1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/* Spa
*
* Copyright © 2019 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "resample-native-impl.h"
struct quality {
uint32_t n_taps;
double cutoff;
};
#define DEFAULT_QUALITY 4
static const struct quality blackman_qualities[] = {
{ 8, 0.5, },
{ 16, 0.6, },
{ 24, 0.72, },
{ 32, 0.8, },
{ 48, 0.85, }, /* default */
{ 64, 0.90, },
{ 80, 0.92, },
{ 96, 0.933, },
{ 128, 0.950, },
{ 144, 0.955, },
{ 160, 0.960, }
};
static inline double sinc(double x)
{
if (x < 1e-6) return 1.0;
x *= M_PI;
return sin(x) / x;
}
static inline double blackman(double x, double n_taps)
{
double w = 2.0 * x * M_PI / n_taps + M_PI;
return 0.3635819 - 0.4891775 * cos(w) +
0.1365995 * cos(2 * w) - 0.0106411 * cos(3 * w);
}
static int build_filter(float *taps, uint32_t stride, uint32_t n_taps, uint32_t n_phases, double cutoff)
{
uint32_t i, j, n_taps12 = n_taps/2;
for (i = 0; i <= n_phases; i++) {
double t = (double) i / (double) n_phases;
for (j = 0; j < n_taps12; j++, t += 1.0) {
/* exploit symmetry in filter taps */
taps[(n_phases - i) * stride + n_taps12 + j] =
taps[i * stride + (n_taps12 - j - 1)] =
cutoff * sinc(t * cutoff) * blackman(t, n_taps);
}
}
return 0;
}
static void impl_native_free(struct resample *r)
{
free(r->data);
r->data = NULL;
}
static inline uint32_t calc_gcd(uint32_t a, uint32_t b)
{
while (b != 0) {
uint32_t temp = a;
a = b;
b = temp % b;
}
return a;
}
static void impl_native_update_rate(struct resample *r, double rate)
{
struct native_data *data = r->data;
uint32_t in_rate, out_rate, phase, gcd, old_out_rate;
old_out_rate = data->out_rate;
in_rate = r->i_rate / rate;
out_rate = r->o_rate;
phase = data->phase;
gcd = calc_gcd(in_rate, out_rate);
in_rate /= gcd;
out_rate /= gcd;
data->rate = rate;
data->phase = phase * out_rate / old_out_rate;
data->in_rate = in_rate;
data->out_rate = out_rate;
data->inc = data->in_rate / data->out_rate;
data->frac = data->in_rate % data->out_rate;
spa_log_trace_fp(r->log, "native %p: rate:%f in:%d out:%d phase:%d inc:%d frac:%d", r,
rate, data->in_rate, data->out_rate, data->phase, data->inc, data->frac);
if (data->in_rate == data->out_rate)
data->func = do_resample_copy_c;
else {
bool is_full = rate == 1.0;
data->func = is_full ? do_resample_full_c : do_resample_inter_c;
#if defined (HAVE_SSE)
if (SPA_FLAG_CHECK(r->cpu_flags, SPA_CPU_FLAG_SSE))
data->func = is_full ? do_resample_full_sse : do_resample_inter_sse;
#endif
#if defined (HAVE_SSSE3)
if (SPA_FLAG_CHECK(r->cpu_flags, SPA_CPU_FLAG_SSSE3 | SPA_CPU_FLAG_SLOW_UNALIGNED))
data->func = is_full ? do_resample_full_ssse3 : do_resample_inter_ssse3;
#endif
#if defined(HAVE_AVX) && defined(HAVE_FMA)
if (SPA_FLAG_CHECK(r->cpu_flags, SPA_CPU_FLAG_AVX | SPA_CPU_FLAG_FMA3))
data->func = is_full ? do_resample_full_avx : do_resample_inter_avx;
#endif
}
}
static uint32_t impl_native_in_len(struct resample *r, uint32_t out_len)
{
struct native_data *data = r->data; \
uint32_t in_len;
in_len = (data->phase + out_len * data->frac) / data->out_rate;
in_len += out_len * data->inc + (data->n_taps - data->hist);
spa_log_trace_fp(r->log, "native %p: hist:%d %d->%d", r, data->hist, out_len, in_len);
return in_len;
}
static void impl_native_process(struct resample *r,
const void * SPA_RESTRICT src[], uint32_t *in_len,
void * SPA_RESTRICT dst[], uint32_t *out_len)
{
struct native_data *data = r->data;
uint32_t n_taps = data->n_taps;
float **history = data->history;
const float **s = (const float **)src;
uint32_t c, refill, hist, in, out, remain;
hist = data->hist;
refill = 0;
if (hist) {
/* first work on the history if any. */
if (hist < n_taps) {
/* we need at least n_taps to completely process the
* history before we can work on the new input. When
* we have less, refill the history. */
refill = SPA_MIN(*in_len, n_taps-1);
for (c = 0; c < r->channels; c++)
memcpy(&history[c][hist], s[c], refill * sizeof(float));
if (hist + refill < n_taps) {
/* not enough in the history, keep the input in
* the history and produce no output */
data->hist = hist + refill;
*in_len = refill;
*out_len = 0;
return;
}
}
/* now we have at least n_taps of data in the history
* and we try to process it */
in = hist + refill;
out = *out_len;
data->func(r, (const void**)history, &in, dst, 0, &out);
spa_log_trace_fp(r->log, "native %p: in:%d/%d out %d/%d hist:%d",
r, hist + refill, in, *out_len, out, hist);
} else {
out = in = 0;
}
if (in >= hist) {
/* we are past the history and can now work on the new
* input data */
in = *in_len;
data->func(r, src, &in, dst, out, out_len);
spa_log_trace_fp(r->log, "native %p: in:%d/%d out %d/%d",
r, *in_len, in, *out_len, out);
remain = *in_len - in;
if (remain > 0 && remain < n_taps) {
/* not enough input data remaining for more output,
* copy to history */
for (c = 0; c < r->channels; c++)
memcpy(history[c], &s[c][in], remain * sizeof(float));
} else {
/* we have enough input data remaining to produce
* more output ask to resubmit. */
remain = 0;
*in_len = in;
}
} else {
/* we are still working on the history */
*out_len = out;
remain = hist - in;
if (*in_len < n_taps) {
/* not enough input data, add it to the history because
* resubmitting it is not going to make progress.
* We copied this into the history above. */
remain += refill;
} else {
/* input has enough data to possibly produce more output
* from the history so ask to resubmit */
*in_len = 0;
}
if (remain) {
/* move history */
for (c = 0; c < r->channels; c++)
memmove(history[c], &history[c][in], remain * sizeof(float));
}
}
data->hist = remain;
return;
}
static void impl_native_reset (struct resample *r)
{
struct native_data *d = r->data;
memset(d->hist_mem, 0, r->channels * sizeof(float) * d->n_taps * 2);
d->hist = d->n_taps / 2;
d->phase = 0;
}
static uint32_t impl_native_delay (struct resample *r)
{
struct native_data *d = r->data;
return d->n_taps;
}
static int impl_native_init(struct resample *r)
{
struct native_data *d;
const struct quality *q = &blackman_qualities[DEFAULT_QUALITY];
double scale;
uint32_t c, n_taps, n_phases, filter_size, in_rate, out_rate, gcd, filter_stride;
uint32_t history_stride, history_size, oversample;
r->free = impl_native_free;
r->update_rate = impl_native_update_rate;
r->in_len = impl_native_in_len;
r->process = impl_native_process;
r->reset = impl_native_reset;
r->delay = impl_native_delay;
gcd = calc_gcd(r->i_rate, r->o_rate);
in_rate = r->i_rate / gcd;
out_rate = r->o_rate / gcd;
scale = SPA_MIN(q->cutoff * out_rate / in_rate, 1.0);
/* multiple of 8 taps to ease simd optimizations */
n_taps = SPA_ROUND_UP_N((uint32_t)ceil(q->n_taps / scale), 8);
/* try to get at least 256 phases so that interpolation is
* accurate enough when activated */
n_phases = out_rate;
oversample = (255 + n_phases) / n_phases;
n_phases *= oversample;
filter_stride = SPA_ROUND_UP_N(n_taps * sizeof(float), 64);
filter_size = filter_stride * (n_phases + 1);
history_stride = SPA_ROUND_UP_N(2 * n_taps * sizeof(float), 64);
history_size = r->channels * history_stride;
d = malloc(sizeof(struct native_data) +
filter_size +
history_size +
(r->channels * sizeof(float*)) +
64);
if (d == NULL)
return -errno;
r->data = d;
d->n_taps = n_taps;
d->n_phases = n_phases;
d->in_rate = in_rate;
d->out_rate = out_rate;
d->filter = SPA_MEMBER_ALIGN(d, sizeof(struct native_data), 64, float);
d->hist_mem = SPA_MEMBER_ALIGN(d->filter, filter_size, 64, float);
d->history = SPA_MEMBER(d->hist_mem, history_size, float*);
d->filter_stride = filter_stride / sizeof(float);
d->filter_stride_os = d->filter_stride * oversample;
for (c = 0; c < r->channels; c++)
d->history[c] = SPA_MEMBER(d->hist_mem, c * history_stride, float);
build_filter(d->filter, d->filter_stride, n_taps, n_phases, scale);
spa_log_debug(r->log, "native %p: in:%d out:%d n_taps:%d n_phases:%d",
r, in_rate, out_rate, n_taps, n_phases);
impl_native_reset(r);
impl_native_update_rate(r, 1.0);
return 0;
}
|