu1.type dst src */
  Instruction ALU1(Opcode opcode, Type type, Register dst, Register src);
  /*! mov.type dst src */
  Instruction MOV(Type type, Register dst, Register src);
  /*! cos.type dst src */
  Instruction COS(Type type, Register dst, Register src);
  /*! sin.type dst src */
  Instruction SIN(Type type, Register dst, Register src);
  /*! mul_hi.type dst src */
  Instruction MUL_HI(Type type, Register dst, Register src0, Register src1);
  /*! i64_mul_hi.type dst src */
  Instruction I64_MUL_HI(Type type, Register dst, Register src0, Register src1);
  /*! i64madsat.type dst src */
  Instruction I64MADSAT(Type type, Register dst, Tuple src);
  /*! mad.type dst src */
  Instruction MAD(Type type, Register dst, Tuple src);
  /*! upsample_short.type dst src */
  Instruction UPSAMPLE_SHORT(Type type, Register dst, Register src0, Register src1);
  /*! upsample_int.type dst src */
  Instruction UPSAMPLE_INT(Type type, Register dst, Register src0, Register src1);
  /*! upsample_long.type dst src */
  Instruction UPSAMPLE_LONG(Type type, Register dst, Register src0, Register src1);
  /*! fbh.type dst src */
  Instruction FBH(Type type, Register dst, Register src);
  /*! fbl.type dst src */
  Instruction FBL(Type type, Register dst, Register src);
  /*! cbit.type dst src */
  Instruction CBIT(Type type, Register dst, Register src);
  /*! lzd.type dst src */
  Instruction LZD(Type type, Register dst, Register src);
  /*! hadd.type dst src */
  Instruction HADD(Type type, Register dst, Register src0, Register src1);
  /*! rhadd.type dst src */
  Instruction RHADD(Type type, Register dst, Register src0, Register src1);
  /*! i64hadd.type dst src */
  Instruction I64HADD(Type type, Register dst, Register src0, Register src1);
  /*! i64rhadd.type dst src */
  Instruction I64RHADD(Type type, Register dst, Register src0, Register src1);
  /*! tan.type dst src */
  Instruction RCP(Type type, Register dst, Register src);
  /*! abs.type dst src */
  Instruction ABS(Type type, Register dst, Register src);
  /*! simd_all.type dst src */
  Instruction SIMD_ALL(Type type, Register dst, Register src);
  /*! simd_any.type dst src */
  Instruction SIMD_ANY(Type type, Register dst, Register src);
  /*! log.type dst src */
  Instruction LOG(Type type, Register dst, Register src);
  /*! exp.type dst src */
  Instruction EXP(Type type, Register dst, Register src);
  /*! sqr.type dst src */
  Instruction SQR(Type type, Register dst, Register src);
  /*! rsq.type dst src */
  Instruction RSQ(Type type, Register dst, Register src);
  /*! rndd.type dst src */
  Instruction RNDD(Type type, Register dst, Register src);
  /*! rnde.type dst src */
  Instruction RNDE(Type type, Register dst, Register src);
  /*! rndu.type dst src */
  Instruction RNDU(Type type, Register dst, Register src);
  /*! rndz.type dst src */
  Instruction RNDZ(Type type, Register dst, Register src);
  /*! bswap.type dst src */
  Instruction BSWAP(Type type, Register dst, Register src);
  /*! pow.type dst src0 src1 */
  Instruction POW(Type type, Register dst, Register src0, Register src1);
  /*! mul.type dst src0 src1 */
  Instruction MUL(Type type, Register dst, Register src0, Register src1);
  /*! add.type dst src0 src1 */
  Instruction ADD(Type type, Register dst, Register src0, Register src1);
  /*! addsat.type dst src0 src1 */
  Instruction ADDSAT(Type type, Register dst, Register src0, Register src1);
  /*! sub.type dst src0 src1 */
  Instruction SUB(Type type, Register dst, Register src0, Register src1);
  /*! subsat.type dst src0 src1 */
  Instruction SUBSAT(Type type, Register dst, Register src0, Register src1);
  /*! div.type dst src0 src1 */
  Instruction DIV(Type type, Register dst, Register src0, Register src1);
  /*! rem.type dst src0 src1 */
  Instruction REM(Type type, Register dst, Register src0, Register src1);
  /*! shl.type dst src0 src1 */
  Instruction SHL(Type type, Register dst, Register src0, Register src1);
  /*! shr.type dst src0 src1 */
  Instruction SHR(Type type, Register dst, Register src0, Register src1);
  /*! asr.type dst src0 src1 */
  Instruction ASR(Type type, Register dst, Register src0, Register src1);
  /*! bsf.type dst src0 src1 */
  Instruction BSF(Type type, Register dst, Register src0, Register src1);
  /*! bsb.type dst src0 src1 */
  Instruction BSB(Type type, Register dst, Register src0, Register src1);
  /*! or.type dst src0 src1 */
  Instruction OR(Type type, Register dst, Register src0, Register src1);
  /*! xor.type dst src0 src1 */
  Instruction XOR(Type type, Register dst, Register src0, Register src1);
  /*! and.type dst src0 src1 */
  Instruction AND(Type type, Register dst, Register src0, Register src1);
  /*! sel.type dst {cond, src0, src1} (== src) */
  Instruction SEL(Type type, Register dst, Tuple src);
  /*! eq.type dst src0 src1 */
  Instruction EQ(Type type, Register dst, Register src0, Register src1);
  /*! ne.type dst src0 src1 */
  Instruction NE(Type type, Register dst, Register src0, Register src1);
  /*! lt.type dst src0 src1 */
  Instruction LE(Type type, Register dst, Register src0, Register src1);
  /*! le.type dst src0 src1 */
  Instruction LT(Type type, Register dst, Register src0, Register src1);
  /*! gt.type dst src0 src1 */
  Instruction GE(Type type, Register dst, Register src0, Register src1);
  /*! ge.type dst src0 src1 */
  Instruction GT(Type type, Register dst, Register src0, Register src1);
  /*! ord.type dst src0 src1 */
  Instruction ORD(Type type, Register dst, Register src0, Register src1);
  /*! BITCAST.{dstType <- srcType} dst src */
  Instruction BITCAST(Type dstType, Type srcType, Tuple dst, Tuple src, uint8_t dstNum, uint8_t srcNum);
  /*! cvt.{dstType <- srcType} dst src */
  Instruction CVT(Type dstType, Type srcType, Register dst, Register src);
  /*! sat_cvt.{dstType <- srcType} dst src */
  Instruction SAT_CVT(Type dstType, Type srcType, Register dst, Register src);
  /*! F16TO32.{dstType <- srcType} dst src */
  Instruction F16TO32(Type dstType, Type srcType, Register dst, Register src);
  /*! F32TO16.{dstType <- srcType} dst src */
  Instruction F32TO16(Type dstType, Type srcType, Register dst, Register src);
  /*! atomic dst addr.space {src1 {src2}} */
  Instruction ATOMIC(AtomicOps opcode, Register dst, AddressSpace space, BTI bti, Tuple src);
  /*! bra labelIndex */
  Instruction BRA(LabelIndex labelIndex);
  /*! (pred) bra labelIndex */
  Instruction BRA(LabelIndex labelIndex, Register pred);
  /*! (pred) if labelIndex */
  Instruction IF(LabelIndex labelIndex, Register pred, bool inv_pred=true);
  /*! else labelIndex */
  Instruction ELSE(LabelIndex labelIndex);
  /*! endif */
  Instruction ENDIF(LabelIndex labelIndex);
  /*! (pred) while labelIndex */
  Instruction WHILE(LabelIndex labelIndex, Register pred);
  /*! ret */
  Instruction RET(void);
  /*! load.type.space {dst1,...,dst_valueNum} offset value */
  Instruction LOAD(Type type, Tuple dst, Register offset, AddressSpace space, uint32_t valueNum, bool dwAligned, BTI bti);
  /*! store.type.space offset {src1,...,src_valueNum} value */
  Instruction STORE(Type type, Tuple src, Register offset, AddressSpace space, uint32_t valueNum, bool dwAligned, BTI bti);
  /*! loadi.type dst value */
  Instruction LOADI(Type type, Register dst, ImmediateIndex value);
  /*! sync.params... (see Sync instruction) */
  Instruction SYNC(uint32_t parameters);

  Instruction READ_ARF(Type type, Register dst, ARFRegister arf);
  Instruction REGION(Register dst, Register src, uint32_t offset);
  /*! typed write */
  Instruction TYPED_WRITE(uint8_t imageIndex, Tuple src, uint8_t srcNum, Type srcType, Type coordType);
  /*! sample textures */
  Instruction SAMPLE(uint8_t imageIndex, Tuple dst, Tuple src, uint8_t srcNum, bool dstIsFloat, bool srcIsFloat, uint8_t sampler, uint8_t samplerOffset);
  /*! get image information , such as width/height/depth/... */
  Instruction GET_IMAGE_INFO(int infoType, Register dst, uint8_t imageIndex, Register infoReg);
  /*! label labelIndex */
  Instruction LABEL(LabelIndex labelIndex);

} /* namespace ir */
} /* namespace gbe */

#endif /* __GBE_IR_INSTRUCTION_HPP__ */