summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/PlaceSafepoints.cpp
blob: 029178388b78d454ce37274e91f0ea56a22f61fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Place garbage collection safepoints at appropriate locations in the IR. This
// does not make relocation semantics or variable liveness explicit.  That's
// done by RewriteStatepointsForGC.
//
// Terminology:
// - A call is said to be "parseable" if there is a stack map generated for the
// return PC of the call.  A runtime can determine where values listed in the
// deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
// on the stack when the code is suspended inside such a call.  Every parse
// point is represented by a call wrapped in an gc.statepoint intrinsic.
// - A "poll" is an explicit check in the generated code to determine if the
// runtime needs the generated code to cooperate by calling a helper routine
// and thus suspending its execution at a known state. The call to the helper
// routine will be parseable.  The (gc & runtime specific) logic of a poll is
// assumed to be provided in a function of the name "gc.safepoint_poll".
//
// We aim to insert polls such that running code can quickly be brought to a
// well defined state for inspection by the collector.  In the current
// implementation, this is done via the insertion of poll sites at method entry
// and the backedge of most loops.  We try to avoid inserting more polls than
// are necessary to ensure a finite period between poll sites.  This is not
// because the poll itself is expensive in the generated code; it's not.  Polls
// do tend to impact the optimizer itself in negative ways; we'd like to avoid
// perturbing the optimization of the method as much as we can.
//
// We also need to make most call sites parseable.  The callee might execute a
// poll (or otherwise be inspected by the GC).  If so, the entire stack
// (including the suspended frame of the current method) must be parseable.
//
// This pass will insert:
// - Call parse points ("call safepoints") for any call which may need to
// reach a safepoint during the execution of the callee function.
// - Backedge safepoint polls and entry safepoint polls to ensure that
// executing code reaches a safepoint poll in a finite amount of time.
//
// We do not currently support return statepoints, but adding them would not
// be hard.  They are not required for correctness - entry safepoints are an
// alternative - but some GCs may prefer them.  Patches welcome.
//
//===----------------------------------------------------------------------===//

#include "llvm/Pass.h"

#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"

#define DEBUG_TYPE "safepoint-placement"

STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");

STATISTIC(CallInLoop,
          "Number of loops without safepoints due to calls in loop");
STATISTIC(FiniteExecution,
          "Number of loops without safepoints finite execution");

using namespace llvm;

// Ignore opportunities to avoid placing safepoints on backedges, useful for
// validation
static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
                                  cl::init(false));

/// How narrow does the trip count of a loop have to be to have to be considered
/// "counted"?  Counted loops do not get safepoints at backedges.
static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
                                         cl::Hidden, cl::init(32));

// If true, split the backedge of a loop when placing the safepoint, otherwise
// split the latch block itself.  Both are useful to support for
// experimentation, but in practice, it looks like splitting the backedge
// optimizes better.
static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
                                   cl::init(false));

namespace {

/// An analysis pass whose purpose is to identify each of the backedges in
/// the function which require a safepoint poll to be inserted.
struct PlaceBackedgeSafepointsImpl : public FunctionPass {
  static char ID;

  /// The output of the pass - gives a list of each backedge (described by
  /// pointing at the branch) which need a poll inserted.
  std::vector<TerminatorInst *> PollLocations;

  /// True unless we're running spp-no-calls in which case we need to disable
  /// the call-dependent placement opts.
  bool CallSafepointsEnabled;

  ScalarEvolution *SE = nullptr;
  DominatorTree *DT = nullptr;
  LoopInfo *LI = nullptr;

  PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
      : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
    initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *);
  void runOnLoopAndSubLoops(Loop *L) {
    // Visit all the subloops
    for (auto I = L->begin(), E = L->end(); I != E; I++)
      runOnLoopAndSubLoops(*I);
    runOnLoop(L);
  }

  bool runOnFunction(Function &F) override {
    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    for (auto I = LI->begin(), E = LI->end(); I != E; I++) {
      runOnLoopAndSubLoops(*I);
    }
    return false;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    // We no longer modify the IR at all in this pass.  Thus all
    // analysis are preserved.
    AU.setPreservesAll();
  }
};
}

static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));

namespace {
struct PlaceSafepoints : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid

  PlaceSafepoints() : FunctionPass(ID) {
    initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
  }
  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // We modify the graph wholesale (inlining, block insertion, etc).  We
    // preserve nothing at the moment.  We could potentially preserve dom tree
    // if that was worth doing
  }
};
}

// Insert a safepoint poll immediately before the given instruction.  Does
// not handle the parsability of state at the runtime call, that's the
// callers job.
static void
InsertSafepointPoll(Instruction *InsertBefore,
                    std::vector<CallSite> &ParsePointsNeeded /*rval*/);

static bool needsStatepoint(const CallSite &CS) {
  if (callsGCLeafFunction(CS))
    return false;
  if (CS.isCall()) {
    CallInst *call = cast<CallInst>(CS.getInstruction());
    if (call->isInlineAsm())
      return false;
  }

  return !(isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS));
}

/// Returns true if this loop is known to contain a call safepoint which
/// must unconditionally execute on any iteration of the loop which returns
/// to the loop header via an edge from Pred.  Returns a conservative correct
/// answer; i.e. false is always valid.
static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
                                               BasicBlock *Pred,
                                               DominatorTree &DT) {
  // In general, we're looking for any cut of the graph which ensures
  // there's a call safepoint along every edge between Header and Pred.
  // For the moment, we look only for the 'cuts' that consist of a single call
  // instruction in a block which is dominated by the Header and dominates the
  // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
  // of such dominating blocks gets substantially more occurrences than just
  // checking the Pred and Header blocks themselves.  This may be due to the
  // density of loop exit conditions caused by range and null checks.
  // TODO: structure this as an analysis pass, cache the result for subloops,
  // avoid dom tree recalculations
  assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");

  BasicBlock *Current = Pred;
  while (true) {
    for (Instruction &I : *Current) {
      if (auto CS = CallSite(&I))
        // Note: Technically, needing a safepoint isn't quite the right
        // condition here.  We should instead be checking if the target method
        // has an
        // unconditional poll. In practice, this is only a theoretical concern
        // since we don't have any methods with conditional-only safepoint
        // polls.
        if (needsStatepoint(CS))
          return true;
    }

    if (Current == Header)
      break;
    Current = DT.getNode(Current)->getIDom()->getBlock();
  }

  return false;
}

/// Returns true if this loop is known to terminate in a finite number of
/// iterations.  Note that this function may return false for a loop which
/// does actual terminate in a finite constant number of iterations due to
/// conservatism in the analysis.
static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
                                    BasicBlock *Pred) {
  // A conservative bound on the loop as a whole.
  const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
  if (MaxTrips != SE->getCouldNotCompute() &&
      SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
          CountedLoopTripWidth))
    return true;

  // If this is a conditional branch to the header with the alternate path
  // being outside the loop, we can ask questions about the execution frequency
  // of the exit block.
  if (L->isLoopExiting(Pred)) {
    // This returns an exact expression only.  TODO: We really only need an
    // upper bound here, but SE doesn't expose that.
    const SCEV *MaxExec = SE->getExitCount(L, Pred);
    if (MaxExec != SE->getCouldNotCompute() &&
        SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
            CountedLoopTripWidth))
        return true;
  }

  return /* not finite */ false;
}

static void scanOneBB(Instruction *Start, Instruction *End,
                      std::vector<CallInst *> &Calls,
                      DenseSet<BasicBlock *> &Seen,
                      std::vector<BasicBlock *> &Worklist) {
  for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
                                        BBE1 = BasicBlock::iterator(End);
       BBI != BBE0 && BBI != BBE1; BBI++) {
    if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
      Calls.push_back(CI);

    // FIXME: This code does not handle invokes
    assert(!isa<InvokeInst>(&*BBI) &&
           "support for invokes in poll code needed");

    // Only add the successor blocks if we reach the terminator instruction
    // without encountering end first
    if (BBI->isTerminator()) {
      BasicBlock *BB = BBI->getParent();
      for (BasicBlock *Succ : successors(BB)) {
        if (Seen.insert(Succ).second) {
          Worklist.push_back(Succ);
        }
      }
    }
  }
}

static void scanInlinedCode(Instruction *Start, Instruction *End,
                            std::vector<CallInst *> &Calls,
                            DenseSet<BasicBlock *> &Seen) {
  Calls.clear();
  std::vector<BasicBlock *> Worklist;
  Seen.insert(Start->getParent());
  scanOneBB(Start, End, Calls, Seen, Worklist);
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.back();
    Worklist.pop_back();
    scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
  }
}

bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
  // Loop through all loop latches (branches controlling backedges).  We need
  // to place a safepoint on every backedge (potentially).
  // Note: In common usage, there will be only one edge due to LoopSimplify
  // having run sometime earlier in the pipeline, but this code must be correct
  // w.r.t. loops with multiple backedges.
  BasicBlock *Header = L->getHeader();
  SmallVector<BasicBlock*, 16> LoopLatches;
  L->getLoopLatches(LoopLatches);
  for (BasicBlock *Pred : LoopLatches) {
    assert(L->contains(Pred));

    // Make a policy decision about whether this loop needs a safepoint or
    // not.  Note that this is about unburdening the optimizer in loops, not
    // avoiding the runtime cost of the actual safepoint.
    if (!AllBackedges) {
      if (mustBeFiniteCountedLoop(L, SE, Pred)) {
        DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
        FiniteExecution++;
        continue;
      }
      if (CallSafepointsEnabled &&
          containsUnconditionalCallSafepoint(L, Header, Pred, *DT)) {
        // Note: This is only semantically legal since we won't do any further
        // IPO or inlining before the actual call insertion..  If we hadn't, we
        // might latter loose this call safepoint.
        DEBUG(dbgs() << "skipping safepoint placement due to unconditional call\n");
        CallInLoop++;
        continue;
      }
    }

    // TODO: We can create an inner loop which runs a finite number of
    // iterations with an outer loop which contains a safepoint.  This would
    // not help runtime performance that much, but it might help our ability to
    // optimize the inner loop.

    // Safepoint insertion would involve creating a new basic block (as the
    // target of the current backedge) which does the safepoint (of all live
    // variables) and branches to the true header
    TerminatorInst *Term = Pred->getTerminator();

    DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);

    PollLocations.push_back(Term);
  }

  return false;
}

/// Returns true if an entry safepoint is not required before this callsite in
/// the caller function.
static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
  Instruction *Inst = CS.getInstruction();
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::experimental_gc_statepoint:
    case Intrinsic::experimental_patchpoint_void:
    case Intrinsic::experimental_patchpoint_i64:
      // The can wrap an actual call which may grow the stack by an unbounded
      // amount or run forever.
      return false;
    default:
      // Most LLVM intrinsics are things which do not expand to actual calls, or
      // at least if they do, are leaf functions that cause only finite stack
      // growth.  In particular, the optimizer likes to form things like memsets
      // out of stores in the original IR.  Another important example is
      // llvm.localescape which must occur in the entry block.  Inserting a
      // safepoint before it is not legal since it could push the localescape
      // out of the entry block.
      return true;
    }
  }
  return false;
}

static Instruction *findLocationForEntrySafepoint(Function &F,
                                                  DominatorTree &DT) {

  // Conceptually, this poll needs to be on method entry, but in
  // practice, we place it as late in the entry block as possible.  We
  // can place it as late as we want as long as it dominates all calls
  // that can grow the stack.  This, combined with backedge polls,
  // give us all the progress guarantees we need.

  // hasNextInstruction and nextInstruction are used to iterate
  // through a "straight line" execution sequence.

  auto HasNextInstruction = [](Instruction *I) {
    if (!I->isTerminator())
      return true;

    BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
    return nextBB && (nextBB->getUniquePredecessor() != nullptr);
  };

  auto NextInstruction = [&](Instruction *I) {
    assert(HasNextInstruction(I) &&
           "first check if there is a next instruction!");

    if (I->isTerminator())
      return &I->getParent()->getUniqueSuccessor()->front();
    return &*++I->getIterator();
  };

  Instruction *Cursor = nullptr;
  for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
       Cursor = NextInstruction(Cursor)) {

    // We need to ensure a safepoint poll occurs before any 'real' call.  The
    // easiest way to ensure finite execution between safepoints in the face of
    // recursive and mutually recursive functions is to enforce that each take
    // a safepoint.  Additionally, we need to ensure a poll before any call
    // which can grow the stack by an unbounded amount.  This isn't required
    // for GC semantics per se, but is a common requirement for languages
    // which detect stack overflow via guard pages and then throw exceptions.
    if (auto CS = CallSite(Cursor)) {
      if (doesNotRequireEntrySafepointBefore(CS))
        continue;
      break;
    }
  }

  assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
         "either we stopped because of a call, or because of terminator");

  return Cursor;
}

static const char *const GCSafepointPollName = "gc.safepoint_poll";

static bool isGCSafepointPoll(Function &F) {
  return F.getName().equals(GCSafepointPollName);
}

/// Returns true if this function should be rewritten to include safepoint
/// polls and parseable call sites.  The main point of this function is to be
/// an extension point for custom logic.
static bool shouldRewriteFunction(Function &F) {
  // TODO: This should check the GCStrategy
  if (F.hasGC()) {
    const auto &FunctionGCName = F.getGC();
    const StringRef StatepointExampleName("statepoint-example");
    const StringRef CoreCLRName("coreclr");
    return (StatepointExampleName == FunctionGCName) ||
           (CoreCLRName == FunctionGCName);
  } else
    return false;
}

// TODO: These should become properties of the GCStrategy, possibly with
// command line overrides.
static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
static bool enableCallSafepoints(Function &F) { return !NoCall; }

bool PlaceSafepoints::runOnFunction(Function &F) {
  if (F.isDeclaration() || F.empty()) {
    // This is a declaration, nothing to do.  Must exit early to avoid crash in
    // dom tree calculation
    return false;
  }

  if (isGCSafepointPoll(F)) {
    // Given we're inlining this inside of safepoint poll insertion, this
    // doesn't make any sense.  Note that we do make any contained calls
    // parseable after we inline a poll.
    return false;
  }

  if (!shouldRewriteFunction(F))
    return false;

  bool Modified = false;

  // In various bits below, we rely on the fact that uses are reachable from
  // defs.  When there are basic blocks unreachable from the entry, dominance
  // and reachablity queries return non-sensical results.  Thus, we preprocess
  // the function to ensure these properties hold.
  Modified |= removeUnreachableBlocks(F);

  // STEP 1 - Insert the safepoint polling locations.  We do not need to
  // actually insert parse points yet.  That will be done for all polls and
  // calls in a single pass.

  DominatorTree DT;
  DT.recalculate(F);

  SmallVector<Instruction *, 16> PollsNeeded;
  std::vector<CallSite> ParsePointNeeded;

  if (enableBackedgeSafepoints(F)) {
    // Construct a pass manager to run the LoopPass backedge logic.  We
    // need the pass manager to handle scheduling all the loop passes
    // appropriately.  Doing this by hand is painful and just not worth messing
    // with for the moment.
    legacy::FunctionPassManager FPM(F.getParent());
    bool CanAssumeCallSafepoints = enableCallSafepoints(F);
    auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
    FPM.add(PBS);
    FPM.run(F);

    // We preserve dominance information when inserting the poll, otherwise
    // we'd have to recalculate this on every insert
    DT.recalculate(F);

    auto &PollLocations = PBS->PollLocations;

    auto OrderByBBName = [](Instruction *a, Instruction *b) {
      return a->getParent()->getName() < b->getParent()->getName();
    };
    // We need the order of list to be stable so that naming ends up stable
    // when we split edges.  This makes test cases much easier to write.
    std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);

    // We can sometimes end up with duplicate poll locations.  This happens if
    // a single loop is visited more than once.   The fact this happens seems
    // wrong, but it does happen for the split-backedge.ll test case.
    PollLocations.erase(std::unique(PollLocations.begin(),
                                    PollLocations.end()),
                        PollLocations.end());

    // Insert a poll at each point the analysis pass identified
    // The poll location must be the terminator of a loop latch block.
    for (TerminatorInst *Term : PollLocations) {
      // We are inserting a poll, the function is modified
      Modified = true;

      if (SplitBackedge) {
        // Split the backedge of the loop and insert the poll within that new
        // basic block.  This creates a loop with two latches per original
        // latch (which is non-ideal), but this appears to be easier to
        // optimize in practice than inserting the poll immediately before the
        // latch test.

        // Since this is a latch, at least one of the successors must dominate
        // it. Its possible that we have a) duplicate edges to the same header
        // and b) edges to distinct loop headers.  We need to insert pools on
        // each.
        SetVector<BasicBlock *> Headers;
        for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
          BasicBlock *Succ = Term->getSuccessor(i);
          if (DT.dominates(Succ, Term->getParent())) {
            Headers.insert(Succ);
          }
        }
        assert(!Headers.empty() && "poll location is not a loop latch?");

        // The split loop structure here is so that we only need to recalculate
        // the dominator tree once.  Alternatively, we could just keep it up to
        // date and use a more natural merged loop.
        SetVector<BasicBlock *> SplitBackedges;
        for (BasicBlock *Header : Headers) {
          BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
          PollsNeeded.push_back(NewBB->getTerminator());
          NumBackedgeSafepoints++;
        }
      } else {
        // Split the latch block itself, right before the terminator.
        PollsNeeded.push_back(Term);
        NumBackedgeSafepoints++;
      }
    }
  }

  if (enableEntrySafepoints(F)) {
    if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
      PollsNeeded.push_back(Location);
      Modified = true;
      NumEntrySafepoints++;
    }
    // TODO: else we should assert that there was, in fact, a policy choice to
    // not insert a entry safepoint poll.
  }

  // Now that we've identified all the needed safepoint poll locations, insert
  // safepoint polls themselves.
  for (Instruction *PollLocation : PollsNeeded) {
    std::vector<CallSite> RuntimeCalls;
    InsertSafepointPoll(PollLocation, RuntimeCalls);
    ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
                            RuntimeCalls.end());
  }

  return Modified;
}

char PlaceBackedgeSafepointsImpl::ID = 0;
char PlaceSafepoints::ID = 0;

FunctionPass *llvm::createPlaceSafepointsPass() {
  return new PlaceSafepoints();
}

INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
                      "place-backedge-safepoints-impl",
                      "Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
                    "place-backedge-safepoints-impl",
                    "Place Backedge Safepoints", false, false)

INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
                      false, false)
INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
                    false, false)

static void
InsertSafepointPoll(Instruction *InsertBefore,
                    std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
  BasicBlock *OrigBB = InsertBefore->getParent();
  Module *M = InsertBefore->getModule();
  assert(M && "must be part of a module");

  // Inline the safepoint poll implementation - this will get all the branch,
  // control flow, etc..  Most importantly, it will introduce the actual slow
  // path call - where we need to insert a safepoint (parsepoint).

  auto *F = M->getFunction(GCSafepointPollName);
  assert(F && "gc.safepoint_poll function is missing");
  assert(F->getValueType() ==
         FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
         "gc.safepoint_poll declared with wrong type");
  assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
  CallInst *PollCall = CallInst::Create(F, "", InsertBefore);

  // Record some information about the call site we're replacing
  BasicBlock::iterator Before(PollCall), After(PollCall);
  bool IsBegin = false;
  if (Before == OrigBB->begin())
    IsBegin = true;
  else
    Before--;

  After++;
  assert(After != OrigBB->end() && "must have successor");

  // Do the actual inlining
  InlineFunctionInfo IFI;
  bool InlineStatus = InlineFunction(PollCall, IFI);
  assert(InlineStatus && "inline must succeed");
  (void)InlineStatus; // suppress warning in release-asserts

  // Check post-conditions
  assert(IFI.StaticAllocas.empty() && "can't have allocs");

  std::vector<CallInst *> Calls; // new calls
  DenseSet<BasicBlock *> BBs;    // new BBs + insertee

  // Include only the newly inserted instructions, Note: begin may not be valid
  // if we inserted to the beginning of the basic block
  BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);

  // If your poll function includes an unreachable at the end, that's not
  // valid.  Bugpoint likes to create this, so check for it.
  assert(isPotentiallyReachable(&*Start, &*After) &&
         "malformed poll function");

  scanInlinedCode(&*Start, &*After, Calls, BBs);
  assert(!Calls.empty() && "slow path not found for safepoint poll");

  // Record the fact we need a parsable state at the runtime call contained in
  // the poll function.  This is required so that the runtime knows how to
  // parse the last frame when we actually take  the safepoint (i.e. execute
  // the slow path)
  assert(ParsePointsNeeded.empty());
  for (auto *CI : Calls) {
    // No safepoint needed or wanted
    if (!needsStatepoint(CI))
      continue;

    // These are likely runtime calls.  Should we assert that via calling
    // convention or something?
    ParsePointsNeeded.push_back(CallSite(CI));
  }
  assert(ParsePointsNeeded.size() <= Calls.size());
}