summaryrefslogtreecommitdiff
path: root/orc/orcprogram-avx.c
blob: f6b4257f976e04a1348ecf3b89d8a110b372b2a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

#include <orc/orcavx.h>
#include <orc/orcavx-internal.h>
#include <orc/orcinternal.h>
#include <orc/orcprogram.h>

/* X86 specific */
static unsigned int
avx_get_default_flags (void)
{
  unsigned int flags = 0;

#if defined(HAVE_AMD64)
  flags |= ORC_TARGET_SSE_64BIT;
#endif
  if (_orc_compiler_flag_debug) {
    flags |= ORC_TARGET_SSE_FRAME_POINTER;
  }

#if defined(HAVE_I386) || defined(HAVE_AMD64)
  flags |= orc_sse_get_cpu_flags ();
#else
  flags |= ORC_TARGET_AVX_AVX;
  flags |= ORC_TARGET_AVX_AVX2;
#endif

  return flags;
}

static const char *
avx_get_flag_name (const int shift)
{
  static const char *flags[] = {
    "sse2",
    "sse3",
    "ssse3",
    "sse41",
    "sse42",
    "frame_pointer",
    "short_jumps",
    "64bit",
    "avx",
    "avx2",
  };

  if (shift >= 0 && shift < sizeof (flags) / sizeof (flags[0])) {
    return flags[shift];
  }

  return NULL;
}

static int
avx_is_executable (void)
{
#if defined(HAVE_I386) || defined(HAVE_AMD64)
  /* initializes cache information */
  const int flags = orc_sse_get_cpu_flags ();

  if ((flags & ORC_TARGET_AVX_AVX) && (flags & ORC_TARGET_AVX_AVX2)) {
    return TRUE;
  }
#endif
  return FALSE;
}

static void
avx_validate_registers (int *regs, int is_64bit)
{
  int i;

  if (is_64bit) {
    for (i = 0; i < ORC_AVX_REG_AMOUNT; i++) {
      regs[X86_YMM0 + i] = 1;
    }
  } else {
    for (i = 0; i < ORC_AVX_REG_AMOUNT - 8; i++) {
      regs[X86_YMM0 + i] = 1;
    }
  }
}

static void
avx_saveable_registers (int *regs, int is_64bit)
{
#ifdef HAVE_OS_WIN32
  if (is_64bit) {
    int i;
    for (i = 6; i < ORC_AVX_REG_AMOUNT; i++) {
      regs[X86_YMM0 + i] = 1;
    }
  }
#endif
}

static int
avx_is_64bit (int flags)
{
  if (flags & ORC_TARGET_SSE_64BIT) {
    return TRUE;
  } else {
    return FALSE;
  }
}

static int
avx_use_frame_pointer (int flags)
{
  if (flags & ORC_TARGET_SSE_FRAME_POINTER) {
    return TRUE;
  } else {
    return FALSE;
  }
}

static int
avx_use_long_jumps (int flags)
{
  if (!(flags & ORC_TARGET_SSE_SHORT_JUMPS)) {
    return TRUE;
  } else {
    return FALSE;
  }
}

static int
avx_loop_shift (int max_var_size)
{
  switch (max_var_size) {
    case 1:
      return 5;
    case 2:
      return 4;
    case 4:
      return 3;
    case 8:
      return 2;
    default:
      ORC_ERROR ("unhandled max var size %d", max_var_size);
      break;
  }

  return -1;
}

static void
avx_init_accumulator (OrcCompiler *compiler, OrcVariable *var)
{
  orc_avx_emit_pxor (compiler, var->alloc, var->alloc, var->alloc);
}

static void
avx_reduce_accumulator (OrcCompiler *compiler, int i, OrcVariable *var)
{
  const int src = var->alloc;
  const int tmp = orc_compiler_get_temp_reg (compiler);

  // duplicate the high lane
  orc_avx_emit_extractf128_si256 (compiler, 1, src, tmp);

  // Pairwise summation
  if (var->size == 2) {
    orc_avx_sse_emit_paddw (compiler, src, tmp, src);
  } else {
    orc_avx_sse_emit_paddd (compiler, src, tmp, src);
  }

  // Duplicate the high half now
  orc_avx_sse_emit_pshufd (compiler, ORC_AVX_SSE_SHUF (3, 2, 3, 2), src,
      tmp);

  // Pairwise summation
  if (var->size == 2) {
    orc_avx_sse_emit_paddw (compiler, src, tmp, src);
  } else {
    orc_avx_sse_emit_paddd (compiler, src, tmp, src);
  }

  // Combine the remaining two pairs in the low half
  orc_avx_sse_emit_pshufd (compiler, ORC_AVX_SSE_SHUF (1, 1, 1, 1), src,
      tmp);

  // Pairwise summation
  if (var->size == 2) {
    orc_avx_sse_emit_paddw (compiler, src, tmp, src);
  } else {
    orc_avx_sse_emit_paddd (compiler, src, tmp, src);
  }

  // Reduce the last pair if it's 16-bit
  if (var->size == 2) {
    orc_avx_sse_emit_pshuflw (compiler, ORC_AVX_SSE_SHUF (1, 1, 1, 1),
        src, tmp);
    orc_avx_sse_emit_paddw (compiler, src, tmp, src);
  }

  if (var->size == 2) {
    orc_avx_sse_emit_pextrw_memoffset (compiler, 0,
        (int)ORC_STRUCT_OFFSET (OrcExecutor,
            accumulators[i - ORC_VAR_A1]),
        src, compiler->exec_reg);
  } else {
    orc_x86_emit_mov_avx_memoffset (compiler, 4, src,
        (int)ORC_STRUCT_OFFSET (OrcExecutor,
            accumulators[i - ORC_VAR_A1]),
        compiler->exec_reg, var->is_aligned, var->is_uncached);
  }
}

void
orc_avx_load_constant (OrcCompiler *compiler, int reg, int size,
    orc_uint64 value)
{
  if (size == 8) {
    if (value == 0) {
      orc_avx_emit_pxor (compiler, reg, reg, reg);
      return;
    } else if (value == UINT64_MAX) {
      orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
      return;
    }

    // Store the upper half
    if (value >> 32) {
      orc_x86_emit_mov_imm_reg (compiler, 4, value >> 32, compiler->gp_tmpreg);
      orc_avx_sse_emit_pinsrd_register (compiler, 1,  reg, compiler->gp_tmpreg, reg);
    } else {
      orc_avx_emit_pxor (compiler, reg, reg, reg);
    }

    // Store the lower half
    orc_x86_emit_mov_imm_reg (compiler, 4, value >> 0, compiler->gp_tmpreg);
    orc_avx_sse_emit_pinsrd_register (compiler, 0,  reg, compiler->gp_tmpreg, reg);

    // broadcast mm0 to the rest
    orc_avx_emit_broadcast (compiler, reg, reg, size);
    return;
  } else if (size == 1) {
    // Synthesize a MMX "vector"
    value &= 0xff;
    value |= (value << 8);
    value |= (value << 16);
  } else if (size == 2) {
    // Same as above
    value &= 0xffff;
    value |= (value << 16);
  }

  ORC_ASM_CODE (compiler, "# loading constant %" PRIu64 " 0x%16" PRIx64 "\n",
      value, value);

  if (value == 0) {
    orc_avx_emit_pxor (compiler, reg, reg, reg);
    return;
  } else if (value == UINT32_MAX) {
    orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
    return;
  } else if (value == 0x01010101) {
    orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
    // Force two-complement wraparound
    orc_avx_emit_pabsb (compiler, reg, reg);
    return;
  } else if (value == 0x00010001) {
    orc_avx_emit_pcmpeqw (compiler, reg, reg, reg);
    // Force two-complement wraparound
    orc_avx_emit_pabsw (compiler, reg, reg);
    return;
  } else if (value == 0x00000001) {
    orc_avx_emit_pcmpeqd (compiler, reg, reg, reg);
    // Force two-complement wraparound
    orc_avx_emit_pabsd (compiler, reg, reg);
    return;
  }

  // Shifted UINT32_MAX masks
  for (orc_uint32 i = 1; i < 32; i++) {
    const orc_uint32 v = (0xffffffff << i);
    if (value == v) {
      orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
      orc_avx_emit_pslld_imm (compiler, i, reg, reg);
      return;
    }
    const orc_uint32 v2 = (0xffffffff >> i);
    if (value == v2) {
      orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
      orc_avx_emit_psrld_imm (compiler, i, reg, reg);
      return;
    }
  }

  // Shifted UINT16_MAX masks
  for (orc_uint32 i = 1; i < 16; i++) {
    const orc_uint32 v1
        = (0xffff & (0xffff << i)) | (0xffff0000 & (0xffff0000 << i));
    if (value == v1) {
      orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
      orc_avx_emit_psllw_imm (compiler, i, reg, reg);
      return;
    }
    const orc_uint32 v2
        = (0xffff & (0xffff >> i)) | (0xffff0000 & (0xffff0000 >> i));
    if (value == v2) {
      orc_avx_emit_pcmpeqb (compiler, reg, reg, reg);
      orc_avx_emit_psrlw_imm (compiler, i, reg, reg);
      return;
    }
  }

  orc_x86_emit_mov_imm_reg (compiler, 4, value, compiler->gp_tmpreg);
  orc_avx_sse_emit_movd_load_register (compiler, compiler->gp_tmpreg, reg);
  orc_avx_emit_broadcast (compiler, reg, reg, 4);
}


static void
avx_load_constant_long (OrcCompiler *compiler, int reg, OrcConstant *constant)
{
  ORC_ASM_CODE (compiler, "# loading constant %08x %08x %08x %08x\n",
      constant->full_value[0], constant->full_value[1], constant->full_value[2],
      constant->full_value[3]);

  for (int i = 0; i < 4; i++) {
    orc_x86_emit_mov_imm_reg (compiler, 4, constant->full_value[i],
        compiler->gp_tmpreg);
    orc_avx_sse_emit_pinsrd_register (compiler, i, reg, compiler->gp_tmpreg, reg);
  }

  orc_avx_emit_broadcast (compiler, reg, reg, 16);
}

static void
avx_move_register_to_memoffset (OrcCompiler *compiler, int size, int reg1, int offset, int reg2, int aligned, int uncached)
{
  orc_x86_emit_mov_avx_memoffset (compiler, size, reg1, offset, reg2, aligned, uncached);
}

static void
avx_move_memoffset_to_register (OrcCompiler *compiler, int size, int offset, int reg1, int reg2, int is_aligned)
{
  orc_x86_emit_mov_memoffset_avx (compiler, size, offset, reg1, reg2, is_aligned);

}

static int
avx_get_shift (int size)
{
  switch (size) {
    case 1:
      return 0;
    case 2:
      return 1;
    case 4:
      return 2;
    case 8:
      return 3;
    case 16: // AVX2 shifts
      return 4;
    case 32:
      return 5;
    default:
      ORC_ERROR ("bad size %d", size);
  }
  return -1;
}

static void
avx_set_mxcsr (OrcCompiler *c)
{
  orc_avx_set_mxcsr (c);
}

static void
avx_restore_mxcsr(OrcCompiler *c)
{
  orc_avx_restore_mxcsr (c);
}

void
orc_avx_init (void)
{
  // clang-format off
  static OrcX86Target target = {
    "avx",
    avx_get_default_flags,
    avx_get_flag_name,
    avx_is_executable,
    avx_validate_registers,
    avx_saveable_registers,
    avx_is_64bit,
    avx_use_frame_pointer,
    avx_use_long_jumps,
    avx_loop_shift,
    avx_init_accumulator,
    avx_reduce_accumulator,
    orc_avx_load_constant,
    avx_load_constant_long,
    avx_move_register_to_memoffset,
    avx_move_memoffset_to_register,
    avx_get_shift,
    avx_set_mxcsr,
    avx_restore_mxcsr,
    ORC_AVX_REG_SIZE,
    X86_YMM0,
    ORC_AVX_REG_AMOUNT,
    16,
  };
  // clang-format on
  OrcTarget *t;

  t = orc_x86_register_target (&target);
  orc_compiler_avx_register_rules (t);
}

/*
 * The following code was ported from the MIPS backend,
 * and extended to allow for store reordering and the
 * multi-operand VEX syntax.
 */
static int
uses_in_destination_register (const OrcCompiler *const compiler,
               const OrcInstruction *const insn,
               int reg)
{
  for (int i=0; i<ORC_STATIC_OPCODE_N_DEST; i++) {
    const OrcVariable *const var = compiler->vars + insn->dest_args[i];
    if (var->alloc == reg || var->ptr_register == reg)
      return TRUE;
  }

  return FALSE;
}

static int uses_in_source_register(const OrcCompiler *const compiler,
               const OrcInstruction *const insn,
               int reg) {
  for (int i=0; i<ORC_STATIC_OPCODE_N_SRC; i++) {
    const OrcVariable *const var = compiler->vars + insn->src_args[i];
    if (var->alloc == reg || var->ptr_register == reg)
      return TRUE;
  }

  return FALSE;
}

static void
do_swap (int *tab, int i, int j)
{
  int tmp = tab[i];
  tab[i] = tab[j];
  tab[j] = tmp;
}

/* Assumes that the instruction at indexes[i] is a load instruction */
static int
can_raise (const OrcCompiler *const compiler, const int *const indexes, int i)
{
  if (i==0)
    return FALSE;

  const OrcInstruction *const insn = compiler->insns + indexes[i];
  const OrcInstruction *const previous_insn = compiler->insns + indexes[i-1];

  /* Register where the load operation will put the data */
  const int reg = compiler->vars[insn->dest_args[0]].alloc;
  if (uses_in_source_register(compiler, previous_insn, reg) || uses_in_destination_register(compiler, previous_insn, reg)) {
    return FALSE;
  }

  for (int j = 0; j < ORC_STATIC_OPCODE_N_SRC; j++) {
    const OrcVariable *const var = compiler->vars + insn->src_args[j];
    // If the previous instruction touches anything RIP
    if (uses_in_destination_register(compiler, previous_insn, var->alloc) || uses_in_destination_register(compiler, previous_insn, var->ptr_register))
      return FALSE;
  }

  return TRUE;
}

/* Recursive. */
static void
try_raise (OrcCompiler *compiler, int *indexes, int i)
{
  if (can_raise (compiler, indexes, i)) {
    do_swap (indexes, i-1, i);
    try_raise (compiler, indexes, i-1);
  }
}


/* Assumes that the instruction at indexes[i] is a load instruction */
static int
can_lower (const OrcCompiler *const compiler, const int *const indexes, int i)
{
  if (i >= compiler->n_insns - 1)
    return FALSE;

  const OrcInstruction *const insn = compiler->insns + indexes[i];
  const OrcInstruction *const next_insn = compiler->insns + indexes[i+1];

  /* Register where the store operation will put the data */
  const int reg = compiler->vars[insn->dest_args[0]].ptr_register;
  if (uses_in_source_register(compiler, next_insn, reg)) {
    return FALSE;
  }

  for (int j = 0; j < ORC_STATIC_OPCODE_N_SRC; j++) {
    const OrcVariable *const var = compiler->vars + insn->src_args[j];
    // If the next instruction touches anything RIP
    if (uses_in_destination_register(compiler, next_insn, var->alloc) || uses_in_destination_register(compiler, next_insn, var->ptr_register))
      return FALSE;
  }

  return TRUE;
}

static void
try_lower (OrcCompiler *compiler, int *indexes, int i)
{
  if (can_lower (compiler, indexes, i)) {
    do_swap (indexes, i-1, i);
    try_lower (compiler, indexes, i+1);
  }
}

/*
   Do a kind of bubble sort, though it might not exactly be a sort. It only
   moves load instructions up until they reach an operation above which they
   cannot go.

   FIXME: also push store instructions down.
 */
static void
optimise_order (OrcCompiler *compiler, int *const indexes)
{
  for (int i=0; i<compiler->n_insns; i++) {
    const OrcInstruction *const insn = compiler->insns + indexes[i];
    if (insn->opcode->flags & ORC_STATIC_OPCODE_LOAD) {
      try_raise(compiler, indexes, i);
    }
    else if (insn->opcode->flags & ORC_STATIC_OPCODE_STORE) {
      try_lower(compiler, indexes, i);
    }
  }
}

static int *
get_optimised_instruction_order (OrcCompiler *compiler)
{
  if (compiler->n_insns == 0)
    return NULL;

  int *const instruction_idx = malloc (compiler->n_insns * sizeof(int));
  for (int i=0; i<compiler->n_insns; i++)
    instruction_idx[i] = i;

  optimise_order (compiler, instruction_idx);

  return instruction_idx;
}