summaryrefslogtreecommitdiff
path: root/server/memslot.c
blob: 4d9d02ba2c6f2b350a8836a4a258456fda1c4cf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* -*- Mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
   Copyright (C) 2009,2010 Red Hat, Inc.

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>

#include <inttypes.h>

#include "memslot.h"

static uintptr_t __get_clean_virt(RedMemSlotInfo *info, QXLPHYSICAL addr)
{
    return addr & info->memslot_clean_virt_mask;
}

static void print_memslots(RedMemSlotInfo *info)
{
    int i;
    int x;

    for (i = 0; i < info->num_memslots_groups; ++i) {
        for (x = 0; x < info->num_memslots; ++x) {
            if (!info->mem_slots[i][x].virt_start_addr &&
                !info->mem_slots[i][x].virt_end_addr) {
                continue;
            }
            printf("id %d, group %d, virt start %" PRIxPTR ", virt end %" PRIxPTR ", generation %u,"
                   " delta %" PRIxPTR "\n",
                   x, i, info->mem_slots[i][x].virt_start_addr,
                   info->mem_slots[i][x].virt_end_addr, info->mem_slots[i][x].generation,
                   info->mem_slots[i][x].address_delta);
            }
    }
}

/* return 1 if validation successfull, 0 otherwise */
int memslot_validate_virt(RedMemSlotInfo *info, uintptr_t virt, int slot_id,
                          uint32_t add_size, uint32_t group_id)
{
    MemSlot *slot;

    slot = &info->mem_slots[group_id][slot_id];
    if ((virt + add_size) < virt) {
        spice_critical("virtual address overlap");
        return 0;
    }

    if (virt < slot->virt_start_addr || (virt + add_size) > slot->virt_end_addr) {
        print_memslots(info);
        spice_warning("virtual address out of range"
              "    virt=0x%" G_GINTPTR_MODIFIER "x+0x%x slot_id=%d group_id=%d\n"
              "    slot=0x%" G_GINTPTR_MODIFIER "x-0x%" G_GINTPTR_MODIFIER "x"
              " delta=0x%" G_GINTPTR_MODIFIER "x",
              virt, add_size, slot_id, group_id,
              slot->virt_start_addr, slot->virt_end_addr, slot->address_delta);
        return 0;
    }
    return 1;
}

uintptr_t memslot_max_size_virt(RedMemSlotInfo *info,
                                uintptr_t virt, int slot_id,
                                uint32_t group_id)
{
    MemSlot *slot;

    slot = &info->mem_slots[group_id][slot_id];

    if (virt < slot->virt_start_addr || virt > slot->virt_end_addr) {
        return 0;
    }
    return slot->virt_end_addr - virt;
}

/*
 * returns NULL on failure.
 */
void *memslot_get_virt(RedMemSlotInfo *info, QXLPHYSICAL addr, uint32_t add_size,
                       int group_id)
{
    int slot_id;
    int generation;
    uintptr_t h_virt;

    MemSlot *slot;

    if (group_id >= info->num_memslots_groups) {
        spice_critical("group_id too big");
        return NULL;
    }

    slot_id = memslot_get_id(info, addr);
    if (slot_id >= info->num_memslots) {
        print_memslots(info);
        spice_critical("slot_id %d too big, addr=%" G_GINT64_MODIFIER "x", slot_id, addr);
        return NULL;
    }

    slot = &info->mem_slots[group_id][slot_id];

    generation = memslot_get_generation(info, addr);
    if (generation != slot->generation) {
        print_memslots(info);
        spice_critical("address generation is not valid, group_id %d, slot_id %d, "
                       "gen %d, slot_gen %d",
                       group_id, slot_id,
                       generation, slot->generation);
        return NULL;
    }

    h_virt = __get_clean_virt(info, addr);
    h_virt += slot->address_delta;

    if (!memslot_validate_virt(info, h_virt, slot_id, add_size, group_id)) {
        return NULL;
    }

    return (void *)h_virt;
}

void memslot_info_init(RedMemSlotInfo *info,
                       uint32_t num_groups, uint32_t num_slots,
                       uint8_t generation_bits,
                       uint8_t id_bits,
                       uint8_t internal_groupslot_id)
{
    uint32_t i;

    spice_assert(num_slots > 0);
    spice_assert(num_groups > 0);

    info->num_memslots_groups = num_groups;
    info->num_memslots = num_slots;
    info->generation_bits = generation_bits;
    info->mem_slot_bits = id_bits;
    info->internal_groupslot_id = internal_groupslot_id;

    info->mem_slots = g_new(MemSlot *, num_groups);

    for (i = 0; i < num_groups; ++i) {
        info->mem_slots[i] = g_new0(MemSlot, num_slots);
    }

    /* TODO: use QXLPHYSICAL_BITS */
    info->memslot_id_shift = 64 - info->mem_slot_bits;
    info->memslot_gen_shift = 64 - (info->mem_slot_bits + info->generation_bits);
    info->memslot_gen_mask = ~((QXLPHYSICAL)-1 << info->generation_bits);
    info->memslot_clean_virt_mask = (((QXLPHYSICAL)(-1)) >>
                                       (info->mem_slot_bits + info->generation_bits));
}

void memslot_info_destroy(RedMemSlotInfo *info)
{
    uint32_t i;

    for (i = 0; i < info->num_memslots_groups; ++i) {
        g_free(info->mem_slots[i]);
    }
    g_free(info->mem_slots);
}

void memslot_info_add_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id,
                           uintptr_t addr_delta, uintptr_t virt_start, uintptr_t virt_end,
                           uint32_t generation)
{
    spice_assert(info->num_memslots_groups > slot_group_id);
    spice_assert(info->num_memslots > slot_id);

    info->mem_slots[slot_group_id][slot_id].address_delta = addr_delta;
    info->mem_slots[slot_group_id][slot_id].virt_start_addr = virt_start;
    info->mem_slots[slot_group_id][slot_id].virt_end_addr = virt_end;
    info->mem_slots[slot_group_id][slot_id].generation = generation;
}

void memslot_info_del_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id)
{
    spice_return_if_fail(info->num_memslots_groups > slot_group_id);
    spice_return_if_fail(info->num_memslots > slot_id);

    info->mem_slots[slot_group_id][slot_id].virt_start_addr = 0;
    info->mem_slots[slot_group_id][slot_id].virt_end_addr = 0;
}

void memslot_info_reset(RedMemSlotInfo *info)
{
        uint32_t i;
        for (i = 0; i < info->num_memslots_groups; ++i) {
            memset(info->mem_slots[i], 0, sizeof(MemSlot) * info->num_memslots);
        }
}