summaryrefslogtreecommitdiff
path: root/auxprogs/DotToScc.hs
blob: a94434fd7bd5955f8d2a1336f84e2f1948784f36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

-- A program for extracting strongly connected components from a .dot
-- file created by auxprogs/gen-mdg.

-- How to use: one of the following:

-- compile to an exe:   ghc -o dottoscc DotToScc.hs
--    and then    ./dottoscc name_of_file.dot

-- or interpret with runhugs:
--    runhugs DotToScc.hs name_of_file.dot

-- or run within hugs:
--    hugs DotToScc.hs
--    Main> imain "name_of_file.dot"


module Main where

import System
import List ( sort, nub )

usage :: IO ()
usage = putStrLn "usage: dottoscc <name_of_file.dot>"

main :: IO ()
main = do args <- getArgs
          if length args /= 1
           then usage
           else imain (head args)

imain :: String -> IO ()
imain dot_file_name
   = do edges <- read_dot_file dot_file_name
        let sccs = gen_sccs edges
        let pretty = showPrettily sccs
        putStrLn pretty
     where
        showPrettily :: [[String]] -> String
        showPrettily = unlines . concatMap showScc

        showScc elems
           = let n = length elems 
             in
                [""]
                ++ (if n > 1 then ["   -- " 
                                   ++ show n ++ " modules in cycle"] 
                             else [])
                ++ map ("   " ++) elems


-- Read a .dot file and return a list of edges
read_dot_file :: String{-filename-} -> IO [(String,String)]
read_dot_file dot_file_name
   = do bytes <- readFile dot_file_name
        let linez = lines bytes
        let edges = [(s,d) | Just (s,d) <- map maybe_mk_edge linez]
        return edges
     where
        -- identify lines of the form "text1 -> text2" and return
        -- text1 and text2
        maybe_mk_edge :: String -> Maybe (String, String)
        maybe_mk_edge str
           = case words str of
                [text1, "->", text2] -> Just (text1, text2)
                other                -> Nothing


-- Take the list of edges and return a topologically sorted list of
-- sccs
gen_sccs :: [(String,String)] -> [[String]]
gen_sccs raw_edges
   = let clean_edges = sort (nub raw_edges)
         nodes       = nub (concatMap (\(s,d) -> [s,d]) clean_edges)
         ins  v      = [u | (u,w) <- clean_edges, v==w]
         outs v      = [w | (u,w) <- clean_edges, v==u]
         components  = map (sort.utSetToList) (deScc ins outs nodes)
     in
         components


--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------

-- Graph-theoretic stuff that does the interesting stuff.

-- ==========================================================--
--
deScc :: (Ord a) =>
         (a -> [a]) -> -- The "ins"  map
         (a -> [a]) -> -- The "outs" map
         [a]        -> -- The root vertices
         [Set a]       -- The topologically sorted components

deScc ins outs
   = spanning . depthFirst
     where depthFirst = snd . deDepthFirstSearch outs (utSetEmpty, [])
           spanning   = snd . deSpanningSearch   ins  (utSetEmpty, [])


-- =========================================================--
--
deDepthFirstSearch :: (Ord a) =>
                      (a -> [a])   -> -- The map,
                      (Set a, [a]) -> -- state: visited set,
                                      --      current sequence of vertices
                      [a]          -> -- input vertices sequence
                      (Set a, [a])    -- final state

deDepthFirstSearch
   = foldl . search
     where
     search relation (visited, sequence) vertex
      | utSetElementOf vertex visited   = (visited,          sequence )
      | otherwise                       = (visited', vertex: sequence')
        where
        (visited', sequence')
         = deDepthFirstSearch relation
                           (utSetUnion visited (utSetSingleton vertex), sequence)
                           (relation vertex)


-- ==========================================================--
--
deSpanningSearch   :: (Ord a) =>
                      (a -> [a])       -> -- The map
                      (Set a, [Set a]) -> -- Current state: visited set,
                                          --  current sequence of vertice sets
                      [a]              -> -- Input sequence of vertices
                      (Set a, [Set a])    -- Final state

deSpanningSearch
   = foldl . search
     where
     search relation (visited, utSetSequence) vertex
      | utSetElementOf vertex visited   = (visited,          utSetSequence )
      | otherwise = (visited', utSetFromList (vertex: sequence): utSetSequence)
        where
         (visited', sequence)
            = deDepthFirstSearch relation
                          (utSetUnion visited (utSetSingleton vertex), [])
                          (relation vertex)





--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
-- Most of this set stuff isn't needed.


-- ====================================--
-- === set                          ===--
-- ====================================--

data Set e = MkSet [e]

-- ==========================================================--
--
unMkSet :: (Ord a) => Set a -> [a]

unMkSet (MkSet s) = s


-- ==========================================================--
--
utSetEmpty :: (Ord a) => Set a

utSetEmpty = MkSet []


-- ==========================================================--
--
utSetIsEmpty :: (Ord a) => Set a -> Bool

utSetIsEmpty (MkSet s) = s == []


-- ==========================================================--
--
utSetSingleton :: (Ord a) => a -> Set a

utSetSingleton x = MkSet [x]


-- ==========================================================--
--
utSetFromList :: (Ord a) => [a] -> Set a

utSetFromList x = (MkSet . rmdup . sort) x
                  where rmdup []       = []
                        rmdup [x]      = [x]
                        rmdup (x:y:xs) | x==y       = rmdup (y:xs)
                                       | otherwise  = x: rmdup (y:xs)


-- ==========================================================--
--
utSetToList :: (Ord a) => Set a -> [a]

utSetToList (MkSet xs) = xs



-- ==========================================================--
--
utSetUnion :: (Ord a) => Set a -> Set a -> Set a

utSetUnion (MkSet [])     (MkSet [])            = (MkSet [])
utSetUnion (MkSet [])     (MkSet (b:bs))        = (MkSet (b:bs))
utSetUnion (MkSet (a:as)) (MkSet [])            = (MkSet (a:as))
utSetUnion (MkSet (a:as)) (MkSet (b:bs))
    | a < b   = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet (b:bs)))))
    | a == b  = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet bs))))
    | a > b   = MkSet (b: (unMkSet (utSetUnion (MkSet (a:as)) (MkSet bs))))


-- ==========================================================--
--
utSetIntersection :: (Ord a) => Set a -> Set a -> Set a

utSetIntersection (MkSet [])     (MkSet [])     = (MkSet [])
utSetIntersection (MkSet [])     (MkSet (b:bs)) = (MkSet [])
utSetIntersection (MkSet (a:as)) (MkSet [])     = (MkSet [])
utSetIntersection (MkSet (a:as)) (MkSet (b:bs))
    | a < b   = utSetIntersection (MkSet as) (MkSet (b:bs))
    | a == b  = MkSet (a: (unMkSet (utSetIntersection (MkSet as) (MkSet bs))))
    | a > b   = utSetIntersection (MkSet (a:as)) (MkSet bs)


-- ==========================================================--
--
utSetSubtraction :: (Ord a) => Set a -> Set a -> Set a

utSetSubtraction (MkSet [])     (MkSet [])      = (MkSet [])
utSetSubtraction (MkSet [])     (MkSet (b:bs))  = (MkSet [])
utSetSubtraction (MkSet (a:as)) (MkSet [])      = (MkSet (a:as))
utSetSubtraction (MkSet (a:as)) (MkSet (b:bs))
    | a < b   = MkSet (a: (unMkSet (utSetSubtraction (MkSet as) (MkSet (b:bs)))))
    | a == b  = utSetSubtraction (MkSet as) (MkSet bs)
    | a > b   = utSetSubtraction (MkSet (a:as)) (MkSet bs)


-- ==========================================================--
--
utSetElementOf :: (Ord a) => a -> Set a -> Bool

utSetElementOf x (MkSet [])       = False
utSetElementOf x (MkSet (y:ys))   = x==y || (x>y && utSetElementOf x (MkSet ys))



-- ==========================================================--
--
utSetSubsetOf :: (Ord a) => Set a -> Set a -> Bool

utSetSubsetOf (MkSet [])        (MkSet bs) = True
utSetSubsetOf (MkSet (a:as))    (MkSet bs)
    = utSetElementOf a (MkSet bs) && utSetSubsetOf (MkSet as) (MkSet bs)


-- ==========================================================--
--
utSetUnionList :: (Ord a) => [Set a] -> Set a

utSetUnionList setList = foldl utSetUnion utSetEmpty setList