summaryrefslogtreecommitdiff
path: root/glass.frag
blob: 88c29b8450ff3ec6686881ae8db4e4fed1e8a480 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#version 120

#define I965_HACK 1

varying vec3 light_surf;
varying vec3 eye_surf;
varying vec3 tangent_surf;
varying vec4 shadow_coords;
varying vec2 texcoord;
uniform sampler2D normal_sampler;
uniform sampler2D heightmap_sampler;
uniform sampler2DShadow shadow_sampler;
uniform float F0, ni, ward_mm_inv, ward_mn_inv, ward_nn_inv;

float schlick_fresnel(float n_dot_l)
{
	return F0 + (1 - F0) * pow(1 - n_dot_l, 5);
}

void main()
{
	float shadow = shadow2DProj(shadow_sampler, shadow_coords).x;
	const vec4 material_color = vec4(0.7, 0.5, 0.3, 0.0);
	vec4 color;
	float s = .7;
	float d = 1 - s;
	float Ii = 0.9; /*intensity of incoming light */
	float Iia = .1 * Ii; /*intensity of ambient light */

	float Rs = 0;
	float D;

	float Rd = (1 - F0) * 2;

	/* Calculate ambient lighting. */

	/* Ambient occlusion factor -- sample the height map we
	 * used to generate the normal map, and reduce intensity in
	 * the valleys.
	 */
	float heightmap = texture2D(heightmap_sampler, texcoord).x;
	float Ra = Rd * (.8 + .2 * heightmap);
	color = material_color * Iia * Ra;

	/* Calculate specular and diffuse lighting */
#if !I965_HACK
	if (shadow > 0) {
#endif
		vec3 l = normalize(light_surf);
		vec3 v = normalize(eye_surf);
		vec3 h = normalize(l + v);
		vec3 t = normalize(tangent_surf);
		vec3 n = texture2D(normal_sampler, texcoord).xyz * 2 - 1;
		/* Hack: Reduce the significance of our normal map, which
		 * otherwise looks incongruous with the straight edges.
		 */
		n = normalize(n + vec3(0,0,1));

		float n_dot_l = dot(n, l);
		float n_dot_v = dot(n, v);
		float n_dot_h = dot(n, h);
		float v_dot_h = dot(v, h);
		float cos2_alpha = n_dot_h * n_dot_h;
		float tan2_alpha = (1 - cos2_alpha) / cos2_alpha;

		/* Aniso BRDF from Ward's "Measuring and Modeling
		 * Anisotropic Reflection".
		 */

		/* Make phi be the angle between the projections of
		 * the tangent and half-angle vectors onto the
		 * surface plane (z=0).  Doing it right would involve
		 * projecting onto the plane defined by n.
		 */
		float cos_phi = dot(normalize(t.xy), normalize(h.xy));

		float cos2_phi_over_m2 = (cos_phi * cos_phi) * ward_mm_inv;
		float sin2_phi_over_n2 = (1 - cos_phi * cos_phi) * ward_nn_inv;
		D = exp(-tan2_alpha * (cos2_phi_over_m2 + sin2_phi_over_n2));
		Rs = 2 * schlick_fresnel(n_dot_l) * D *
			inversesqrt(n_dot_l * n_dot_v) * ward_mn_inv;
		Rs *= s;

		color += max(0, n_dot_l) * step(0, n_dot_v) *
			vec4(material_color.xyz *
			     ((Rd * d + Rs) * Ii * shadow),
			     material_color.w);
#if !I965_HACK
	}
#endif

	gl_FragColor = color;

	/* Debugging scalars -- Map [0,1] to [0.5,1] to catch negative
	 * values.  Multiply by the step function to catch when
	 * the scalar won't come into play because Rs == 0.
	 */
#if 0
	/* Constant visualization */
	gl_FragColor = vec4(vec3(F0 / 2 + .5), 1);
#endif
#if 0
	/* Normal visualization */
	gl_FragColor = vec4((normal.x + 1) / 2,
			    (normal.y + 1) / 2,
			    (normal.z + 1) / 2,
			    0);
#endif
#if 0
	/* Sampler visualization */
	gl_FragColor = texture2D(normal_sampler, texcoord);
#endif
}