summaryrefslogtreecommitdiff
path: root/earth.glsl
blob: 908601d5a06cbade89a711acfe07aed5a57bd994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/**
 * Precomputed Atmospheric Scattering
 * Copyright (c) 2008 INRIA
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holders nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * Author: Eric Bruneton
 */

#define FIX

const float ISun = 100.0;

uniform vec3 c;
uniform vec3 s;
uniform mat4 projInverse;
uniform mat4 viewInverse;
uniform float exposure;

uniform sampler2D reflectanceSampler;//ground reflectance texture
uniform sampler2D irradianceSampler;//precomputed skylight irradiance (E table)
uniform sampler3D inscatterSampler;//precomputed inscattered light (S table)

varying vec2 coords;
varying vec3 ray;

#ifdef _VERTEX_

void main() {
    coords = gl_Vertex.xy * 0.5 + 0.5;
    ray = (viewInverse * vec4((projInverse * gl_Vertex).xyz, 0.0)).xyz;
    gl_Position = gl_Vertex;
}

#else

//inscattered light along ray x+tv, when sun in direction s (=S[L]-T(x,x0)S[L]|x0)
vec3 inscatter(inout vec3 x, inout float t, vec3 v, vec3 s, out float r, out float mu, out vec3 attenuation) {
    vec3 result;
    r = length(x);
    mu = dot(x, v) / r;
    if ((r * r * (mu * mu - 1.0) + Rt * Rt) >= 0.0) {
      float d = -r * mu - sqrt(r * r * (mu * mu - 1.0) + Rt * Rt);
      if (d > 0.0) { // if x in space and ray intersects atmosphere
        // move x to nearest intersection of ray with top atmosphere boundary
        x += d * v;
        t -= d;
        mu = (r * mu + d) / Rt;
        r = Rt;
      }
    }
    if (r <= Rt) { // if ray intersects atmosphere
        float nu = dot(v, s);
        float muS = dot(x, s) / r;
        float phaseR = phaseFunctionR(nu);
        float phaseM = phaseFunctionM(nu);
        vec4 inscatter = max(texture4D(inscatterSampler, r, mu, muS, nu), 0.0);
        if (t > 0.0) {
            vec3 x0 = x + t * v;
            float r0 = length(x0);
            float rMu0 = dot(x0, v);
            float mu0 = rMu0 / r0;
            float muS0 = dot(x0, s) / r0;
#ifdef FIX
            // avoids imprecision problems in transmittance computations based on textures
            attenuation = analyticTransmittance(r, mu, t);
#else
            attenuation = transmittance(r, mu, v, x0);
#endif
            if (r0 > Rg + 0.01) {
                // computes S[L]-T(x,x0)S[L]|x0
                inscatter = max(inscatter - attenuation.rgbr * texture4D(inscatterSampler, r0, mu0, muS0, nu), 0.0);
#ifdef FIX
                // avoids imprecision problems near horizon by interpolating between two points above and below horizon
                const float EPS = 0.004;
                float muHoriz = -sqrt(max(0.0, 1.0 - (Rg / r) * (Rg / r)));
                if (abs(mu - muHoriz) < EPS) {
                    float a = ((mu - muHoriz) + EPS) / (2.0 * EPS);

                    mu = muHoriz - EPS;
                    r0 = sqrt(r * r + t * t + 2.0 * r * t * mu);
                    mu0 = (r * mu + t) / r0;
                    vec4 inScatter0 = texture4D(inscatterSampler, r, mu, muS, nu);
                    vec4 inScatter1 = texture4D(inscatterSampler, r0, mu0, muS0, nu);
                    vec4 inScatterA = max(inScatter0 - attenuation.rgbr * inScatter1, 0.0);

                    mu = muHoriz + EPS;
                    r0 = sqrt(r * r + t * t + 2.0 * r * t * mu);
                    mu0 = (r * mu + t) / r0;
                    inScatter0 = texture4D(inscatterSampler, r, mu, muS, nu);
                    inScatter1 = texture4D(inscatterSampler, r0, mu0, muS0, nu);
                    vec4 inScatterB = max(inScatter0 - attenuation.rgbr * inScatter1, 0.0);

                    inscatter = mix(inScatterA, inScatterB, a);
                }
#endif
            }
        }
#ifdef FIX
        // avoids imprecision problems in Mie scattering when sun is below horizon
        inscatter.w *= smoothstep(0.00, 0.02, muS);
#endif
        result = max(inscatter.rgb * phaseR + getMie(inscatter) * phaseM, 0.0);
    } else { // x in space and ray looking in space
        result = vec3(0.0);
    }
    return result * ISun;
}

//ground radiance at end of ray x+tv, when sun in direction s
//attenuated bewteen ground and viewer (=R[L0]+R[L*])
vec3 groundColor(vec3 x, float t, vec3 v, vec3 s, float r, float mu, vec3 attenuation)
{
    vec3 result;
    if (t > 0.0) { // if ray hits ground surface
        // ground reflectance at end of ray, x0
        vec3 x0 = x + t * v;
        float r0 = length(x0);
        vec3 n = x0 / r0;
        vec2 coords = vec2(atan(n.y, n.x), acos(n.z)) * vec2(0.5, 1.0) / M_PI + vec2(0.5, 0.0);
        vec4 reflectance = texture2D(reflectanceSampler, coords) * vec4(0.2, 0.2, 0.2, 1.0);
        if (r0 > Rg + 0.01) {
            reflectance = vec4(0.4, 0.4, 0.4, 0.0);
        }

        // direct sun light (radiance) reaching x0
        float muS = dot(n, s);
        vec3 sunLight = transmittanceWithShadow(r0, muS);

        // precomputed sky light (irradiance) (=E[L*]) at x0
        vec3 groundSkyLight = irradiance(irradianceSampler, r0, muS);

        // light reflected at x0 (=(R[L0]+R[L*])/T(x,x0))
        vec3 groundColor = reflectance.rgb * (max(muS, 0.0) * sunLight + groundSkyLight) * ISun / M_PI;

        // water specular color due to sunLight
        if (reflectance.w > 0.0) {
            vec3 h = normalize(s - v);
            float fresnel = 0.02 + 0.98 * pow(1.0 - dot(-v, h), 5.0);
            float waterBrdf = fresnel * pow(max(dot(h, n), 0.0), 150.0);
            groundColor += reflectance.w * max(waterBrdf, 0.0) * sunLight * ISun;
        }

        result = attenuation * groundColor; //=R[L0]+R[L*]
    } else { // ray looking at the sky
        result = vec3(0.0);
    }
    return result;
}

// direct sun light for ray x+tv, when sun in direction s (=L0)
vec3 sunColor(vec3 x, float t, vec3 v, vec3 s, float r, float mu) {
    if (t > 0.0) {
        return vec3(0.0);
    } else {
        vec3 transmittance = r <= Rt ? transmittanceWithShadow(r, mu) : vec3(1.0); // T(x,xo)
        float isun = step(cos(M_PI / 180.0), dot(v, s)) * ISun; // Lsun
        return transmittance * isun; // Eq (9)
    }
}

vec3 HDR(vec3 L) {
    L = L * exposure;
    L.r = L.r < 1.413 ? pow(L.r * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.r);
    L.g = L.g < 1.413 ? pow(L.g * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.g);
    L.b = L.b < 1.413 ? pow(L.b * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.b);
    return L;
}

void main() {
    vec3 x = c;
    vec3 v = normalize(ray);

    float r = length(x);
    float mu = dot(x, v) / r;
    float t = -r * mu - sqrt(r * r * (mu * mu - 1.0) + Rg * Rg);

    if ((r * r * (mu * mu - 1.0) + Rg * Rg) >= 0.0) {
      vec3 g = x - vec3(0.0, 0.0, Rg + 10.0);
      float a = v.x * v.x + v.y * v.y - v.z * v.z;
      float b = 2.0 * (g.x * v.x + g.y * v.y - g.z * v.z);
      float c = g.x * g.x + g.y * g.y - g.z * g.z;
      float d = -(b + ieeesqrt(b * b - 4.0 * a * c)) / (2.0 * a);
      bool cone = d > 0.0 && abs(x.z + d * v.z - Rg) <= 10.0;
      
      if (t > 0.0) {
        if (cone && d < t) {
          t = d;
        }
      } else if (cone) {
        t = d;
      }
    } else {
      t = 0.0;
    }

    vec3 attenuation;
	vec3 inscatterColor = inscatter(x, t, v, s, r, mu, attenuation); //S[L]-T(x,xs)S[l]|xs
    vec3 groundColor = groundColor(x, t, v, s, r, mu, attenuation); //R[L0]+R[L*]
    vec3 sunColor = sunColor(x, t, v, s, r, mu); //L0
    gl_FragColor = vec4(HDR(sunColor + groundColor + inscatterColor), 1.0); // Eq (16)


    //gl_FragColor = texture3D(inscatterSampler,vec3(coords,(s.x+1.0)/2.0));
    //gl_FragColor = vec4(texture2D(irradianceSampler,coords).rgb*5.0, 1.0);
    //gl_FragColor = texture2D(transmittanceSampler,coords);
}

#endif