summaryrefslogtreecommitdiff
path: root/source/cfa.h
blob: 89adf1bc1932fe214121166578229d9fa6f9f9b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SPVTOOLS_CFA_H_
#define SPVTOOLS_CFA_H_

#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using std::find;
using std::function;
using std::get;
using std::pair;
using std::unordered_map;
using std::unordered_set;
using std::vector;

namespace spvtools {

// Control Flow Analysis of control flow graphs of basic block nodes |BB|.
template <class BB>
class CFA {
  using bb_ptr = BB*;
  using cbb_ptr = const BB*;
  using bb_iter = typename std::vector<BB*>::const_iterator;
  using get_blocks_func = std::function<const std::vector<BB*>*(const BB*)>;

  struct block_info {
    cbb_ptr block;  ///< pointer to the block
    bb_iter iter;   ///< Iterator to the current child node being processed
  };

  /// Returns true if a block with @p id is found in the @p work_list vector
  ///
  /// @param[in] work_list  Set of blocks visited in the the depth first
  /// traversal
  ///                       of the CFG
  /// @param[in] id         The ID of the block being checked
  ///
  /// @return true if the edge work_list.back().block->id() => id is a back-edge
  static bool FindInWorkList(const std::vector<block_info>& work_list,
                             uint32_t id);

 public:
  /// @brief Depth first traversal starting from the \p entry BasicBlock
  ///
  /// This function performs a depth first traversal from the \p entry
  /// BasicBlock and calls the pre/postorder functions when it needs to process
  /// the node in pre order, post order. It also calls the backedge function
  /// when a back edge is encountered.
  ///
  /// @param[in] entry      The root BasicBlock of a CFG
  /// @param[in] successor_func  A function which will return a pointer to the
  ///                            successor nodes
  /// @param[in] preorder   A function that will be called for every block in a
  ///                       CFG following preorder traversal semantics
  /// @param[in] postorder  A function that will be called for every block in a
  ///                       CFG following postorder traversal semantics
  /// @param[in] backedge   A function that will be called when a backedge is
  ///                       encountered during a traversal
  /// NOTE: The @p successor_func and predecessor_func each return a pointer to
  /// a
  /// collection such that iterators to that collection remain valid for the
  /// lifetime of the algorithm.
  static void DepthFirstTraversal(
      const BB* entry, get_blocks_func successor_func,
      std::function<void(cbb_ptr)> preorder,
      std::function<void(cbb_ptr)> postorder,
      std::function<void(cbb_ptr, cbb_ptr)> backedge);

  /// @brief Calculates dominator edges for a set of blocks
  ///
  /// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
  /// "A Simple, Fast Dominance Algorithm", 2001.
  ///
  /// The algorithm assumes there is a unique root node (a node without
  /// predecessors), and it is therefore at the end of the postorder vector.
  ///
  /// This function calculates the dominator edges for a set of blocks in the
  /// CFG.
  /// Uses the dominator algorithm by Cooper et al.
  ///
  /// @param[in] postorder        A vector of blocks in post order traversal
  /// order
  ///                             in a CFG
  /// @param[in] predecessor_func Function used to get the predecessor nodes of
  /// a
  ///                             block
  ///
  /// @return the dominator tree of the graph, as a vector of pairs of nodes.
  /// The first node in the pair is a node in the graph. The second node in the
  /// pair is its immediate dominator in the sense of Cooper et.al., where a
  /// block
  /// without predecessors (such as the root node) is its own immediate
  /// dominator.
  static vector<pair<BB*, BB*>> CalculateDominators(
      const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);

  // Computes a minimal set of root nodes required to traverse, in the forward
  // direction, the CFG represented by the given vector of blocks, and successor
  // and predecessor functions.  When considering adding two nodes, each having
  // predecessors, favour using the one that appears earlier on the input blocks
  // list.
  static std::vector<BB*> TraversalRoots(const std::vector<BB*>& blocks,
                                         get_blocks_func succ_func,
                                         get_blocks_func pred_func);

  static void ComputeAugmentedCFG(
      std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
      BB* pseudo_exit_block,
      std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
      std::unordered_map<const BB*, std::vector<BB*>>*
          augmented_predecessors_map,
      get_blocks_func succ_func, get_blocks_func pred_func);
};

template <class BB>
bool CFA<BB>::FindInWorkList(const vector<block_info>& work_list, uint32_t id) {
  for (const auto b : work_list) {
    if (b.block->id() == id) return true;
  }
  return false;
}

template <class BB>
void CFA<BB>::DepthFirstTraversal(const BB* entry,
                                  get_blocks_func successor_func,
                                  function<void(cbb_ptr)> preorder,
                                  function<void(cbb_ptr)> postorder,
                                  function<void(cbb_ptr, cbb_ptr)> backedge) {
  unordered_set<uint32_t> processed;

  /// NOTE: work_list is the sequence of nodes from the root node to the node
  /// being processed in the traversal
  vector<block_info> work_list;
  work_list.reserve(10);

  work_list.push_back({entry, begin(*successor_func(entry))});
  preorder(entry);
  processed.insert(entry->id());

  while (!work_list.empty()) {
    block_info& top = work_list.back();
    if (top.iter == end(*successor_func(top.block))) {
      postorder(top.block);
      work_list.pop_back();
    } else {
      BB* child = *top.iter;
      top.iter++;
      if (FindInWorkList(work_list, child->id())) {
        backedge(top.block, child);
      }
      if (processed.count(child->id()) == 0) {
        preorder(child);
        work_list.emplace_back(
            block_info{child, begin(*successor_func(child))});
        processed.insert(child->id());
      }
    }
  }
}

template <class BB>
vector<pair<BB*, BB*>> CFA<BB>::CalculateDominators(
    const vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
  struct block_detail {
    size_t dominator;  ///< The index of blocks's dominator in post order array
    size_t postorder_index;  ///< The index of the block in the post order array
  };
  const size_t undefined_dom = postorder.size();

  unordered_map<cbb_ptr, block_detail> idoms;
  for (size_t i = 0; i < postorder.size(); i++) {
    idoms[postorder[i]] = {undefined_dom, i};
  }
  idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;

  bool changed = true;
  while (changed) {
    changed = false;
    for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
      const vector<BB*>& predecessors = *predecessor_func(*b);
      // Find the first processed/reachable predecessor that is reachable
      // in the forward traversal.
      auto res = find_if(begin(predecessors), end(predecessors),
                         [&idoms, undefined_dom](BB* pred) {
                           return idoms.count(pred) &&
                                  idoms[pred].dominator != undefined_dom;
                         });
      if (res == end(predecessors)) continue;
      const BB* idom = *res;
      size_t idom_idx = idoms[idom].postorder_index;

      // all other predecessors
      for (const auto* p : predecessors) {
        if (idom == p) continue;
        // Only consider nodes reachable in the forward traversal.
        // Otherwise the intersection doesn't make sense and will never
        // terminate.
        if (!idoms.count(p)) continue;
        if (idoms[p].dominator != undefined_dom) {
          size_t finger1 = idoms[p].postorder_index;
          size_t finger2 = idom_idx;
          while (finger1 != finger2) {
            while (finger1 < finger2) {
              finger1 = idoms[postorder[finger1]].dominator;
            }
            while (finger2 < finger1) {
              finger2 = idoms[postorder[finger2]].dominator;
            }
          }
          idom_idx = finger1;
        }
      }
      if (idoms[*b].dominator != idom_idx) {
        idoms[*b].dominator = idom_idx;
        changed = true;
      }
    }
  }

  vector<pair<bb_ptr, bb_ptr>> out;
  for (auto idom : idoms) {
    // NOTE: performing a const cast for convenient usage with
    // UpdateImmediateDominators
    out.push_back({const_cast<BB*>(get<0>(idom)),
                   const_cast<BB*>(postorder[get<1>(idom).dominator])});
  }

  // Sort by postorder index to generate a deterministic ordering of edges.
  std::sort(
      out.begin(), out.end(),
      [&idoms](const pair<bb_ptr, bb_ptr>& lhs,
               const pair<bb_ptr, bb_ptr>& rhs) {
        assert(lhs.first);
        assert(lhs.second);
        assert(rhs.first);
        assert(rhs.second);
        auto lhs_indices = std::make_pair(idoms[lhs.first].postorder_index,
                                          idoms[lhs.second].postorder_index);
        auto rhs_indices = std::make_pair(idoms[rhs.first].postorder_index,
                                          idoms[rhs.second].postorder_index);
        return lhs_indices < rhs_indices;
      });
  return out;
}

template <class BB>
std::vector<BB*> CFA<BB>::TraversalRoots(const std::vector<BB*>& blocks,
                                         get_blocks_func succ_func,
                                         get_blocks_func pred_func) {
  // The set of nodes which have been visited from any of the roots so far.
  std::unordered_set<const BB*> visited;

  auto mark_visited = [&visited](const BB* b) { visited.insert(b); };
  auto ignore_block = [](const BB*) {};
  auto ignore_blocks = [](const BB*, const BB*) {};

  auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block,
                             &ignore_blocks](const BB* entry) {
    DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block,
                        ignore_blocks);
  };

  std::vector<BB*> result;

  // First collect nodes without predecessors.
  for (auto block : blocks) {
    if (pred_func(block)->empty()) {
      assert(visited.count(block) == 0 && "Malformed graph!");
      result.push_back(block);
      traverse_from_root(block);
    }
  }

  // Now collect other stranded nodes.  These must be in unreachable cycles.
  for (auto block : blocks) {
    if (visited.count(block) == 0) {
      result.push_back(block);
      traverse_from_root(block);
    }
  }

  return result;
}

template <class BB>
void CFA<BB>::ComputeAugmentedCFG(
    std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
    BB* pseudo_exit_block,
    std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
    std::unordered_map<const BB*, std::vector<BB*>>* augmented_predecessors_map,
    get_blocks_func succ_func, get_blocks_func pred_func) {
  // Compute the successors of the pseudo-entry block, and
  // the predecessors of the pseudo exit block.
  auto sources = TraversalRoots(ordered_blocks, succ_func, pred_func);

  // For the predecessor traversals, reverse the order of blocks.  This
  // will affect the post-dominance calculation as follows:
  //  - Suppose you have blocks A and B, with A appearing before B in
  //    the list of blocks.
  //  - Also, A branches only to B, and B branches only to A.
  //  - We want to compute A as dominating B, and B as post-dominating B.
  // By using reversed blocks for predecessor traversal roots discovery,
  // we'll add an edge from B to the pseudo-exit node, rather than from A.
  // All this is needed to correctly process the dominance/post-dominance
  // constraint when A is a loop header that points to itself as its
  // own continue target, and B is the latch block for the loop.
  std::vector<BB*> reversed_blocks(ordered_blocks.rbegin(),
                                   ordered_blocks.rend());
  auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func);

  // Wire up the pseudo entry block.
  (*augmented_successors_map)[pseudo_entry_block] = sources;
  for (auto block : sources) {
    auto& augmented_preds = (*augmented_predecessors_map)[block];
    const auto preds = pred_func(block);
    augmented_preds.reserve(1 + preds->size());
    augmented_preds.push_back(pseudo_entry_block);
    augmented_preds.insert(augmented_preds.end(), preds->begin(), preds->end());
  }

  // Wire up the pseudo exit block.
  (*augmented_predecessors_map)[pseudo_exit_block] = sinks;
  for (auto block : sinks) {
    auto& augmented_succ = (*augmented_successors_map)[block];
    const auto succ = succ_func(block);
    augmented_succ.reserve(1 + succ->size());
    augmented_succ.push_back(pseudo_exit_block);
    augmented_succ.insert(augmented_succ.end(), succ->begin(), succ->end());
  }
}

}  // namespace spvtools

#endif  // SPVTOOLS_CFA_H_