summaryrefslogtreecommitdiff
path: root/src/freedreno/ir3/ir3_sched.c
blob: 7fb3f53ca76c53efde95527c82b58a82a3eac432 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
/*
 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Rob Clark <robclark@freedesktop.org>
 */

#include "util/dag.h"
#include "util/u_math.h"

#include "ir3.h"
#include "ir3_compiler.h"

#if MESA_DEBUG
#define SCHED_DEBUG (ir3_shader_debug & IR3_DBG_SCHEDMSGS)
#else
#define SCHED_DEBUG 0
#endif
#define d(fmt, ...)                                                            \
   do {                                                                        \
      if (SCHED_DEBUG) {                                                       \
         mesa_logi("SCHED: " fmt, ##__VA_ARGS__);                              \
      }                                                                        \
   } while (0)

#define di(instr, fmt, ...)                                                    \
   do {                                                                        \
      if (SCHED_DEBUG) {                                                       \
         struct log_stream *stream = mesa_log_streami();                       \
         mesa_log_stream_printf(stream, "SCHED: " fmt ": ", ##__VA_ARGS__);    \
         ir3_print_instr_stream(stream, instr);                                \
         mesa_log_stream_destroy(stream);                                      \
      }                                                                        \
   } while (0)

/*
 * Instruction Scheduling:
 *
 * A block-level pre-RA scheduler, which works by creating a DAG of
 * instruction dependencies, and heuristically picking a DAG head
 * (instruction with no unscheduled dependencies).
 *
 * Where possible, it tries to pick instructions that avoid nop delay
 * slots, but it will prefer to pick instructions that reduce (or do
 * not increase) the number of live values.
 *
 * If the only possible choices are instructions that increase the
 * number of live values, it will try to pick the one with the earliest
 * consumer (based on pre-sched program order).
 *
 * There are a few special cases that need to be handled, since sched
 * is currently independent of register allocation.  Usages of address
 * register (a0.x) or predicate register (p0.x) must be serialized.  Ie.
 * if you have two pairs of instructions that write the same special
 * register and then read it, then those pairs cannot be interleaved.
 * To solve this, when we are in such a scheduling "critical section",
 * and we encounter a conflicting write to a special register, we try
 * to schedule any remaining instructions that use that value first.
 *
 * TODO we can detect too-large live_values here.. would be a good place
 * to "spill" cheap things, like move from uniform/immed.  (Constructing
 * list of ssa def consumers before sched pass would make this easier.
 * Also, in general it is general it might be best not to re-use load_immed
 * across blocks.
 *
 * TODO we can use (abs)/(neg) src modifiers in a lot of cases to reduce
 * the # of immediates in play (or at least that would help with
 * dEQP-GLES31.functional.ubo.random.all_per_block_buffers.*).. probably
 * do this in a nir pass that inserts fneg/etc?  The cp pass should fold
 * these into src modifiers..
 */

struct ir3_sched_ctx {
   struct ir3_block *block; /* the current block */
   struct dag *dag;

   struct list_head unscheduled_list; /* unscheduled instructions */
   struct ir3_instruction *scheduled; /* last scheduled instr */
   struct ir3_instruction *addr0;     /* current a0.x user, if any */
   struct ir3_instruction *addr1;     /* current a1.x user, if any */

   struct ir3_instruction *split; /* most-recently-split a0/a1 producer */

   int remaining_kills;
   int remaining_tex;

   bool error;

   unsigned ip;

   int sy_delay;
   int ss_delay;

   /* We order the scheduled (sy)/(ss) producers, and keep track of the
    * index of the last waited on instruction, so we can know which
    * instructions are still outstanding (and therefore would require us to
    * wait for all outstanding instructions before scheduling a use).
    */
   int sy_index, first_outstanding_sy_index;
   int ss_index, first_outstanding_ss_index;
};

struct ir3_sched_node {
   struct dag_node dag; /* must be first for util_dynarray_foreach */
   struct ir3_instruction *instr;

   unsigned delay;
   unsigned max_delay;

   unsigned sy_index;
   unsigned ss_index;

   /* For ready instructions, the earliest possible ip that it could be
    * scheduled.
    */
   unsigned earliest_ip;

   /* For instructions that are a meta:collect src, once we schedule
    * the first src of the collect, the entire vecN is live (at least
    * from the PoV of the first RA pass.. the 2nd scalar pass can fill
    * in some of the gaps, but often not all).  So we want to help out
    * RA, and realize that as soon as we schedule the first collect
    * src, there is no penalty to schedule the remainder (ie. they
    * don't make additional values live).  In fact we'd prefer to
    * schedule the rest ASAP to minimize the live range of the vecN.
    *
    * For instructions that are the src of a collect, we track the
    * corresponding collect, and mark them as partially live as soon
    * as any one of the src's is scheduled.
    */
   struct ir3_instruction *collect;
   bool partially_live;

   /* Is this instruction a direct or indirect dependency for a kill?
    * If so, we should prioritize it when possible
    */
   bool kill_path;

   /* This node represents a shader output.  A semi-common pattern in
    * shaders is something along the lines of:
    *
    *    fragcolor.w = 1.0
    *
    * Which we'd prefer to schedule as late as possible, since it
    * produces a live value that is never killed/consumed.  So detect
    * outputs up-front, and avoid scheduling them unless the reduce
    * register pressure (or at least are neutral)
    */
   bool output;
};

#define foreach_sched_node(__n, __list)                                        \
   list_for_each_entry (struct ir3_sched_node, __n, __list, dag.link)

static void sched_node_init(struct ir3_sched_ctx *ctx,
                            struct ir3_instruction *instr);
static void sched_node_add_dep(struct ir3_instruction *instr,
                               struct ir3_instruction *src, int i);

static bool
is_scheduled(struct ir3_instruction *instr)
{
   return !!(instr->flags & IR3_INSTR_MARK);
}

/* check_src_cond() passing a ir3_sched_ctx. */
static bool
sched_check_src_cond(struct ir3_instruction *instr,
                     bool (*cond)(struct ir3_instruction *,
                                  struct ir3_sched_ctx *),
                     struct ir3_sched_ctx *ctx)
{
   foreach_ssa_src (src, instr) {
      /* meta:split/collect aren't real instructions, the thing that
       * we actually care about is *their* srcs
       */
      if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
         if (sched_check_src_cond(src, cond, ctx))
            return true;
      } else {
         if (cond(src, ctx))
            return true;
      }
   }

   return false;
}

/* Is this a sy producer that hasn't been waited on yet? */

static bool
is_outstanding_sy(struct ir3_instruction *instr, struct ir3_sched_ctx *ctx)
{
   if (!is_sy_producer(instr))
      return false;

   /* The sched node is only valid within the same block, we cannot
    * really say anything about src's from other blocks
    */
   if (instr->block != ctx->block)
      return true;

   struct ir3_sched_node *n = instr->data;
   return n->sy_index >= ctx->first_outstanding_sy_index;
}

static bool
is_outstanding_ss(struct ir3_instruction *instr, struct ir3_sched_ctx *ctx)
{
   if (!is_ss_producer(instr))
      return false;

   /* The sched node is only valid within the same block, we cannot
    * really say anything about src's from other blocks
    */
   if (instr->block != ctx->block)
      return true;

   struct ir3_sched_node *n = instr->data;
   return n->ss_index >= ctx->first_outstanding_ss_index;
}

static unsigned
cycle_count(struct ir3_instruction *instr)
{
   if (instr->opc == OPC_META_COLLECT) {
      /* Assume that only immed/const sources produce moves */
      unsigned n = 0;
      foreach_src (src, instr) {
         if (src->flags & (IR3_REG_IMMED | IR3_REG_CONST))
            n++;
      }
      return n;
   } else if (is_meta(instr)) {
      return 0;
   } else {
      return 1;
   }
}

static void
schedule(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
   assert(ctx->block == instr->block);

   /* remove from depth list:
    */
   list_delinit(&instr->node);

   if (writes_addr0(instr)) {
      assert(ctx->addr0 == NULL);
      ctx->addr0 = instr;
   }

   if (writes_addr1(instr)) {
      assert(ctx->addr1 == NULL);
      ctx->addr1 = instr;
   }

   instr->flags |= IR3_INSTR_MARK;

   di(instr, "schedule");

   list_addtail(&instr->node, &instr->block->instr_list);
   ctx->scheduled = instr;

   if (is_kill_or_demote(instr)) {
      assert(ctx->remaining_kills > 0);
      ctx->remaining_kills--;
   }

   struct ir3_sched_node *n = instr->data;

   /* If this instruction is a meta:collect src, mark the remaining
    * collect srcs as partially live.
    */
   if (n->collect) {
      foreach_ssa_src (src, n->collect) {
         if (src->block != instr->block)
            continue;
         struct ir3_sched_node *sn = src->data;
         sn->partially_live = true;
      }
   }

   bool counts_for_delay = is_alu(instr) || is_flow(instr);

   /* TODO: switch to "cycles". For now try to match ir3_delay. */
   unsigned delay_cycles = counts_for_delay ? 1 + instr->repeat : 0;

   /* We insert any nop's needed to get to earliest_ip, then advance
    * delay_cycles by scheduling the instruction.
    */
   ctx->ip = MAX2(ctx->ip, n->earliest_ip) + delay_cycles;

   util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
      unsigned delay = (unsigned)(uintptr_t)edge->data;
      struct ir3_sched_node *child =
         container_of(edge->child, struct ir3_sched_node, dag);
      child->earliest_ip = MAX2(child->earliest_ip, ctx->ip + delay);
   }

   dag_prune_head(ctx->dag, &n->dag);

   unsigned cycles = cycle_count(instr);

   if (is_ss_producer(instr)) {
      ctx->ss_delay = soft_ss_delay(instr);
      n->ss_index = ctx->ss_index++;
   } else if (!is_meta(instr) &&
              sched_check_src_cond(instr, is_outstanding_ss, ctx)) {
      ctx->ss_delay = 0;
      ctx->first_outstanding_ss_index = ctx->ss_index;
   } else if (ctx->ss_delay > 0) {
      ctx->ss_delay -= MIN2(cycles, ctx->ss_delay);
   }

   if (is_sy_producer(instr)) {
      /* NOTE that this isn't an attempt to hide texture fetch latency,
       * but an attempt to hide the cost of switching to another warp.
       * If we can, we'd like to try to schedule another texture fetch
       * before scheduling something that would sync.
       */
      ctx->sy_delay = soft_sy_delay(instr, ctx->block->shader);
      assert(ctx->remaining_tex > 0);
      ctx->remaining_tex--;
      n->sy_index = ctx->sy_index++;
   } else if (!is_meta(instr) &&
              sched_check_src_cond(instr, is_outstanding_sy, ctx)) {
      ctx->sy_delay = 0;
      ctx->first_outstanding_sy_index = ctx->sy_index;
   } else if (ctx->sy_delay > 0) {
      ctx->sy_delay -= MIN2(cycles, ctx->sy_delay);
   }

}

struct ir3_sched_notes {
   /* there is at least one kill which could be scheduled, except
    * for unscheduled bary.f's:
    */
   bool blocked_kill;
   /* there is at least one instruction that could be scheduled,
    * except for conflicting address register usage:
    */
   bool addr0_conflict, addr1_conflict;
};

static bool
should_skip(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
   if (ctx->remaining_kills && (is_tex(instr) || is_mem(instr))) {
      /* avoid texture/memory access if we have unscheduled kills
       * that could make the expensive operation unnecessary.  By
       * definition, if there are remaining kills, and this instr
       * is not a dependency of a kill, there are other instructions
       * that we can choose from.
       */
      struct ir3_sched_node *n = instr->data;
      if (!n->kill_path)
         return true;
   }

   return false;
}

/* could an instruction be scheduled if specified ssa src was scheduled? */
static bool
could_sched(struct ir3_sched_ctx *ctx,
            struct ir3_instruction *instr, struct ir3_instruction *src)
{
   foreach_ssa_src (other_src, instr) {
      /* if dependency not scheduled, we aren't ready yet: */
      if ((src != other_src) && !is_scheduled(other_src)) {
         return false;
      }
   }

   /* Instructions not in the current block can never be scheduled.
    */
   if (instr->block != src->block)
      return false;

   return !should_skip(ctx, instr);
}

/* Check if instruction is ok to schedule.  Make sure it is not blocked
 * by use of addr/predicate register, etc.
 */
static bool
check_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
            struct ir3_instruction *instr)
{
   assert(!is_scheduled(instr));

   if (instr == ctx->split) {
      /* Don't schedule instructions created by splitting a a0.x/a1.x/p0.x
       * write until another "normal" instruction has been scheduled.
       */
      return false;
   }

   if (should_skip(ctx, instr))
       return false;

   /* For instructions that write address register we need to
    * make sure there is at least one instruction that uses the
    * addr value which is otherwise ready.
    *
    * NOTE if any instructions use pred register and have other
    * src args, we would need to do the same for writes_pred()..
    */
   if (writes_addr0(instr)) {
      struct ir3 *ir = instr->block->shader;
      bool ready = false;
      for (unsigned i = 0; (i < ir->a0_users_count) && !ready; i++) {
         struct ir3_instruction *indirect = ir->a0_users[i];
         if (!indirect)
            continue;
         if (indirect->address->def != instr->dsts[0])
            continue;
         ready = could_sched(ctx, indirect, instr);
      }

      /* nothing could be scheduled, so keep looking: */
      if (!ready)
         return false;
   }

   if (writes_addr1(instr)) {
      struct ir3 *ir = instr->block->shader;
      bool ready = false;
      for (unsigned i = 0; (i < ir->a1_users_count) && !ready; i++) {
         struct ir3_instruction *indirect = ir->a1_users[i];
         if (!indirect)
            continue;
         if (indirect->address->def != instr->dsts[0])
            continue;
         ready = could_sched(ctx, indirect, instr);
      }

      /* nothing could be scheduled, so keep looking: */
      if (!ready)
         return false;
   }

   /* if this is a write to address/predicate register, and that
    * register is currently in use, we need to defer until it is
    * free:
    */
   if (writes_addr0(instr) && ctx->addr0) {
      assert(ctx->addr0 != instr);
      notes->addr0_conflict = true;
      return false;
   }

   if (writes_addr1(instr) && ctx->addr1) {
      assert(ctx->addr1 != instr);
      notes->addr1_conflict = true;
      return false;
   }

   /* if the instruction is a kill, we need to ensure *every*
    * bary.f is scheduled.  The hw seems unhappy if the thread
    * gets killed before the end-input (ei) flag is hit.
    *
    * We could do this by adding each bary.f instruction as
    * virtual ssa src for the kill instruction.  But we have
    * fixed length instr->srcs[].
    *
    * TODO we could handle this by false-deps now, probably.
    */
   if (is_kill_or_demote(instr)) {
      struct ir3 *ir = instr->block->shader;

      for (unsigned i = 0; i < ir->baryfs_count; i++) {
         struct ir3_instruction *baryf = ir->baryfs[i];
         if (baryf->flags & IR3_INSTR_UNUSED)
            continue;
         if (!is_scheduled(baryf)) {
            notes->blocked_kill = true;
            return false;
         }
      }
   }

   return true;
}

/* Find the instr->ip of the closest use of an instruction, in
 * pre-sched order.  This isn't going to be the same as post-sched
 * order, but it is a reasonable approximation to limit scheduling
 * instructions *too* early.  This is mostly to prevent bad behavior
 * in cases where we have a large number of possible instructions
 * to choose, to avoid creating too much parallelism (ie. blowing
 * up register pressure)
 *
 * See
 * dEQP-GLES31.functional.atomic_counter.layout.reverse_offset.inc_dec.8_counters_5_calls_1_thread
 */
static int
nearest_use(struct ir3_instruction *instr)
{
   unsigned nearest = ~0;
   foreach_ssa_use (use, instr)
      if (!is_scheduled(use))
         nearest = MIN2(nearest, use->ip);

   /* slight hack.. this heuristic tends to push bary.f's to later
    * in the shader, closer to their uses.  But we actually would
    * prefer to get these scheduled earlier, to unlock varying
    * storage for more VS jobs:
    */
   if (is_input(instr))
      nearest /= 2;

   return nearest;
}

static bool
is_only_nonscheduled_use(struct ir3_instruction *instr,
                         struct ir3_instruction *use)
{
   foreach_ssa_use (other_use, instr) {
      if (other_use != use && !is_scheduled(other_use))
         return false;
   }

   return true;
}

static unsigned
new_regs(struct ir3_instruction *instr)
{
   unsigned regs = 0;

   foreach_dst (dst, instr) {
      if (!is_dest_gpr(dst))
         continue;
      regs += reg_elems(dst);
   }

   return regs;
}

/* find net change to live values if instruction were scheduled: */
static int
live_effect(struct ir3_instruction *instr)
{
   struct ir3_sched_node *n = instr->data;
   int new_live =
      (n->partially_live || !instr->uses || instr->uses->entries == 0)
         ? 0
         : new_regs(instr);
   int freed_live = 0;

   /* if we schedule something that causes a vecN to be live,
    * then count all it's other components too:
    */
   if (n->collect)
      new_live *= n->collect->srcs_count;

   foreach_ssa_src_n (src, n, instr) {
      if (__is_false_dep(instr, n))
         continue;

      if (instr->block != src->block)
         continue;

      if (is_only_nonscheduled_use(src, instr))
         freed_live += new_regs(src);
   }

   return new_live - freed_live;
}

/* Determine if this is an instruction that we'd prefer not to schedule
 * yet, in order to avoid an (ss)/(sy) sync.  This is limited by the
 * ss_delay/sy_delay counters, ie. the more cycles it has been since
 * the last SFU/tex, the less costly a sync would be, and the number of
 * outstanding SFU/tex instructions to prevent a blowup in register pressure.
 */
static bool
should_defer(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
   if (ctx->ss_delay) {
      if (sched_check_src_cond(instr, is_outstanding_ss, ctx))
         return true;
   }

   /* We mostly just want to try to schedule another texture fetch
    * before scheduling something that would (sy) sync, so we can
    * limit this rule to cases where there are remaining texture
    * fetches
    */
   if (ctx->sy_delay && ctx->remaining_tex) {
      if (sched_check_src_cond(instr, is_outstanding_sy, ctx))
         return true;
   }

   /* Avoid scheduling too many outstanding texture or sfu instructions at
    * once by deferring further tex/SFU instructions. This both prevents
    * stalls when the queue of texture/sfu instructions becomes too large,
    * and prevents unacceptably large increases in register pressure from too
    * many outstanding texture instructions.
    */
   if (ctx->sy_index - ctx->first_outstanding_sy_index >= 8 && is_sy_producer(instr))
      return true;

   if (ctx->ss_index - ctx->first_outstanding_ss_index >= 8 && is_ss_producer(instr))
      return true;

   return false;
}

static struct ir3_sched_node *choose_instr_inc(struct ir3_sched_ctx *ctx,
                                               struct ir3_sched_notes *notes,
                                               bool defer, bool avoid_output);

enum choose_instr_dec_rank {
   DEC_NEUTRAL,
   DEC_NEUTRAL_READY,
   DEC_FREED,
   DEC_FREED_READY,
};

static const char *
dec_rank_name(enum choose_instr_dec_rank rank)
{
   switch (rank) {
   case DEC_NEUTRAL:
      return "neutral";
   case DEC_NEUTRAL_READY:
      return "neutral+ready";
   case DEC_FREED:
      return "freed";
   case DEC_FREED_READY:
      return "freed+ready";
   default:
      return NULL;
   }
}

static unsigned
node_delay(struct ir3_sched_ctx *ctx, struct ir3_sched_node *n)
{
   return MAX2(n->earliest_ip, ctx->ip) - ctx->ip;
}

/**
 * Chooses an instruction to schedule using the Goodman/Hsu (1988) CSR (Code
 * Scheduling for Register pressure) heuristic.
 *
 * Only handles the case of choosing instructions that reduce register pressure
 * or are even.
 */
static struct ir3_sched_node *
choose_instr_dec(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
                 bool defer)
{
   const char *mode = defer ? "-d" : "";
   struct ir3_sched_node *chosen = NULL;
   enum choose_instr_dec_rank chosen_rank = DEC_NEUTRAL;

   foreach_sched_node (n, &ctx->dag->heads) {
      if (defer && should_defer(ctx, n->instr))
         continue;

      unsigned d = node_delay(ctx, n);

      int live = live_effect(n->instr);
      if (live > 0)
         continue;

      if (!check_instr(ctx, notes, n->instr))
         continue;

      enum choose_instr_dec_rank rank;
      if (live < 0) {
         /* Prioritize instrs which free up regs and can be scheduled with no
          * delay.
          */
         if (d == 0)
            rank = DEC_FREED_READY;
         else
            rank = DEC_FREED;
      } else {
         /* Contra the paper, pick a leader with no effect on used regs.  This
          * may open up new opportunities, as otherwise a single-operand instr
          * consuming a value will tend to block finding freeing that value.
          * This had a massive effect on reducing spilling on V3D.
          *
          * XXX: Should this prioritize ready?
          */
         if (d == 0)
            rank = DEC_NEUTRAL_READY;
         else
            rank = DEC_NEUTRAL;
      }

      /* Prefer higher-ranked instructions, or in the case of a rank tie, the
       * highest latency-to-end-of-program instruction.
       */
      if (!chosen || rank > chosen_rank ||
          (rank == chosen_rank && chosen->max_delay < n->max_delay)) {
         chosen = n;
         chosen_rank = rank;
      }
   }

   if (chosen) {
      di(chosen->instr, "dec%s: chose (%s)", mode, dec_rank_name(chosen_rank));
      return chosen;
   }

   return choose_instr_inc(ctx, notes, defer, true);
}

enum choose_instr_inc_rank {
   INC_DISTANCE,
   INC_DISTANCE_READY,
};

static const char *
inc_rank_name(enum choose_instr_inc_rank rank)
{
   switch (rank) {
   case INC_DISTANCE:
      return "distance";
   case INC_DISTANCE_READY:
      return "distance+ready";
   default:
      return NULL;
   }
}

/**
 * When we can't choose an instruction that reduces register pressure or
 * is neutral, we end up here to try and pick the least bad option.
 */
static struct ir3_sched_node *
choose_instr_inc(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes,
                 bool defer, bool avoid_output)
{
   const char *mode = defer ? "-d" : "";
   struct ir3_sched_node *chosen = NULL;
   enum choose_instr_inc_rank chosen_rank = INC_DISTANCE;

   /*
    * From hear on out, we are picking something that increases
    * register pressure.  So try to pick something which will
    * be consumed soon:
    */
   unsigned chosen_distance = 0;

   /* Pick the max delay of the remaining ready set. */
   foreach_sched_node (n, &ctx->dag->heads) {
      if (avoid_output && n->output)
         continue;

      if (defer && should_defer(ctx, n->instr))
         continue;

      if (!check_instr(ctx, notes, n->instr))
         continue;

      unsigned d = node_delay(ctx, n);

      enum choose_instr_inc_rank rank;
      if (d == 0)
         rank = INC_DISTANCE_READY;
      else
         rank = INC_DISTANCE;

      unsigned distance = nearest_use(n->instr);

      if (!chosen || rank > chosen_rank ||
          (rank == chosen_rank && distance < chosen_distance)) {
         chosen = n;
         chosen_distance = distance;
         chosen_rank = rank;
      }
   }

   if (chosen) {
      di(chosen->instr, "inc%s: chose (%s)", mode, inc_rank_name(chosen_rank));
      return chosen;
   }

   return NULL;
}

/* Handles instruction selections for instructions we want to prioritize
 * even if csp/csr would not pick them.
 */
static struct ir3_sched_node *
choose_instr_prio(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes)
{
   struct ir3_sched_node *chosen = NULL;

   foreach_sched_node (n, &ctx->dag->heads) {
      /*
       * - phi nodes and inputs must be scheduled first
       * - split should be scheduled first, so that the vector value is
       *   killed as soon as possible. RA cannot split up the vector and
       *   reuse components that have been killed until it's been killed.
       * - collect, on the other hand, should be treated as a "normal"
       *   instruction, and may add to register pressure if its sources are
       *   part of another vector or immediates.
       */
      if (!is_meta(n->instr) || n->instr->opc == OPC_META_COLLECT)
         continue;

      if (!chosen || (chosen->max_delay < n->max_delay))
         chosen = n;
   }

   if (chosen) {
      di(chosen->instr, "prio: chose (meta)");
      return chosen;
   }

   return NULL;
}

static void
dump_state(struct ir3_sched_ctx *ctx)
{
   if (!SCHED_DEBUG)
      return;

   foreach_sched_node (n, &ctx->dag->heads) {
      di(n->instr, "maxdel=%3d le=%d del=%u ", n->max_delay,
         live_effect(n->instr), node_delay(ctx, n));

      util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
         struct ir3_sched_node *child = (struct ir3_sched_node *)edge->child;

         di(child->instr, " -> (%d parents) ", child->dag.parent_count);
      }
   }
}

/* find instruction to schedule: */
static struct ir3_instruction *
choose_instr(struct ir3_sched_ctx *ctx, struct ir3_sched_notes *notes)
{
   struct ir3_sched_node *chosen;

   dump_state(ctx);

   chosen = choose_instr_prio(ctx, notes);
   if (chosen)
      return chosen->instr;

   chosen = choose_instr_dec(ctx, notes, true);
   if (chosen)
      return chosen->instr;

   chosen = choose_instr_dec(ctx, notes, false);
   if (chosen)
      return chosen->instr;

   chosen = choose_instr_inc(ctx, notes, false, false);
   if (chosen)
      return chosen->instr;

   return NULL;
}

static struct ir3_instruction *
split_instr(struct ir3_sched_ctx *ctx, struct ir3_instruction *orig_instr)
{
   struct ir3_instruction *new_instr = ir3_instr_clone(orig_instr);
   di(new_instr, "split instruction");
   sched_node_init(ctx, new_instr);
   return new_instr;
}

/* "spill" the address registers by remapping any unscheduled
 * instructions which depend on the current address register
 * to a clone of the instruction which wrote the address reg.
 */
static struct ir3_instruction *
split_addr(struct ir3_sched_ctx *ctx, struct ir3_instruction **addr,
           struct ir3_instruction **users, unsigned users_count)
{
   struct ir3_instruction *new_addr = NULL;
   unsigned i;

   assert(*addr);

   for (i = 0; i < users_count; i++) {
      struct ir3_instruction *indirect = users[i];

      if (!indirect)
         continue;

      /* skip instructions already scheduled: */
      if (is_scheduled(indirect))
         continue;

      /* remap remaining instructions using current addr
       * to new addr:
       */
      if (indirect->address->def == (*addr)->dsts[0]) {
         if (!new_addr) {
            new_addr = split_instr(ctx, *addr);
            /* original addr is scheduled, but new one isn't: */
            new_addr->flags &= ~IR3_INSTR_MARK;
         }
         indirect->address->def = new_addr->dsts[0];
         /* don't need to remove old dag edge since old addr is
          * already scheduled:
          */
         sched_node_add_dep(indirect, new_addr, 0);
         di(indirect, "new address");
      }
   }

   /* all remaining indirects remapped to new addr: */
   *addr = NULL;

   return new_addr;
}

static void
sched_node_init(struct ir3_sched_ctx *ctx, struct ir3_instruction *instr)
{
   struct ir3_sched_node *n = rzalloc(ctx->dag, struct ir3_sched_node);

   dag_init_node(ctx->dag, &n->dag);

   n->instr = instr;
   instr->data = n;
}

static void
sched_node_add_dep(struct ir3_instruction *instr, struct ir3_instruction *src,
                   int i)
{
   /* don't consider dependencies in other blocks: */
   if (src->block != instr->block)
      return;

   /* we could have false-dep's that end up unused: */
   if (src->flags & IR3_INSTR_UNUSED) {
      assert(__is_false_dep(instr, i));
      return;
   }

   struct ir3_sched_node *n = instr->data;
   struct ir3_sched_node *sn = src->data;

   /* If src is consumed by a collect, track that to realize that once
    * any of the collect srcs are live, we should hurry up and schedule
    * the rest.
    */
   if (instr->opc == OPC_META_COLLECT)
      sn->collect = instr;

   unsigned d_soft = ir3_delayslots(src, instr, i, true);
   unsigned d = ir3_delayslots(src, instr, i, false);

   /* delays from (ss) and (sy) are considered separately and more accurately in
    * the scheduling heuristic, so ignore it when calculating the ip of
    * instructions, but do consider it when prioritizing which instructions to
    * schedule.
    */
   dag_add_edge_max_data(&sn->dag, &n->dag, (uintptr_t)d);

   n->delay = MAX2(n->delay, d_soft);
}

static void
mark_kill_path(struct ir3_instruction *instr)
{
   struct ir3_sched_node *n = instr->data;

   if (n->kill_path) {
      return;
   }

   n->kill_path = true;

   foreach_ssa_src (src, instr) {
      if (src->block != instr->block)
         continue;
      mark_kill_path(src);
   }
}

/* Is it an output? */
static bool
is_output_collect(struct ir3_instruction *instr)
{
   if (instr->opc != OPC_META_COLLECT)
      return false;

   foreach_ssa_use (use, instr) {
      if (use->opc != OPC_END && use->opc != OPC_CHMASK)
         return false;
   }

   return true;
}

/* Is it's only use as output? */
static bool
is_output_only(struct ir3_instruction *instr)
{
   foreach_ssa_use (use, instr)
      if (!is_output_collect(use))
         return false;

   return true;
}

static void
sched_node_add_deps(struct ir3_instruction *instr)
{
   /* There's nothing to do for phi nodes, since they always go first. And
    * phi nodes can reference sources later in the same block, so handling
    * sources is not only unnecessary but could cause problems.
    */
   if (instr->opc == OPC_META_PHI)
      return;

   /* Since foreach_ssa_src() already handles false-dep's we can construct
    * the DAG easily in a single pass.
    */
   foreach_ssa_src_n (src, i, instr) {
      sched_node_add_dep(instr, src, i);
   }

   /* NOTE that all inputs must be scheduled before a kill, so
    * mark these to be prioritized as well:
    */
   if (is_kill_or_demote(instr) || is_input(instr)) {
      mark_kill_path(instr);
   }

   if (is_output_only(instr)) {
      struct ir3_sched_node *n = instr->data;
      n->output = true;
   }
}

static void
sched_dag_max_delay_cb(struct dag_node *node, void *state)
{
   struct ir3_sched_node *n = (struct ir3_sched_node *)node;
   uint32_t max_delay = 0;

   util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
      struct ir3_sched_node *child = (struct ir3_sched_node *)edge->child;
      max_delay = MAX2(child->max_delay, max_delay);
   }

   n->max_delay = MAX2(n->max_delay, max_delay + n->delay);
}

static void
sched_dag_validate_cb(const struct dag_node *node, void *data)
{
   struct ir3_sched_node *n = (struct ir3_sched_node *)node;

   ir3_print_instr(n->instr);
}

static void
sched_dag_init(struct ir3_sched_ctx *ctx)
{
   ctx->dag = dag_create(ctx);

   foreach_instr (instr, &ctx->unscheduled_list)
      sched_node_init(ctx, instr);

   dag_validate(ctx->dag, sched_dag_validate_cb, NULL);

   foreach_instr (instr, &ctx->unscheduled_list)
      sched_node_add_deps(instr);

   dag_traverse_bottom_up(ctx->dag, sched_dag_max_delay_cb, NULL);
}

static void
sched_dag_destroy(struct ir3_sched_ctx *ctx)
{
   ralloc_free(ctx->dag);
   ctx->dag = NULL;
}

static void
sched_block(struct ir3_sched_ctx *ctx, struct ir3_block *block)
{
   ctx->block = block;

   /* addr/pred writes are per-block: */
   ctx->addr0 = NULL;
   ctx->addr1 = NULL;
   ctx->sy_delay = 0;
   ctx->ss_delay = 0;
   ctx->sy_index = ctx->first_outstanding_sy_index = 0;
   ctx->ss_index = ctx->first_outstanding_ss_index = 0;

   /* The terminator has to stay at the end. Instead of trying to set up
    * dependencies to achieve this, it's easier to just remove it now and add it
    * back after scheduling.
    */
   struct ir3_instruction *terminator = ir3_block_take_terminator(block);

   /* move all instructions to the unscheduled list, and
    * empty the block's instruction list (to which we will
    * be inserting).
    */
   list_replace(&block->instr_list, &ctx->unscheduled_list);
   list_inithead(&block->instr_list);

   sched_dag_init(ctx);

   ctx->remaining_kills = 0;
   ctx->remaining_tex = 0;
   foreach_instr_safe (instr, &ctx->unscheduled_list) {
      if (is_kill_or_demote(instr))
         ctx->remaining_kills++;
      if (is_sy_producer(instr))
         ctx->remaining_tex++;
   }

   /* First schedule all meta:input and meta:phi instructions, followed by
    * tex-prefetch.  We want all of the instructions that load values into
    * registers before the shader starts to go before any other instructions.
    * But in particular we want inputs to come before prefetches.  This is
    * because a FS's bary_ij input may not actually be live in the shader,
    * but it should not be scheduled on top of any other input (but can be
    * overwritten by a tex prefetch)
    *
    * Note: Because the first block cannot have predecessors, meta:input and
    * meta:phi cannot exist in the same block.
    */
   foreach_instr_safe (instr, &ctx->unscheduled_list)
      if (instr->opc == OPC_META_INPUT || instr->opc == OPC_META_PHI)
         schedule(ctx, instr);

   foreach_instr_safe (instr, &ctx->unscheduled_list)
      if (instr->opc == OPC_META_TEX_PREFETCH)
         schedule(ctx, instr);

   foreach_instr_safe (instr, &ctx->unscheduled_list)
      if (instr->opc == OPC_PUSH_CONSTS_LOAD_MACRO)
         schedule(ctx, instr);

   while (!list_is_empty(&ctx->unscheduled_list)) {
      struct ir3_sched_notes notes = {0};
      struct ir3_instruction *instr;

      instr = choose_instr(ctx, &notes);
      if (instr) {
         unsigned delay = node_delay(ctx, instr->data);
         d("delay=%u", delay);

         assert(delay <= 6);

         schedule(ctx, instr);

         /* Since we've scheduled a "real" instruction, we can now
          * schedule any split instruction created by the scheduler again.
          */
         ctx->split = NULL;
      } else {
         struct ir3_instruction *new_instr = NULL;
         struct ir3 *ir = block->shader;

         /* nothing available to schedule.. if we are blocked on
          * address/predicate register conflict, then break the
          * deadlock by cloning the instruction that wrote that
          * reg:
          */
         if (notes.addr0_conflict) {
            new_instr =
               split_addr(ctx, &ctx->addr0, ir->a0_users, ir->a0_users_count);
         } else if (notes.addr1_conflict) {
            new_instr =
               split_addr(ctx, &ctx->addr1, ir->a1_users, ir->a1_users_count);
         } else {
            d("unscheduled_list:");
            foreach_instr (instr, &ctx->unscheduled_list)
               di(instr, "unscheduled: ");
            assert(0);
            ctx->error = true;
            return;
         }

         if (new_instr) {
            list_delinit(&new_instr->node);
            list_addtail(&new_instr->node, &ctx->unscheduled_list);
         }

         /* If we produced a new instruction, do not schedule it next to
          * guarantee progress.
          */
         ctx->split = new_instr;
      }
   }

   sched_dag_destroy(ctx);

   if (terminator)
      list_addtail(&terminator->node, &block->instr_list);
}

int
ir3_sched(struct ir3 *ir)
{
   struct ir3_sched_ctx *ctx = rzalloc(NULL, struct ir3_sched_ctx);

   foreach_block (block, &ir->block_list) {
      foreach_instr (instr, &block->instr_list) {
         instr->data = NULL;
      }
   }

   ir3_count_instructions_sched(ir);
   ir3_clear_mark(ir);
   ir3_find_ssa_uses(ir, ctx, false);

   foreach_block (block, &ir->block_list) {
      sched_block(ctx, block);
   }

   int ret = ctx->error ? -1 : 0;

   ralloc_free(ctx);

   return ret;
}

static unsigned
get_array_id(struct ir3_instruction *instr)
{
   /* The expectation is that there is only a single array
    * src or dst, ir3_cp should enforce this.
    */

   foreach_dst (dst, instr)
      if (dst->flags & IR3_REG_ARRAY)
         return dst->array.id;
   foreach_src (src, instr)
      if (src->flags & IR3_REG_ARRAY)
         return src->array.id;

   unreachable("this was unexpected");
}

/* does instruction 'prior' need to be scheduled before 'instr'? */
static bool
depends_on(struct ir3_instruction *instr, struct ir3_instruction *prior)
{
   /* TODO for dependencies that are related to a specific object, ie
    * a specific SSBO/image/array, we could relax this constraint to
    * make accesses to unrelated objects not depend on each other (at
    * least as long as not declared coherent)
    */
   if (((instr->barrier_class & IR3_BARRIER_EVERYTHING) &&
        prior->barrier_class) ||
       ((prior->barrier_class & IR3_BARRIER_EVERYTHING) &&
        instr->barrier_class))
      return true;

   if (instr->barrier_class & prior->barrier_conflict) {
      if (!(instr->barrier_class &
            ~(IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W))) {
         /* if only array barrier, then we can further limit false-deps
          * by considering the array-id, ie reads/writes to different
          * arrays do not depend on each other (no aliasing)
          */
         if (get_array_id(instr) != get_array_id(prior)) {
            return false;
         }
      }

      return true;
   }

   return false;
}

static void
add_barrier_deps(struct ir3_block *block, struct ir3_instruction *instr)
{
   struct list_head *prev = instr->node.prev;
   struct list_head *next = instr->node.next;

   /* add dependencies on previous instructions that must be scheduled
    * prior to the current instruction
    */
   while (prev != &block->instr_list) {
      struct ir3_instruction *pi =
         list_entry(prev, struct ir3_instruction, node);

      prev = prev->prev;

      if (is_meta(pi))
         continue;

      if (instr->barrier_class == pi->barrier_class) {
         ir3_instr_add_dep(instr, pi);
         break;
      }

      if (depends_on(instr, pi))
         ir3_instr_add_dep(instr, pi);
   }

   /* add dependencies on this instruction to following instructions
    * that must be scheduled after the current instruction:
    */
   while (next != &block->instr_list) {
      struct ir3_instruction *ni =
         list_entry(next, struct ir3_instruction, node);

      next = next->next;

      if (is_meta(ni))
         continue;

      if (instr->barrier_class == ni->barrier_class) {
         ir3_instr_add_dep(ni, instr);
         break;
      }

      if (depends_on(ni, instr))
         ir3_instr_add_dep(ni, instr);
   }
}

/* before scheduling a block, we need to add any necessary false-dependencies
 * to ensure that:
 *
 *  (1) barriers are scheduled in the right order wrt instructions related
 *      to the barrier
 *
 *  (2) reads that come before a write actually get scheduled before the
 *      write
 */
bool
ir3_sched_add_deps(struct ir3 *ir)
{
   bool progress = false;

   foreach_block (block, &ir->block_list) {
      foreach_instr (instr, &block->instr_list) {
         if (instr->barrier_class) {
            add_barrier_deps(block, instr);
            progress = true;
         }
      }
   }

   return progress;
}