summaryrefslogtreecommitdiff
path: root/thirdparty/brotli/enc/brotli_bit_stream.cc
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/brotli/enc/brotli_bit_stream.cc')
-rw-r--r--thirdparty/brotli/enc/brotli_bit_stream.cc1181
1 files changed, 0 insertions, 1181 deletions
diff --git a/thirdparty/brotli/enc/brotli_bit_stream.cc b/thirdparty/brotli/enc/brotli_bit_stream.cc
deleted file mode 100644
index 43f12107..00000000
--- a/thirdparty/brotli/enc/brotli_bit_stream.cc
+++ /dev/null
@@ -1,1181 +0,0 @@
-/* Copyright 2014 Google Inc. All Rights Reserved.
-
- Distributed under MIT license.
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
-*/
-
-// Brotli bit stream functions to support the low level format. There are no
-// compression algorithms here, just the right ordering of bits to match the
-// specs.
-
-#include "./brotli_bit_stream.h"
-
-#include <algorithm>
-#include <cstdlib> /* free, malloc */
-#include <cstring>
-#include <limits>
-#include <vector>
-
-#include "./bit_cost.h"
-#include "./context.h"
-#include "./entropy_encode.h"
-#include "./entropy_encode_static.h"
-#include "./fast_log.h"
-#include "./prefix.h"
-#include "./write_bits.h"
-
-namespace brotli {
-
-namespace {
-
-static const size_t kMaxHuffmanTreeSize = 2 * kNumCommandPrefixes + 1;
-// Context map alphabet has 256 context id symbols plus max 16 rle symbols.
-static const size_t kContextMapAlphabetSize = 256 + 16;
-// Block type alphabet has 256 block id symbols plus 2 special symbols.
-static const size_t kBlockTypeAlphabetSize = 256 + 2;
-
-// nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
-// REQUIRES: length > 0
-// REQUIRES: length <= (1 << 24)
-void EncodeMlen(size_t length, uint64_t* bits,
- size_t* numbits, uint64_t* nibblesbits) {
- assert(length > 0);
- assert(length <= (1 << 24));
- length--; // MLEN - 1 is encoded
- size_t lg = length == 0 ? 1 : Log2FloorNonZero(
- static_cast<uint32_t>(length)) + 1;
- assert(lg <= 24);
- size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
- *nibblesbits = mnibbles - 4;
- *numbits = mnibbles * 4;
- *bits = length;
-}
-
-static inline void StoreCommandExtra(
- const Command& cmd, size_t* storage_ix, uint8_t* storage) {
- uint32_t copylen_code = cmd.copy_len_code();
- uint16_t inscode = GetInsertLengthCode(cmd.insert_len_);
- uint16_t copycode = GetCopyLengthCode(copylen_code);
- uint32_t insnumextra = GetInsertExtra(inscode);
- uint64_t insextraval = cmd.insert_len_ - GetInsertBase(inscode);
- uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
- uint64_t bits = (copyextraval << insnumextra) | insextraval;
- WriteBits(insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
-}
-
-} // namespace
-
-void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
- if (n == 0) {
- WriteBits(1, 0, storage_ix, storage);
- } else {
- WriteBits(1, 1, storage_ix, storage);
- size_t nbits = Log2FloorNonZero(n);
- WriteBits(3, nbits, storage_ix, storage);
- WriteBits(nbits, n - (1 << nbits), storage_ix, storage);
- }
-}
-
-void StoreCompressedMetaBlockHeader(bool final_block,
- size_t length,
- size_t* storage_ix,
- uint8_t* storage) {
- // Write ISLAST bit.
- WriteBits(1, final_block, storage_ix, storage);
- // Write ISEMPTY bit.
- if (final_block) {
- WriteBits(1, 0, storage_ix, storage);
- }
-
- uint64_t lenbits;
- size_t nlenbits;
- uint64_t nibblesbits;
- EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
- WriteBits(2, nibblesbits, storage_ix, storage);
- WriteBits(nlenbits, lenbits, storage_ix, storage);
-
- if (!final_block) {
- // Write ISUNCOMPRESSED bit.
- WriteBits(1, 0, storage_ix, storage);
- }
-}
-
-void StoreUncompressedMetaBlockHeader(size_t length,
- size_t* storage_ix,
- uint8_t* storage) {
- // Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0.
- WriteBits(1, 0, storage_ix, storage);
- uint64_t lenbits;
- size_t nlenbits;
- uint64_t nibblesbits;
- EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
- WriteBits(2, nibblesbits, storage_ix, storage);
- WriteBits(nlenbits, lenbits, storage_ix, storage);
- // Write ISUNCOMPRESSED bit.
- WriteBits(1, 1, storage_ix, storage);
-}
-
-void StoreHuffmanTreeOfHuffmanTreeToBitMask(
- const int num_codes,
- const uint8_t *code_length_bitdepth,
- size_t *storage_ix,
- uint8_t *storage) {
- static const uint8_t kStorageOrder[kCodeLengthCodes] = {
- 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
- };
- // The bit lengths of the Huffman code over the code length alphabet
- // are compressed with the following static Huffman code:
- // Symbol Code
- // ------ ----
- // 0 00
- // 1 1110
- // 2 110
- // 3 01
- // 4 10
- // 5 1111
- static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
- 0, 7, 3, 2, 1, 15
- };
- static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
- 2, 4, 3, 2, 2, 4
- };
-
- // Throw away trailing zeros:
- size_t codes_to_store = kCodeLengthCodes;
- if (num_codes > 1) {
- for (; codes_to_store > 0; --codes_to_store) {
- if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
- break;
- }
- }
- }
- size_t skip_some = 0; // skips none.
- if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
- code_length_bitdepth[kStorageOrder[1]] == 0) {
- skip_some = 2; // skips two.
- if (code_length_bitdepth[kStorageOrder[2]] == 0) {
- skip_some = 3; // skips three.
- }
- }
- WriteBits(2, skip_some, storage_ix, storage);
- for (size_t i = skip_some; i < codes_to_store; ++i) {
- size_t l = code_length_bitdepth[kStorageOrder[i]];
- WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
- kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
- }
-}
-
-static void StoreHuffmanTreeToBitMask(
- const size_t huffman_tree_size,
- const uint8_t* huffman_tree,
- const uint8_t* huffman_tree_extra_bits,
- const uint8_t* code_length_bitdepth,
- const uint16_t* code_length_bitdepth_symbols,
- size_t * __restrict storage_ix,
- uint8_t * __restrict storage) {
- for (size_t i = 0; i < huffman_tree_size; ++i) {
- size_t ix = huffman_tree[i];
- WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
- storage_ix, storage);
- // Extra bits
- switch (ix) {
- case 16:
- WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
- break;
- case 17:
- WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
- break;
- }
- }
-}
-
-static void StoreSimpleHuffmanTree(const uint8_t* depths,
- size_t symbols[4],
- size_t num_symbols,
- size_t max_bits,
- size_t *storage_ix, uint8_t *storage) {
- // value of 1 indicates a simple Huffman code
- WriteBits(2, 1, storage_ix, storage);
- WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1
-
- // Sort
- for (size_t i = 0; i < num_symbols; i++) {
- for (size_t j = i + 1; j < num_symbols; j++) {
- if (depths[symbols[j]] < depths[symbols[i]]) {
- std::swap(symbols[j], symbols[i]);
- }
- }
- }
-
- if (num_symbols == 2) {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- } else if (num_symbols == 3) {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- WriteBits(max_bits, symbols[2], storage_ix, storage);
- } else {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- WriteBits(max_bits, symbols[2], storage_ix, storage);
- WriteBits(max_bits, symbols[3], storage_ix, storage);
- // tree-select
- WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
- }
-}
-
-// num = alphabet size
-// depths = symbol depths
-void StoreHuffmanTree(const uint8_t* depths, size_t num,
- HuffmanTree* tree,
- size_t *storage_ix, uint8_t *storage) {
- // Write the Huffman tree into the brotli-representation.
- // The command alphabet is the largest, so this allocation will fit all
- // alphabets.
- assert(num <= kNumCommandPrefixes);
- uint8_t huffman_tree[kNumCommandPrefixes];
- uint8_t huffman_tree_extra_bits[kNumCommandPrefixes];
- size_t huffman_tree_size = 0;
- WriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
- huffman_tree_extra_bits);
-
- // Calculate the statistics of the Huffman tree in brotli-representation.
- uint32_t huffman_tree_histogram[kCodeLengthCodes] = { 0 };
- for (size_t i = 0; i < huffman_tree_size; ++i) {
- ++huffman_tree_histogram[huffman_tree[i]];
- }
-
- int num_codes = 0;
- int code = 0;
- for (int i = 0; i < kCodeLengthCodes; ++i) {
- if (huffman_tree_histogram[i]) {
- if (num_codes == 0) {
- code = i;
- num_codes = 1;
- } else if (num_codes == 1) {
- num_codes = 2;
- break;
- }
- }
- }
-
- // Calculate another Huffman tree to use for compressing both the
- // earlier Huffman tree with.
- uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 };
- uint16_t code_length_bitdepth_symbols[kCodeLengthCodes] = { 0 };
- CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes,
- 5, tree, &code_length_bitdepth[0]);
- ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes,
- &code_length_bitdepth_symbols[0]);
-
- // Now, we have all the data, let's start storing it
- StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
- storage_ix, storage);
-
- if (num_codes == 1) {
- code_length_bitdepth[code] = 0;
- }
-
- // Store the real huffman tree now.
- StoreHuffmanTreeToBitMask(huffman_tree_size,
- huffman_tree,
- huffman_tree_extra_bits,
- &code_length_bitdepth[0],
- code_length_bitdepth_symbols,
- storage_ix, storage);
-}
-
-void BuildAndStoreHuffmanTree(const uint32_t *histogram,
- const size_t length,
- HuffmanTree* tree,
- uint8_t* depth,
- uint16_t* bits,
- size_t* storage_ix,
- uint8_t* storage) {
- size_t count = 0;
- size_t s4[4] = { 0 };
- for (size_t i = 0; i < length; i++) {
- if (histogram[i]) {
- if (count < 4) {
- s4[count] = i;
- } else if (count > 4) {
- break;
- }
- count++;
- }
- }
-
- size_t max_bits_counter = length - 1;
- size_t max_bits = 0;
- while (max_bits_counter) {
- max_bits_counter >>= 1;
- ++max_bits;
- }
-
- if (count <= 1) {
- WriteBits(4, 1, storage_ix, storage);
- WriteBits(max_bits, s4[0], storage_ix, storage);
- return;
- }
-
- CreateHuffmanTree(histogram, length, 15, tree, depth);
- ConvertBitDepthsToSymbols(depth, length, bits);
-
- if (count <= 4) {
- StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
- } else {
- StoreHuffmanTree(depth, length, tree, storage_ix, storage);
- }
-}
-
-static inline bool SortHuffmanTree(const HuffmanTree& v0,
- const HuffmanTree& v1) {
- return v0.total_count_ < v1.total_count_;
-}
-
-void BuildAndStoreHuffmanTreeFast(const uint32_t *histogram,
- const size_t histogram_total,
- const size_t max_bits,
- uint8_t* depth,
- uint16_t* bits,
- size_t* storage_ix,
- uint8_t* storage) {
- size_t count = 0;
- size_t symbols[4] = { 0 };
- size_t length = 0;
- size_t total = histogram_total;
- while (total != 0) {
- if (histogram[length]) {
- if (count < 4) {
- symbols[count] = length;
- }
- ++count;
- total -= histogram[length];
- }
- ++length;
- }
-
- if (count <= 1) {
- WriteBits(4, 1, storage_ix, storage);
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- return;
- }
-
- const size_t max_tree_size = 2 * length + 1;
- HuffmanTree* const tree =
- static_cast<HuffmanTree*>(malloc(max_tree_size * sizeof(HuffmanTree)));
- for (uint32_t count_limit = 1; ; count_limit *= 2) {
- HuffmanTree* node = tree;
- for (size_t i = length; i != 0;) {
- --i;
- if (histogram[i]) {
- if (PREDICT_TRUE(histogram[i] >= count_limit)) {
- *node = HuffmanTree(histogram[i], -1, static_cast<int16_t>(i));
- } else {
- *node = HuffmanTree(count_limit, -1, static_cast<int16_t>(i));
- }
- ++node;
- }
- }
- const int n = static_cast<int>(node - tree);
- std::sort(tree, node, SortHuffmanTree);
- // The nodes are:
- // [0, n): the sorted leaf nodes that we start with.
- // [n]: we add a sentinel here.
- // [n + 1, 2n): new parent nodes are added here, starting from
- // (n+1). These are naturally in ascending order.
- // [2n]: we add a sentinel at the end as well.
- // There will be (2n+1) elements at the end.
- const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
- *node++ = sentinel;
- *node++ = sentinel;
-
- int i = 0; // Points to the next leaf node.
- int j = n + 1; // Points to the next non-leaf node.
- for (int k = n - 1; k > 0; --k) {
- int left, right;
- if (tree[i].total_count_ <= tree[j].total_count_) {
- left = i;
- ++i;
- } else {
- left = j;
- ++j;
- }
- if (tree[i].total_count_ <= tree[j].total_count_) {
- right = i;
- ++i;
- } else {
- right = j;
- ++j;
- }
- // The sentinel node becomes the parent node.
- node[-1].total_count_ =
- tree[left].total_count_ + tree[right].total_count_;
- node[-1].index_left_ = static_cast<int16_t>(left);
- node[-1].index_right_or_value_ = static_cast<int16_t>(right);
- // Add back the last sentinel node.
- *node++ = sentinel;
- }
- SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
- // We need to pack the Huffman tree in 14 bits.
- // If this was not successful, add fake entities to the lowest values
- // and retry.
- if (PREDICT_TRUE(*std::max_element(&depth[0], &depth[length]) <= 14)) {
- break;
- }
- }
- free(tree);
- ConvertBitDepthsToSymbols(depth, length, bits);
- if (count <= 4) {
- // value of 1 indicates a simple Huffman code
- WriteBits(2, 1, storage_ix, storage);
- WriteBits(2, count - 1, storage_ix, storage); // NSYM - 1
-
- // Sort
- for (size_t i = 0; i < count; i++) {
- for (size_t j = i + 1; j < count; j++) {
- if (depth[symbols[j]] < depth[symbols[i]]) {
- std::swap(symbols[j], symbols[i]);
- }
- }
- }
-
- if (count == 2) {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- } else if (count == 3) {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- WriteBits(max_bits, symbols[2], storage_ix, storage);
- } else {
- WriteBits(max_bits, symbols[0], storage_ix, storage);
- WriteBits(max_bits, symbols[1], storage_ix, storage);
- WriteBits(max_bits, symbols[2], storage_ix, storage);
- WriteBits(max_bits, symbols[3], storage_ix, storage);
- // tree-select
- WriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
- }
- } else {
- // Complex Huffman Tree
- StoreStaticCodeLengthCode(storage_ix, storage);
-
- // Actual rle coding.
- uint8_t previous_value = 8;
- for (size_t i = 0; i < length;) {
- const uint8_t value = depth[i];
- size_t reps = 1;
- for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
- ++reps;
- }
- i += reps;
- if (value == 0) {
- WriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
- storage_ix, storage);
- } else {
- if (previous_value != value) {
- WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
- storage_ix, storage);
- --reps;
- }
- if (reps < 3) {
- while (reps != 0) {
- reps--;
- WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
- storage_ix, storage);
- }
- } else {
- reps -= 3;
- WriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
- storage_ix, storage);
- }
- previous_value = value;
- }
- }
- }
-}
-
-static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
- size_t i = 0;
- for (; i < v_size; ++i) {
- if (v[i] == value) return i;
- }
- return i;
-}
-
-static void MoveToFront(uint8_t* v, size_t index) {
- uint8_t value = v[index];
- for (size_t i = index; i != 0; --i) {
- v[i] = v[i - 1];
- }
- v[0] = value;
-}
-
-static void MoveToFrontTransform(const uint32_t* __restrict v_in,
- const size_t v_size,
- uint32_t* v_out) {
- if (v_size == 0) {
- return;
- }
- uint32_t max_value = *std::max_element(v_in, v_in + v_size);
- assert(max_value < 256u);
- uint8_t mtf[256];
- size_t mtf_size = max_value + 1;
- for (uint32_t i = 0; i <= max_value; ++i) {
- mtf[i] = static_cast<uint8_t>(i);
- }
- for (size_t i = 0; i < v_size; ++i) {
- size_t index = IndexOf(mtf, mtf_size, static_cast<uint8_t>(v_in[i]));
- assert(index < mtf_size);
- v_out[i] = static_cast<uint32_t>(index);
- MoveToFront(mtf, index);
- }
-}
-
-// Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
-// the run length plus extra bits (lower 9 bits is the prefix code and the rest
-// are the extra bits). Non-zero values in v[] are shifted by
-// *max_length_prefix. Will not create prefix codes bigger than the initial
-// value of *max_run_length_prefix. The prefix code of run length L is simply
-// Log2Floor(L) and the number of extra bits is the same as the prefix code.
-static void RunLengthCodeZeros(const size_t in_size,
- uint32_t* __restrict v,
- size_t* __restrict out_size,
- uint32_t* __restrict max_run_length_prefix) {
- uint32_t max_reps = 0;
- for (size_t i = 0; i < in_size;) {
- for (; i < in_size && v[i] != 0; ++i) ;
- uint32_t reps = 0;
- for (; i < in_size && v[i] == 0; ++i) {
- ++reps;
- }
- max_reps = std::max(reps, max_reps);
- }
- uint32_t max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
- max_prefix = std::min(max_prefix, *max_run_length_prefix);
- *max_run_length_prefix = max_prefix;
- *out_size = 0;
- for (size_t i = 0; i < in_size;) {
- assert(*out_size <= i);
- if (v[i] != 0) {
- v[*out_size] = v[i] + *max_run_length_prefix;
- ++i;
- ++(*out_size);
- } else {
- uint32_t reps = 1;
- for (size_t k = i + 1; k < in_size && v[k] == 0; ++k) {
- ++reps;
- }
- i += reps;
- while (reps != 0) {
- if (reps < (2u << max_prefix)) {
- uint32_t run_length_prefix = Log2FloorNonZero(reps);
- const uint32_t extra_bits = reps - (1u << run_length_prefix);
- v[*out_size] = run_length_prefix + (extra_bits << 9);
- ++(*out_size);
- break;
- } else {
- const uint32_t extra_bits = (1u << max_prefix) - 1u;
- v[*out_size] = max_prefix + (extra_bits << 9);
- reps -= (2u << max_prefix) - 1u;
- ++(*out_size);
- }
- }
- }
- }
-}
-
-void EncodeContextMap(const std::vector<uint32_t>& context_map,
- size_t num_clusters,
- HuffmanTree* tree,
- size_t* storage_ix, uint8_t* storage) {
- StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
-
- if (num_clusters == 1) {
- return;
- }
-
- uint32_t* rle_symbols = new uint32_t[context_map.size()];
- MoveToFrontTransform(&context_map[0], context_map.size(), rle_symbols);
- uint32_t max_run_length_prefix = 6;
- size_t num_rle_symbols = 0;
- RunLengthCodeZeros(context_map.size(), rle_symbols,
- &num_rle_symbols, &max_run_length_prefix);
- uint32_t histogram[kContextMapAlphabetSize];
- memset(histogram, 0, sizeof(histogram));
- static const int kSymbolBits = 9;
- static const uint32_t kSymbolMask = (1u << kSymbolBits) - 1u;
- for (size_t i = 0; i < num_rle_symbols; ++i) {
- ++histogram[rle_symbols[i] & kSymbolMask];
- }
- bool use_rle = max_run_length_prefix > 0;
- WriteBits(1, use_rle, storage_ix, storage);
- if (use_rle) {
- WriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
- }
- uint8_t depths[kContextMapAlphabetSize];
- uint16_t bits[kContextMapAlphabetSize];
- memset(depths, 0, sizeof(depths));
- memset(bits, 0, sizeof(bits));
- BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
- tree, depths, bits, storage_ix, storage);
- for (size_t i = 0; i < num_rle_symbols; ++i) {
- const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
- const uint32_t extra_bits_val = rle_symbols[i] >> kSymbolBits;
- WriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
- if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
- WriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
- }
- }
- WriteBits(1, 1, storage_ix, storage); // use move-to-front
- delete[] rle_symbols;
-}
-
-void StoreBlockSwitch(const BlockSplitCode& code,
- const size_t block_ix,
- size_t* storage_ix,
- uint8_t* storage) {
- if (block_ix > 0) {
- size_t typecode = code.type_code[block_ix];
- WriteBits(code.type_depths[typecode], code.type_bits[typecode],
- storage_ix, storage);
- }
- size_t lencode = code.length_prefix[block_ix];
- WriteBits(code.length_depths[lencode], code.length_bits[lencode],
- storage_ix, storage);
- WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix],
- storage_ix, storage);
-}
-
-static void BuildAndStoreBlockSplitCode(const std::vector<uint8_t>& types,
- const std::vector<uint32_t>& lengths,
- const size_t num_types,
- HuffmanTree* tree,
- BlockSplitCode* code,
- size_t* storage_ix,
- uint8_t* storage) {
- const size_t num_blocks = types.size();
- uint32_t type_histo[kBlockTypeAlphabetSize];
- uint32_t length_histo[kNumBlockLenPrefixes];
- memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
- memset(length_histo, 0, sizeof(length_histo));
- size_t last_type = 1;
- size_t second_last_type = 0;
- code->type_code.resize(num_blocks);
- code->length_prefix.resize(num_blocks);
- code->length_nextra.resize(num_blocks);
- code->length_extra.resize(num_blocks);
- code->type_depths.resize(num_types + 2);
- code->type_bits.resize(num_types + 2);
- memset(code->length_depths, 0, sizeof(code->length_depths));
- memset(code->length_bits, 0, sizeof(code->length_bits));
- for (size_t i = 0; i < num_blocks; ++i) {
- size_t type = types[i];
- size_t type_code = (type == last_type + 1 ? 1 :
- type == second_last_type ? 0 :
- type + 2);
- second_last_type = last_type;
- last_type = type;
- code->type_code[i] = static_cast<uint32_t>(type_code);
- if (i != 0) ++type_histo[type_code];
- GetBlockLengthPrefixCode(lengths[i],
- &code->length_prefix[i],
- &code->length_nextra[i],
- &code->length_extra[i]);
- ++length_histo[code->length_prefix[i]];
- }
- StoreVarLenUint8(num_types - 1, storage_ix, storage);
- if (num_types > 1) {
- BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, tree,
- &code->type_depths[0], &code->type_bits[0],
- storage_ix, storage);
- BuildAndStoreHuffmanTree(&length_histo[0], kNumBlockLenPrefixes, tree,
- &code->length_depths[0], &code->length_bits[0],
- storage_ix, storage);
- StoreBlockSwitch(*code, 0, storage_ix, storage);
- }
-}
-
-void StoreTrivialContextMap(size_t num_types,
- size_t context_bits,
- HuffmanTree* tree,
- size_t* storage_ix,
- uint8_t* storage) {
- StoreVarLenUint8(num_types - 1, storage_ix, storage);
- if (num_types > 1) {
- size_t repeat_code = context_bits - 1u;
- size_t repeat_bits = (1u << repeat_code) - 1u;
- size_t alphabet_size = num_types + repeat_code;
- uint32_t histogram[kContextMapAlphabetSize];
- uint8_t depths[kContextMapAlphabetSize];
- uint16_t bits[kContextMapAlphabetSize];
- memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
- memset(depths, 0, alphabet_size * sizeof(depths[0]));
- memset(bits, 0, alphabet_size * sizeof(bits[0]));
- // Write RLEMAX.
- WriteBits(1, 1, storage_ix, storage);
- WriteBits(4, repeat_code - 1, storage_ix, storage);
- histogram[repeat_code] = static_cast<uint32_t>(num_types);
- histogram[0] = 1;
- for (size_t i = context_bits; i < alphabet_size; ++i) {
- histogram[i] = 1;
- }
- BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, tree,
- &depths[0], &bits[0],
- storage_ix, storage);
- for (size_t i = 0; i < num_types; ++i) {
- size_t code = (i == 0 ? 0 : i + context_bits - 1);
- WriteBits(depths[code], bits[code], storage_ix, storage);
- WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage);
- WriteBits(repeat_code, repeat_bits, storage_ix, storage);
- }
- // Write IMTF (inverse-move-to-front) bit.
- WriteBits(1, 1, storage_ix, storage);
- }
-}
-
-// Manages the encoding of one block category (literal, command or distance).
-class BlockEncoder {
- public:
- BlockEncoder(size_t alphabet_size,
- size_t num_block_types,
- const std::vector<uint8_t>& block_types,
- const std::vector<uint32_t>& block_lengths)
- : alphabet_size_(alphabet_size),
- num_block_types_(num_block_types),
- block_types_(block_types),
- block_lengths_(block_lengths),
- block_ix_(0),
- block_len_(block_lengths.empty() ? 0 : block_lengths[0]),
- entropy_ix_(0) {}
-
- // Creates entropy codes of block lengths and block types and stores them
- // to the bit stream.
- void BuildAndStoreBlockSwitchEntropyCodes(HuffmanTree* tree,
- size_t* storage_ix,
- uint8_t* storage) {
- BuildAndStoreBlockSplitCode(
- block_types_, block_lengths_, num_block_types_,
- tree, &block_split_code_, storage_ix, storage);
- }
-
- // Creates entropy codes for all block types and stores them to the bit
- // stream.
- template<int kSize>
- void BuildAndStoreEntropyCodes(
- const std::vector<Histogram<kSize> >& histograms,
- HuffmanTree* tree,
- size_t* storage_ix, uint8_t* storage) {
- depths_.resize(histograms.size() * alphabet_size_);
- bits_.resize(histograms.size() * alphabet_size_);
- for (size_t i = 0; i < histograms.size(); ++i) {
- size_t ix = i * alphabet_size_;
- BuildAndStoreHuffmanTree(&histograms[i].data_[0], alphabet_size_,
- tree,
- &depths_[ix], &bits_[ix],
- storage_ix, storage);
- }
- }
-
- // Stores the next symbol with the entropy code of the current block type.
- // Updates the block type and block length at block boundaries.
- void StoreSymbol(size_t symbol, size_t* storage_ix, uint8_t* storage) {
- if (block_len_ == 0) {
- ++block_ix_;
- block_len_ = block_lengths_[block_ix_];
- entropy_ix_ = block_types_[block_ix_] * alphabet_size_;
- StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage);
- }
- --block_len_;
- size_t ix = entropy_ix_ + symbol;
- WriteBits(depths_[ix], bits_[ix], storage_ix, storage);
- }
-
- // Stores the next symbol with the entropy code of the current block type and
- // context value.
- // Updates the block type and block length at block boundaries.
- template<int kContextBits>
- void StoreSymbolWithContext(size_t symbol, size_t context,
- const std::vector<uint32_t>& context_map,
- size_t* storage_ix, uint8_t* storage) {
- if (block_len_ == 0) {
- ++block_ix_;
- block_len_ = block_lengths_[block_ix_];
- size_t block_type = block_types_[block_ix_];
- entropy_ix_ = block_type << kContextBits;
- StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage);
- }
- --block_len_;
- size_t histo_ix = context_map[entropy_ix_ + context];
- size_t ix = histo_ix * alphabet_size_ + symbol;
- WriteBits(depths_[ix], bits_[ix], storage_ix, storage);
- }
-
- private:
- const size_t alphabet_size_;
- const size_t num_block_types_;
- const std::vector<uint8_t>& block_types_;
- const std::vector<uint32_t>& block_lengths_;
- BlockSplitCode block_split_code_;
- size_t block_ix_;
- size_t block_len_;
- size_t entropy_ix_;
- std::vector<uint8_t> depths_;
- std::vector<uint16_t> bits_;
-};
-
-static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
- *storage_ix = (*storage_ix + 7u) & ~7u;
- storage[*storage_ix >> 3] = 0;
-}
-
-void StoreMetaBlock(const uint8_t* input,
- size_t start_pos,
- size_t length,
- size_t mask,
- uint8_t prev_byte,
- uint8_t prev_byte2,
- bool is_last,
- uint32_t num_direct_distance_codes,
- uint32_t distance_postfix_bits,
- ContextType literal_context_mode,
- const brotli::Command *commands,
- size_t n_commands,
- const MetaBlockSplit& mb,
- size_t *storage_ix,
- uint8_t *storage) {
- StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
-
- size_t num_distance_codes =
- kNumDistanceShortCodes + num_direct_distance_codes +
- (48u << distance_postfix_bits);
-
- HuffmanTree* tree = static_cast<HuffmanTree*>(
- malloc(kMaxHuffmanTreeSize * sizeof(HuffmanTree)));
- BlockEncoder literal_enc(256,
- mb.literal_split.num_types,
- mb.literal_split.types,
- mb.literal_split.lengths);
- BlockEncoder command_enc(kNumCommandPrefixes,
- mb.command_split.num_types,
- mb.command_split.types,
- mb.command_split.lengths);
- BlockEncoder distance_enc(num_distance_codes,
- mb.distance_split.num_types,
- mb.distance_split.types,
- mb.distance_split.lengths);
-
- literal_enc.BuildAndStoreBlockSwitchEntropyCodes(tree, storage_ix, storage);
- command_enc.BuildAndStoreBlockSwitchEntropyCodes(tree, storage_ix, storage);
- distance_enc.BuildAndStoreBlockSwitchEntropyCodes(tree, storage_ix, storage);
-
- WriteBits(2, distance_postfix_bits, storage_ix, storage);
- WriteBits(4, num_direct_distance_codes >> distance_postfix_bits,
- storage_ix, storage);
- for (size_t i = 0; i < mb.literal_split.num_types; ++i) {
- WriteBits(2, literal_context_mode, storage_ix, storage);
- }
-
- size_t num_literal_histograms = mb.literal_histograms.size();
- if (mb.literal_context_map.empty()) {
- StoreTrivialContextMap(num_literal_histograms, kLiteralContextBits, tree,
- storage_ix, storage);
- } else {
- EncodeContextMap(mb.literal_context_map, num_literal_histograms, tree,
- storage_ix, storage);
- }
-
- size_t num_dist_histograms = mb.distance_histograms.size();
- if (mb.distance_context_map.empty()) {
- StoreTrivialContextMap(num_dist_histograms, kDistanceContextBits, tree,
- storage_ix, storage);
- } else {
- EncodeContextMap(mb.distance_context_map, num_dist_histograms, tree,
- storage_ix, storage);
- }
-
- literal_enc.BuildAndStoreEntropyCodes(mb.literal_histograms, tree,
- storage_ix, storage);
- command_enc.BuildAndStoreEntropyCodes(mb.command_histograms, tree,
- storage_ix, storage);
- distance_enc.BuildAndStoreEntropyCodes(mb.distance_histograms, tree,
- storage_ix, storage);
- free(tree);
-
- size_t pos = start_pos;
- for (size_t i = 0; i < n_commands; ++i) {
- const Command cmd = commands[i];
- size_t cmd_code = cmd.cmd_prefix_;
- command_enc.StoreSymbol(cmd_code, storage_ix, storage);
- StoreCommandExtra(cmd, storage_ix, storage);
- if (mb.literal_context_map.empty()) {
- for (size_t j = cmd.insert_len_; j != 0; --j) {
- literal_enc.StoreSymbol(input[pos & mask], storage_ix, storage);
- ++pos;
- }
- } else {
- for (size_t j = cmd.insert_len_; j != 0; --j) {
- size_t context = Context(prev_byte, prev_byte2, literal_context_mode);
- uint8_t literal = input[pos & mask];
- literal_enc.StoreSymbolWithContext<kLiteralContextBits>(
- literal, context, mb.literal_context_map, storage_ix, storage);
- prev_byte2 = prev_byte;
- prev_byte = literal;
- ++pos;
- }
- }
- pos += cmd.copy_len();
- if (cmd.copy_len()) {
- prev_byte2 = input[(pos - 2) & mask];
- prev_byte = input[(pos - 1) & mask];
- if (cmd.cmd_prefix_ >= 128) {
- size_t dist_code = cmd.dist_prefix_;
- uint32_t distnumextra = cmd.dist_extra_ >> 24;
- uint64_t distextra = cmd.dist_extra_ & 0xffffff;
- if (mb.distance_context_map.empty()) {
- distance_enc.StoreSymbol(dist_code, storage_ix, storage);
- } else {
- size_t context = cmd.DistanceContext();
- distance_enc.StoreSymbolWithContext<kDistanceContextBits>(
- dist_code, context, mb.distance_context_map, storage_ix, storage);
- }
- brotli::WriteBits(distnumextra, distextra, storage_ix, storage);
- }
- }
- }
- if (is_last) {
- JumpToByteBoundary(storage_ix, storage);
- }
-}
-
-static void BuildHistograms(const uint8_t* input,
- size_t start_pos,
- size_t mask,
- const brotli::Command *commands,
- size_t n_commands,
- HistogramLiteral* lit_histo,
- HistogramCommand* cmd_histo,
- HistogramDistance* dist_histo) {
- size_t pos = start_pos;
- for (size_t i = 0; i < n_commands; ++i) {
- const Command cmd = commands[i];
- cmd_histo->Add(cmd.cmd_prefix_);
- for (size_t j = cmd.insert_len_; j != 0; --j) {
- lit_histo->Add(input[pos & mask]);
- ++pos;
- }
- pos += cmd.copy_len();
- if (cmd.copy_len() && cmd.cmd_prefix_ >= 128) {
- dist_histo->Add(cmd.dist_prefix_);
- }
- }
-}
-
-static void StoreDataWithHuffmanCodes(const uint8_t* input,
- size_t start_pos,
- size_t mask,
- const brotli::Command *commands,
- size_t n_commands,
- const uint8_t* lit_depth,
- const uint16_t* lit_bits,
- const uint8_t* cmd_depth,
- const uint16_t* cmd_bits,
- const uint8_t* dist_depth,
- const uint16_t* dist_bits,
- size_t* storage_ix,
- uint8_t* storage) {
- size_t pos = start_pos;
- for (size_t i = 0; i < n_commands; ++i) {
- const Command cmd = commands[i];
- const size_t cmd_code = cmd.cmd_prefix_;
- WriteBits(cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
- StoreCommandExtra(cmd, storage_ix, storage);
- for (size_t j = cmd.insert_len_; j != 0; --j) {
- const uint8_t literal = input[pos & mask];
- WriteBits(lit_depth[literal], lit_bits[literal], storage_ix, storage);
- ++pos;
- }
- pos += cmd.copy_len();
- if (cmd.copy_len() && cmd.cmd_prefix_ >= 128) {
- const size_t dist_code = cmd.dist_prefix_;
- const uint32_t distnumextra = cmd.dist_extra_ >> 24;
- const uint32_t distextra = cmd.dist_extra_ & 0xffffff;
- WriteBits(dist_depth[dist_code], dist_bits[dist_code],
- storage_ix, storage);
- WriteBits(distnumextra, distextra, storage_ix, storage);
- }
- }
-}
-
-void StoreMetaBlockTrivial(const uint8_t* input,
- size_t start_pos,
- size_t length,
- size_t mask,
- bool is_last,
- const brotli::Command *commands,
- size_t n_commands,
- size_t *storage_ix,
- uint8_t *storage) {
- StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
-
- HistogramLiteral lit_histo;
- HistogramCommand cmd_histo;
- HistogramDistance dist_histo;
-
- BuildHistograms(input, start_pos, mask, commands, n_commands,
- &lit_histo, &cmd_histo, &dist_histo);
-
- WriteBits(13, 0, storage_ix, storage);
-
- std::vector<uint8_t> lit_depth(256);
- std::vector<uint16_t> lit_bits(256);
- std::vector<uint8_t> cmd_depth(kNumCommandPrefixes);
- std::vector<uint16_t> cmd_bits(kNumCommandPrefixes);
- std::vector<uint8_t> dist_depth(64);
- std::vector<uint16_t> dist_bits(64);
-
- HuffmanTree* tree = static_cast<HuffmanTree*>(
- malloc(kMaxHuffmanTreeSize * sizeof(HuffmanTree)));
- BuildAndStoreHuffmanTree(&lit_histo.data_[0], 256, tree,
- &lit_depth[0], &lit_bits[0],
- storage_ix, storage);
- BuildAndStoreHuffmanTree(&cmd_histo.data_[0], kNumCommandPrefixes, tree,
- &cmd_depth[0], &cmd_bits[0],
- storage_ix, storage);
- BuildAndStoreHuffmanTree(&dist_histo.data_[0], 64, tree,
- &dist_depth[0], &dist_bits[0],
- storage_ix, storage);
- free(tree);
- StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
- n_commands, &lit_depth[0], &lit_bits[0],
- &cmd_depth[0], &cmd_bits[0],
- &dist_depth[0], &dist_bits[0],
- storage_ix, storage);
- if (is_last) {
- JumpToByteBoundary(storage_ix, storage);
- }
-}
-
-void StoreMetaBlockFast(const uint8_t* input,
- size_t start_pos,
- size_t length,
- size_t mask,
- bool is_last,
- const brotli::Command *commands,
- size_t n_commands,
- size_t *storage_ix,
- uint8_t *storage) {
- StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
-
- WriteBits(13, 0, storage_ix, storage);
-
- if (n_commands <= 128) {
- uint32_t histogram[256] = { 0 };
- size_t pos = start_pos;
- size_t num_literals = 0;
- for (size_t i = 0; i < n_commands; ++i) {
- const Command cmd = commands[i];
- for (size_t j = cmd.insert_len_; j != 0; --j) {
- ++histogram[input[pos & mask]];
- ++pos;
- }
- num_literals += cmd.insert_len_;
- pos += cmd.copy_len();
- }
- uint8_t lit_depth[256] = { 0 };
- uint16_t lit_bits[256] = { 0 };
- BuildAndStoreHuffmanTreeFast(histogram, num_literals,
- /* max_bits = */ 8,
- lit_depth, lit_bits,
- storage_ix, storage);
- StoreStaticCommandHuffmanTree(storage_ix, storage);
- StoreStaticDistanceHuffmanTree(storage_ix, storage);
- StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
- n_commands, &lit_depth[0], &lit_bits[0],
- kStaticCommandCodeDepth,
- kStaticCommandCodeBits,
- kStaticDistanceCodeDepth,
- kStaticDistanceCodeBits,
- storage_ix, storage);
- } else {
- HistogramLiteral lit_histo;
- HistogramCommand cmd_histo;
- HistogramDistance dist_histo;
- BuildHistograms(input, start_pos, mask, commands, n_commands,
- &lit_histo, &cmd_histo, &dist_histo);
- std::vector<uint8_t> lit_depth(256);
- std::vector<uint16_t> lit_bits(256);
- std::vector<uint8_t> cmd_depth(kNumCommandPrefixes);
- std::vector<uint16_t> cmd_bits(kNumCommandPrefixes);
- std::vector<uint8_t> dist_depth(64);
- std::vector<uint16_t> dist_bits(64);
- BuildAndStoreHuffmanTreeFast(&lit_histo.data_[0], lit_histo.total_count_,
- /* max_bits = */ 8,
- &lit_depth[0], &lit_bits[0],
- storage_ix, storage);
- BuildAndStoreHuffmanTreeFast(&cmd_histo.data_[0], cmd_histo.total_count_,
- /* max_bits = */ 10,
- &cmd_depth[0], &cmd_bits[0],
- storage_ix, storage);
- BuildAndStoreHuffmanTreeFast(&dist_histo.data_[0], dist_histo.total_count_,
- /* max_bits = */ 6,
- &dist_depth[0], &dist_bits[0],
- storage_ix, storage);
- StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
- n_commands, &lit_depth[0], &lit_bits[0],
- &cmd_depth[0], &cmd_bits[0],
- &dist_depth[0], &dist_bits[0],
- storage_ix, storage);
- }
-
- if (is_last) {
- JumpToByteBoundary(storage_ix, storage);
- }
-}
-
-// This is for storing uncompressed blocks (simple raw storage of
-// bytes-as-bytes).
-void StoreUncompressedMetaBlock(bool final_block,
- const uint8_t * __restrict input,
- size_t position, size_t mask,
- size_t len,
- size_t * __restrict storage_ix,
- uint8_t * __restrict storage) {
- StoreUncompressedMetaBlockHeader(len, storage_ix, storage);
- JumpToByteBoundary(storage_ix, storage);
-
- size_t masked_pos = position & mask;
- if (masked_pos + len > mask + 1) {
- size_t len1 = mask + 1 - masked_pos;
- memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
- *storage_ix += len1 << 3;
- len -= len1;
- masked_pos = 0;
- }
- memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
- *storage_ix += len << 3;
-
- // We need to clear the next 4 bytes to continue to be
- // compatible with WriteBits.
- brotli::WriteBitsPrepareStorage(*storage_ix, storage);
-
- // Since the uncompressed block itself may not be the final block, add an
- // empty one after this.
- if (final_block) {
- brotli::WriteBits(1, 1, storage_ix, storage); // islast
- brotli::WriteBits(1, 1, storage_ix, storage); // isempty
- JumpToByteBoundary(storage_ix, storage);
- }
-}
-
-void StoreSyncMetaBlock(size_t * __restrict storage_ix,
- uint8_t * __restrict storage) {
- // Empty metadata meta-block bit pattern:
- // 1 bit: is_last (0)
- // 2 bits: num nibbles (3)
- // 1 bit: reserved (0)
- // 2 bits: metadata length bytes (0)
- WriteBits(6, 6, storage_ix, storage);
- JumpToByteBoundary(storage_ix, storage);
-}
-
-} // namespace brotli