/* GStreamer * Copyright (C) <2003> David A. Schleef * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** * SECTION:gstvalue * @short_description: GValue implementations specific * to GStreamer * * GValue implementations specific to GStreamer. * * Note that operations on the same #GValue from multiple threads may lead to * undefined behaviour. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "gst_private.h" #include "glib-compat-private.h" #include #include #include "gstutils.h" /* GstValueUnionFunc: * @dest: a #GValue for the result * @value1: a #GValue operand * @value2: a #GValue operand * * Used by gst_value_union() to perform unification for a specific #GValue * type. Register a new implementation with gst_value_register_union_func(). * * Returns: %TRUE if a union was successful */ typedef gboolean (*GstValueUnionFunc) (GValue * dest, const GValue * value1, const GValue * value2); /* GstValueIntersectFunc: * @dest: (out caller-allocates): a #GValue for the result * @value1: a #GValue operand * @value2: a #GValue operand * * Used by gst_value_intersect() to perform intersection for a specific #GValue * type. If the intersection is non-empty, the result is * placed in @dest and %TRUE is returned. If the intersection is * empty, @dest is unmodified and %FALSE is returned. * Register a new implementation with gst_value_register_intersect_func(). * * Returns: %TRUE if the values can intersect */ typedef gboolean (*GstValueIntersectFunc) (GValue * dest, const GValue * value1, const GValue * value2); /* GstValueSubtractFunc: * @dest: (out caller-allocates): a #GValue for the result * @minuend: a #GValue operand * @subtrahend: a #GValue operand * * Used by gst_value_subtract() to perform subtraction for a specific #GValue * type. Register a new implementation with gst_value_register_subtract_func(). * * Returns: %TRUE if the subtraction is not empty */ typedef gboolean (*GstValueSubtractFunc) (GValue * dest, const GValue * minuend, const GValue * subtrahend); static void gst_value_register_union_func (GType type1, GType type2, GstValueUnionFunc func); static void gst_value_register_intersect_func (GType type1, GType type2, GstValueIntersectFunc func); static void gst_value_register_subtract_func (GType minuend_type, GType subtrahend_type, GstValueSubtractFunc func); typedef struct _GstValueUnionInfo GstValueUnionInfo; struct _GstValueUnionInfo { GType type1; GType type2; GstValueUnionFunc func; }; typedef struct _GstValueIntersectInfo GstValueIntersectInfo; struct _GstValueIntersectInfo { GType type1; GType type2; GstValueIntersectFunc func; }; typedef struct _GstValueSubtractInfo GstValueSubtractInfo; struct _GstValueSubtractInfo { GType minuend; GType subtrahend; GstValueSubtractFunc func; }; struct _GstFlagSetClass { GTypeClass parent; GType flags_type; /* Type of the GFlags this flagset carries (can be 0) */ }; typedef struct _GstFlagSetClass GstFlagSetClass; #define FUNDAMENTAL_TYPE_ID_MAX \ (G_TYPE_FUNDAMENTAL_MAX >> G_TYPE_FUNDAMENTAL_SHIFT) #define FUNDAMENTAL_TYPE_ID(type) \ ((type) >> G_TYPE_FUNDAMENTAL_SHIFT) #define VALUE_LIST_ARRAY(v) ((GArray *) (v)->data[0].v_pointer) #define VALUE_LIST_SIZE(v) (VALUE_LIST_ARRAY(v)->len) #define VALUE_LIST_GET_VALUE(v, index) ((const GValue *) &g_array_index (VALUE_LIST_ARRAY(v), GValue, (index))) static GArray *gst_value_table; static GHashTable *gst_value_hash; static GstValueTable *gst_value_tables_fundamental[FUNDAMENTAL_TYPE_ID_MAX + 1]; static GArray *gst_value_union_funcs; static GArray *gst_value_intersect_funcs; static GArray *gst_value_subtract_funcs; /* Forward declarations */ static gchar *gst_value_serialize_fraction (const GValue * value); static GstValueCompareFunc gst_value_get_compare_func (const GValue * value1); static gint gst_value_compare_with_func (const GValue * value1, const GValue * value2, GstValueCompareFunc compare); static gchar *gst_string_wrap (const gchar * s); static gchar *gst_string_take_and_wrap (gchar * s); static gchar *gst_string_unwrap (const gchar * s); static void gst_value_move (GValue * dest, GValue * src); static void _gst_value_list_append_and_take_value (GValue * value, GValue * append_value); static void _gst_value_array_append_and_take_value (GValue * value, GValue * append_value); static inline GstValueTable * gst_value_hash_lookup_type (GType type) { if (G_LIKELY (G_TYPE_IS_FUNDAMENTAL (type))) return gst_value_tables_fundamental[FUNDAMENTAL_TYPE_ID (type)]; else return g_hash_table_lookup (gst_value_hash, (gpointer) type); } static void gst_value_hash_add_type (GType type, const GstValueTable * table) { if (G_TYPE_IS_FUNDAMENTAL (type)) gst_value_tables_fundamental[FUNDAMENTAL_TYPE_ID (type)] = (gpointer) table; g_hash_table_insert (gst_value_hash, (gpointer) type, (gpointer) table); } /******** * list * ********/ /* two helper functions to serialize/stringify any type of list * regular lists are done with { }, arrays with < > */ static gchar * gst_value_serialize_any_list (const GValue * value, const gchar * begin, const gchar * end) { guint i; GArray *array = value->data[0].v_pointer; GString *s; GValue *v; gchar *s_val; guint alen = array->len; /* estimate minimum string length to minimise re-allocs in GString */ s = g_string_sized_new (2 + (6 * alen) + 2); g_string_append (s, begin); for (i = 0; i < alen; i++) { v = &g_array_index (array, GValue, i); s_val = gst_value_serialize (v); if (s_val != NULL) { g_string_append (s, s_val); g_free (s_val); if (i < alen - 1) { g_string_append_len (s, ", ", 2); } } else { GST_WARNING ("Could not serialize list/array value of type '%s'", G_VALUE_TYPE_NAME (v)); } } g_string_append (s, end); return g_string_free (s, FALSE); } static void gst_value_transform_any_list_string (const GValue * src_value, GValue * dest_value, const gchar * begin, const gchar * end) { GValue *list_value; GArray *array; GString *s; guint i; gchar *list_s; guint alen; array = src_value->data[0].v_pointer; alen = array->len; /* estimate minimum string length to minimise re-allocs in GString */ s = g_string_sized_new (2 + (10 * alen) + 2); g_string_append (s, begin); for (i = 0; i < alen; i++) { list_value = &g_array_index (array, GValue, i); if (i != 0) { g_string_append_len (s, ", ", 2); } list_s = g_strdup_value_contents (list_value); g_string_append (s, list_s); g_free (list_s); } g_string_append (s, end); dest_value->data[0].v_pointer = g_string_free (s, FALSE); } /* * helper function to see if a type is fixed. Is used internally here and * there. Do not export, since it doesn't work for types where the content * decides the fixedness (e.g. GST_TYPE_ARRAY). */ static gboolean gst_type_is_fixed (GType type) { /* the basic int, string, double types */ if (type <= G_TYPE_MAKE_FUNDAMENTAL (G_TYPE_RESERVED_GLIB_LAST)) { return TRUE; } /* our fundamental types that are certainly not fixed */ if (type == GST_TYPE_INT_RANGE || type == GST_TYPE_DOUBLE_RANGE || type == GST_TYPE_INT64_RANGE || type == GST_TYPE_LIST || type == GST_TYPE_FRACTION_RANGE) { return FALSE; } /* other (boxed) types that are fixed */ if (type == GST_TYPE_BUFFER) { return TRUE; } /* heavy checks */ if (G_TYPE_IS_FUNDAMENTAL (type) || G_TYPE_FUNDAMENTAL (type) <= G_TYPE_MAKE_FUNDAMENTAL (G_TYPE_RESERVED_GLIB_LAST)) { return TRUE; } return FALSE; } /* GValue functions usable for both regular lists and arrays */ static void gst_value_init_list_or_array (GValue * value) { value->data[0].v_pointer = g_array_new (FALSE, TRUE, sizeof (GValue)); } static GArray * copy_garray_of_gstvalue (const GArray * src) { GArray *dest; guint i, len; len = src->len; dest = g_array_sized_new (FALSE, TRUE, sizeof (GValue), len); g_array_set_size (dest, len); for (i = 0; i < len; i++) { gst_value_init_and_copy (&g_array_index (dest, GValue, i), &g_array_index (src, GValue, i)); } return dest; } static void gst_value_copy_list_or_array (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = copy_garray_of_gstvalue ((GArray *) src_value->data[0].v_pointer); } static void gst_value_free_list_or_array (GValue * value) { guint i, len; GArray *src = (GArray *) value->data[0].v_pointer; len = src->len; if ((value->data[1].v_uint & G_VALUE_NOCOPY_CONTENTS) == 0) { for (i = 0; i < len; i++) { g_value_unset (&g_array_index (src, GValue, i)); } g_array_free (src, TRUE); } } static gpointer gst_value_list_or_array_peek_pointer (const GValue * value) { return value->data[0].v_pointer; } static gchar * gst_value_collect_list_or_array (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (collect_flags & G_VALUE_NOCOPY_CONTENTS) { value->data[0].v_pointer = collect_values[0].v_pointer; value->data[1].v_uint = G_VALUE_NOCOPY_CONTENTS; } else { value->data[0].v_pointer = copy_garray_of_gstvalue ((GArray *) collect_values[0].v_pointer); } return NULL; } static gchar * gst_value_lcopy_list_or_array (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { GArray **dest = collect_values[0].v_pointer; if (!dest) return g_strdup_printf ("value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!value->data[0].v_pointer) return g_strdup_printf ("invalid value given for `%s'", G_VALUE_TYPE_NAME (value)); if (collect_flags & G_VALUE_NOCOPY_CONTENTS) { *dest = (GArray *) value->data[0].v_pointer; } else { *dest = copy_garray_of_gstvalue ((GArray *) value->data[0].v_pointer); } return NULL; } static gboolean gst_value_list_or_array_get_basic_type (const GValue * value, GType * type) { if (G_UNLIKELY (value == NULL)) return FALSE; if (GST_VALUE_HOLDS_LIST (value)) { if (VALUE_LIST_SIZE (value) == 0) return FALSE; return gst_value_list_or_array_get_basic_type (VALUE_LIST_GET_VALUE (value, 0), type); } if (GST_VALUE_HOLDS_ARRAY (value)) { const GArray *array = (const GArray *) value->data[0].v_pointer; if (array->len == 0) return FALSE; return gst_value_list_or_array_get_basic_type (&g_array_index (array, GValue, 0), type); } *type = G_VALUE_TYPE (value); return TRUE; } #define IS_RANGE_COMPAT(type1,type2,t1,t2) \ (((t1) == (type1) && (t2) == (type2)) || ((t2) == (type1) && (t1) == (type2))) static gboolean gst_value_list_or_array_are_compatible (const GValue * value1, const GValue * value2) { GType basic_type1, basic_type2; /* empty or same type is OK */ if (!gst_value_list_or_array_get_basic_type (value1, &basic_type1) || !gst_value_list_or_array_get_basic_type (value2, &basic_type2) || basic_type1 == basic_type2) return TRUE; /* ranges are distinct types for each bound type... */ if (IS_RANGE_COMPAT (G_TYPE_INT, GST_TYPE_INT_RANGE, basic_type1, basic_type2)) return TRUE; if (IS_RANGE_COMPAT (G_TYPE_INT64, GST_TYPE_INT64_RANGE, basic_type1, basic_type2)) return TRUE; if (IS_RANGE_COMPAT (G_TYPE_DOUBLE, GST_TYPE_DOUBLE_RANGE, basic_type1, basic_type2)) return TRUE; if (IS_RANGE_COMPAT (GST_TYPE_FRACTION, GST_TYPE_FRACTION_RANGE, basic_type1, basic_type2)) return TRUE; return FALSE; } static inline void _gst_value_list_append_and_take_value (GValue * value, GValue * append_value) { g_array_append_vals ((GArray *) value->data[0].v_pointer, append_value, 1); memset (append_value, 0, sizeof (GValue)); } /** * gst_value_list_append_and_take_value: * @value: a #GValue of type #GST_TYPE_LIST * @append_value: (transfer full): the value to append * * Appends @append_value to the GstValueList in @value. * * Since: 1.2 */ void gst_value_list_append_and_take_value (GValue * value, GValue * append_value) { g_return_if_fail (GST_VALUE_HOLDS_LIST (value)); g_return_if_fail (G_IS_VALUE (append_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, append_value)); _gst_value_list_append_and_take_value (value, append_value); } /** * gst_value_list_append_value: * @value: a #GValue of type #GST_TYPE_LIST * @append_value: (transfer none): the value to append * * Appends @append_value to the GstValueList in @value. */ void gst_value_list_append_value (GValue * value, const GValue * append_value) { GValue val = { 0, }; g_return_if_fail (GST_VALUE_HOLDS_LIST (value)); g_return_if_fail (G_IS_VALUE (append_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, append_value)); gst_value_init_and_copy (&val, append_value); g_array_append_vals ((GArray *) value->data[0].v_pointer, &val, 1); } /** * gst_value_list_prepend_value: * @value: a #GValue of type #GST_TYPE_LIST * @prepend_value: the value to prepend * * Prepends @prepend_value to the GstValueList in @value. */ void gst_value_list_prepend_value (GValue * value, const GValue * prepend_value) { GValue val = { 0, }; g_return_if_fail (GST_VALUE_HOLDS_LIST (value)); g_return_if_fail (G_IS_VALUE (prepend_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, prepend_value)); gst_value_init_and_copy (&val, prepend_value); g_array_prepend_vals ((GArray *) value->data[0].v_pointer, &val, 1); } /** * gst_value_list_concat: * @dest: (out caller-allocates): an uninitialized #GValue to take the result * @value1: a #GValue * @value2: a #GValue * * Concatenates copies of @value1 and @value2 into a list. Values that are not * of type #GST_TYPE_LIST are treated as if they were lists of length 1. * @dest will be initialized to the type #GST_TYPE_LIST. */ void gst_value_list_concat (GValue * dest, const GValue * value1, const GValue * value2) { guint i, value1_length, value2_length; GArray *array; g_return_if_fail (dest != NULL); g_return_if_fail (G_VALUE_TYPE (dest) == 0); g_return_if_fail (G_IS_VALUE (value1)); g_return_if_fail (G_IS_VALUE (value2)); g_return_if_fail (gst_value_list_or_array_are_compatible (value1, value2)); value1_length = (GST_VALUE_HOLDS_LIST (value1) ? VALUE_LIST_SIZE (value1) : 1); value2_length = (GST_VALUE_HOLDS_LIST (value2) ? VALUE_LIST_SIZE (value2) : 1); g_value_init (dest, GST_TYPE_LIST); array = (GArray *) dest->data[0].v_pointer; g_array_set_size (array, value1_length + value2_length); if (GST_VALUE_HOLDS_LIST (value1)) { for (i = 0; i < value1_length; i++) { gst_value_init_and_copy (&g_array_index (array, GValue, i), VALUE_LIST_GET_VALUE (value1, i)); } } else { gst_value_init_and_copy (&g_array_index (array, GValue, 0), value1); } if (GST_VALUE_HOLDS_LIST (value2)) { for (i = 0; i < value2_length; i++) { gst_value_init_and_copy (&g_array_index (array, GValue, i + value1_length), VALUE_LIST_GET_VALUE (value2, i)); } } else { gst_value_init_and_copy (&g_array_index (array, GValue, value1_length), value2); } } /* same as gst_value_list_concat() but takes ownership of GValues */ static void gst_value_list_concat_and_take_values (GValue * dest, GValue * val1, GValue * val2) { guint i, val1_length, val2_length; gboolean val1_is_list; gboolean val2_is_list; GArray *array; g_assert (dest != NULL); g_assert (G_VALUE_TYPE (dest) == 0); g_assert (G_IS_VALUE (val1)); g_assert (G_IS_VALUE (val2)); g_assert (gst_value_list_or_array_are_compatible (val1, val2)); val1_is_list = GST_VALUE_HOLDS_LIST (val1); val1_length = (val1_is_list ? VALUE_LIST_SIZE (val1) : 1); val2_is_list = GST_VALUE_HOLDS_LIST (val2); val2_length = (val2_is_list ? VALUE_LIST_SIZE (val2) : 1); g_value_init (dest, GST_TYPE_LIST); array = (GArray *) dest->data[0].v_pointer; g_array_set_size (array, val1_length + val2_length); if (val1_is_list) { for (i = 0; i < val1_length; i++) { g_array_index (array, GValue, i) = *VALUE_LIST_GET_VALUE (val1, i); } g_array_set_size (VALUE_LIST_ARRAY (val1), 0); g_value_unset (val1); } else { g_array_index (array, GValue, 0) = *val1; G_VALUE_TYPE (val1) = G_TYPE_INVALID; } if (val2_is_list) { for (i = 0; i < val2_length; i++) { const GValue *v2 = VALUE_LIST_GET_VALUE (val2, i); g_array_index (array, GValue, i + val1_length) = *v2; } g_array_set_size (VALUE_LIST_ARRAY (val2), 0); g_value_unset (val2); } else { g_array_index (array, GValue, val1_length) = *val2; G_VALUE_TYPE (val2) = G_TYPE_INVALID; } } /** * gst_value_list_merge: * @dest: (out caller-allocates): an uninitialized #GValue to take the result * @value1: a #GValue * @value2: a #GValue * * Merges copies of @value1 and @value2. Values that are not * of type #GST_TYPE_LIST are treated as if they were lists of length 1. * * The result will be put into @dest and will either be a list that will not * contain any duplicates, or a non-list type (if @value1 and @value2 * were equal). */ void gst_value_list_merge (GValue * dest, const GValue * value1, const GValue * value2) { guint i, j, k, value1_length, value2_length, skipped; const GValue *src; gboolean skip; GArray *array; g_return_if_fail (dest != NULL); g_return_if_fail (G_VALUE_TYPE (dest) == 0); g_return_if_fail (G_IS_VALUE (value1)); g_return_if_fail (G_IS_VALUE (value2)); g_return_if_fail (gst_value_list_or_array_are_compatible (value1, value2)); value1_length = (GST_VALUE_HOLDS_LIST (value1) ? VALUE_LIST_SIZE (value1) : 1); value2_length = (GST_VALUE_HOLDS_LIST (value2) ? VALUE_LIST_SIZE (value2) : 1); g_value_init (dest, GST_TYPE_LIST); array = (GArray *) dest->data[0].v_pointer; g_array_set_size (array, value1_length + value2_length); if (GST_VALUE_HOLDS_LIST (value1)) { for (i = 0; i < value1_length; i++) { gst_value_init_and_copy (&g_array_index (array, GValue, i), VALUE_LIST_GET_VALUE (value1, i)); } } else { gst_value_init_and_copy (&g_array_index (array, GValue, 0), value1); } j = value1_length; skipped = 0; if (GST_VALUE_HOLDS_LIST (value2)) { for (i = 0; i < value2_length; i++) { skip = FALSE; src = VALUE_LIST_GET_VALUE (value2, i); for (k = 0; k < value1_length; k++) { if (gst_value_compare (&g_array_index (array, GValue, k), src) == GST_VALUE_EQUAL) { skip = TRUE; skipped++; break; } } if (!skip) { gst_value_init_and_copy (&g_array_index (array, GValue, j), src); j++; } } } else { skip = FALSE; for (k = 0; k < value1_length; k++) { if (gst_value_compare (&g_array_index (array, GValue, k), value2) == GST_VALUE_EQUAL) { skip = TRUE; skipped++; break; } } if (!skip) { gst_value_init_and_copy (&g_array_index (array, GValue, j), value2); } } if (skipped) { guint new_size = value1_length + (value2_length - skipped); if (new_size > 1) { /* shrink list */ g_array_set_size (array, new_size); } else { GValue single_dest; /* size is 1, take single value in list and make it new dest */ single_dest = g_array_index (array, GValue, 0); /* clean up old value allocations: must set array size to 0, because * allocated values are not inited meaning g_value_unset() will not * work on them */ g_array_set_size (array, 0); g_value_unset (dest); /* the single value is our new result */ *dest = single_dest; } } } /** * gst_value_list_get_size: * @value: a #GValue of type #GST_TYPE_LIST * * Gets the number of values contained in @value. * * Returns: the number of values */ guint gst_value_list_get_size (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_LIST (value), 0); return ((GArray *) value->data[0].v_pointer)->len; } /** * gst_value_list_get_value: * @value: a #GValue of type #GST_TYPE_LIST * @index: index of value to get from the list * * Gets the value that is a member of the list contained in @value and * has the index @index. * * Returns: (transfer none): the value at the given index */ const GValue * gst_value_list_get_value (const GValue * value, guint index) { g_return_val_if_fail (GST_VALUE_HOLDS_LIST (value), NULL); g_return_val_if_fail (index < VALUE_LIST_SIZE (value), NULL); return (const GValue *) &g_array_index ((GArray *) value->data[0].v_pointer, GValue, index); } /** * gst_value_array_append_value: * @value: a #GValue of type #GST_TYPE_ARRAY * @append_value: the value to append * * Appends @append_value to the GstValueArray in @value. */ void gst_value_array_append_value (GValue * value, const GValue * append_value) { GValue val = { 0, }; g_return_if_fail (GST_VALUE_HOLDS_ARRAY (value)); g_return_if_fail (G_IS_VALUE (append_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, append_value)); gst_value_init_and_copy (&val, append_value); g_array_append_vals ((GArray *) value->data[0].v_pointer, &val, 1); } static inline void _gst_value_array_append_and_take_value (GValue * value, GValue * append_value) { g_array_append_vals ((GArray *) value->data[0].v_pointer, append_value, 1); memset (append_value, 0, sizeof (GValue)); } /** * gst_value_array_append_and_take_value: * @value: a #GValue of type #GST_TYPE_ARRAY * @append_value: (transfer full): the value to append * * Appends @append_value to the GstValueArray in @value. * * Since: 1.2 */ void gst_value_array_append_and_take_value (GValue * value, GValue * append_value) { g_return_if_fail (GST_VALUE_HOLDS_ARRAY (value)); g_return_if_fail (G_IS_VALUE (append_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, append_value)); _gst_value_array_append_and_take_value (value, append_value); } /** * gst_value_array_prepend_value: * @value: a #GValue of type #GST_TYPE_ARRAY * @prepend_value: the value to prepend * * Prepends @prepend_value to the GstValueArray in @value. */ void gst_value_array_prepend_value (GValue * value, const GValue * prepend_value) { GValue val = { 0, }; g_return_if_fail (GST_VALUE_HOLDS_ARRAY (value)); g_return_if_fail (G_IS_VALUE (prepend_value)); g_return_if_fail (gst_value_list_or_array_are_compatible (value, prepend_value)); gst_value_init_and_copy (&val, prepend_value); g_array_prepend_vals ((GArray *) value->data[0].v_pointer, &val, 1); } /** * gst_value_array_get_size: * @value: a #GValue of type #GST_TYPE_ARRAY * * Gets the number of values contained in @value. * * Returns: the number of values */ guint gst_value_array_get_size (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_ARRAY (value), 0); return ((GArray *) value->data[0].v_pointer)->len; } /** * gst_value_array_get_value: * @value: a #GValue of type #GST_TYPE_ARRAY * @index: index of value to get from the array * * Gets the value that is a member of the array contained in @value and * has the index @index. * * Returns: (transfer none): the value at the given index */ const GValue * gst_value_array_get_value (const GValue * value, guint index) { g_return_val_if_fail (GST_VALUE_HOLDS_ARRAY (value), NULL); g_return_val_if_fail (index < gst_value_array_get_size (value), NULL); return (const GValue *) &g_array_index ((GArray *) value->data[0].v_pointer, GValue, index); } static void gst_value_transform_list_string (const GValue * src_value, GValue * dest_value) { gst_value_transform_any_list_string (src_value, dest_value, "{ ", " }"); } static void gst_value_transform_array_string (const GValue * src_value, GValue * dest_value) { gst_value_transform_any_list_string (src_value, dest_value, "< ", " >"); } /* Do an unordered compare of the contents of a list */ static gint gst_value_compare_value_list (const GValue * value1, const GValue * value2) { guint i, j; GArray *array1 = value1->data[0].v_pointer; GArray *array2 = value2->data[0].v_pointer; GValue *v1; GValue *v2; gint len, to_remove; guint8 *removed; GstValueCompareFunc compare; /* get length and do initial length check. */ len = array1->len; if (len != array2->len) return GST_VALUE_UNORDERED; /* place to mark removed value indices of array2 */ removed = g_newa (guint8, len); memset (removed, 0, len); to_remove = len; /* loop over array1, all items should be in array2. When we find an * item in array2, remove it from array2 by marking it as removed */ for (i = 0; i < len; i++) { v1 = &g_array_index (array1, GValue, i); if ((compare = gst_value_get_compare_func (v1))) { for (j = 0; j < len; j++) { /* item is removed, we can skip it */ if (removed[j]) continue; v2 = &g_array_index (array2, GValue, j); if (gst_value_compare_with_func (v1, v2, compare) == GST_VALUE_EQUAL) { /* mark item as removed now that we found it in array2 and * decrement the number of remaining items in array2. */ removed[j] = 1; to_remove--; break; } } /* item in array1 and not in array2, UNORDERED */ if (j == len) return GST_VALUE_UNORDERED; } else return GST_VALUE_UNORDERED; } /* if not all items were removed, array2 contained something not in array1 */ if (to_remove != 0) return GST_VALUE_UNORDERED; /* arrays are equal */ return GST_VALUE_EQUAL; } /* Perform an ordered comparison of the contents of an array */ static gint gst_value_compare_value_array (const GValue * value1, const GValue * value2) { guint i; GArray *array1 = value1->data[0].v_pointer; GArray *array2 = value2->data[0].v_pointer; guint len = array1->len; GValue *v1; GValue *v2; if (len != array2->len) return GST_VALUE_UNORDERED; for (i = 0; i < len; i++) { v1 = &g_array_index (array1, GValue, i); v2 = &g_array_index (array2, GValue, i); if (gst_value_compare (v1, v2) != GST_VALUE_EQUAL) return GST_VALUE_UNORDERED; } return GST_VALUE_EQUAL; } static gchar * gst_value_serialize_value_list (const GValue * value) { return gst_value_serialize_any_list (value, "{ ", " }"); } static gboolean gst_value_deserialize_value_list (GValue * dest, const gchar * s) { g_warning ("gst_value_deserialize_list: unimplemented"); return FALSE; } static gchar * gst_value_serialize_value_array (const GValue * value) { return gst_value_serialize_any_list (value, "< ", " >"); } static gboolean gst_value_deserialize_value_array (GValue * dest, const gchar * s) { g_warning ("gst_value_deserialize_array: unimplemented"); return FALSE; } /************* * int range * * * Values in the range are defined as any value greater or equal * to min*step, AND lesser or equal to max*step. * For step == 1, this falls back to the traditional range semantics. * * data[0] = (min << 32) | (max) * data[1] = step * *************/ #define INT_RANGE_MIN(v) ((gint) (((v)->data[0].v_uint64) >> 32)) #define INT_RANGE_MAX(v) ((gint) (((v)->data[0].v_uint64) & 0xffffffff)) #define INT_RANGE_STEP(v) ((v)->data[1].v_int) static void gst_value_init_int_range (GValue * value) { G_STATIC_ASSERT (sizeof (gint) <= 2 * sizeof (guint64)); value->data[0].v_uint64 = 0; value->data[1].v_int = 1; } static void gst_value_copy_int_range (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_uint64 = src_value->data[0].v_uint64; dest_value->data[1].v_int = src_value->data[1].v_int; } static gchar * gst_value_collect_int_range (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (n_collect_values != 2) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); if (collect_values[0].v_int >= collect_values[1].v_int) return g_strdup_printf ("range start is not smaller than end for `%s'", G_VALUE_TYPE_NAME (value)); gst_value_set_int_range_step (value, collect_values[0].v_int, collect_values[1].v_int, 1); return NULL; } static gchar * gst_value_lcopy_int_range (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { guint32 *int_range_start = collect_values[0].v_pointer; guint32 *int_range_end = collect_values[1].v_pointer; if (!int_range_start) return g_strdup_printf ("start value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!int_range_end) return g_strdup_printf ("end value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); *int_range_start = INT_RANGE_MIN (value); *int_range_end = INT_RANGE_MAX (value); return NULL; } /** * gst_value_set_int_range_step: * @value: a GValue initialized to GST_TYPE_INT_RANGE * @start: the start of the range * @end: the end of the range * @step: the step of the range * * Sets @value to the range specified by @start, @end and @step. */ void gst_value_set_int_range_step (GValue * value, gint start, gint end, gint step) { guint64 sstart, sstop; g_return_if_fail (GST_VALUE_HOLDS_INT_RANGE (value)); g_return_if_fail (start < end); g_return_if_fail (step > 0); g_return_if_fail (start % step == 0); g_return_if_fail (end % step == 0); sstart = (guint) (start / step); sstop = (guint) (end / step); value->data[0].v_uint64 = (sstart << 32) | sstop; value->data[1].v_int = step; } /** * gst_value_set_int_range: * @value: a GValue initialized to GST_TYPE_INT_RANGE * @start: the start of the range * @end: the end of the range * * Sets @value to the range specified by @start and @end. */ void gst_value_set_int_range (GValue * value, gint start, gint end) { gst_value_set_int_range_step (value, start, end, 1); } /** * gst_value_get_int_range_min: * @value: a GValue initialized to GST_TYPE_INT_RANGE * * Gets the minimum of the range specified by @value. * * Returns: the minimum of the range */ gint gst_value_get_int_range_min (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT_RANGE (value), 0); return INT_RANGE_MIN (value) * INT_RANGE_STEP (value); } /** * gst_value_get_int_range_max: * @value: a GValue initialized to GST_TYPE_INT_RANGE * * Gets the maximum of the range specified by @value. * * Returns: the maximum of the range */ gint gst_value_get_int_range_max (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT_RANGE (value), 0); return INT_RANGE_MAX (value) * INT_RANGE_STEP (value); } /** * gst_value_get_int_range_step: * @value: a GValue initialized to GST_TYPE_INT_RANGE * * Gets the step of the range specified by @value. * * Returns: the step of the range */ gint gst_value_get_int_range_step (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT_RANGE (value), 0); return INT_RANGE_STEP (value); } static void gst_value_transform_int_range_string (const GValue * src_value, GValue * dest_value) { if (INT_RANGE_STEP (src_value) == 1) dest_value->data[0].v_pointer = g_strdup_printf ("[%d,%d]", INT_RANGE_MIN (src_value), INT_RANGE_MAX (src_value)); else dest_value->data[0].v_pointer = g_strdup_printf ("[%d,%d,%d]", INT_RANGE_MIN (src_value) * INT_RANGE_STEP (src_value), INT_RANGE_MAX (src_value) * INT_RANGE_STEP (src_value), INT_RANGE_STEP (src_value)); } static gint gst_value_compare_int_range (const GValue * value1, const GValue * value2) { /* calculate the number of values in each range */ gint n1 = INT_RANGE_MAX (value1) - INT_RANGE_MIN (value1) + 1; gint n2 = INT_RANGE_MAX (value2) - INT_RANGE_MIN (value2) + 1; /* they must be equal */ if (n1 != n2) return GST_VALUE_UNORDERED; /* if empty, equal */ if (n1 == 0) return GST_VALUE_EQUAL; /* if more than one value, then it is only equal if the step is equal and bounds lie on the same value */ if (n1 > 1) { if (INT_RANGE_STEP (value1) == INT_RANGE_STEP (value2) && INT_RANGE_MIN (value1) == INT_RANGE_MIN (value2) && INT_RANGE_MAX (value1) == INT_RANGE_MAX (value2)) { return GST_VALUE_EQUAL; } return GST_VALUE_UNORDERED; } else { /* if just one, only if the value is equal */ if (INT_RANGE_MIN (value1) == INT_RANGE_MIN (value2)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } } static gchar * gst_value_serialize_int_range (const GValue * value) { if (INT_RANGE_STEP (value) == 1) return g_strdup_printf ("[ %d, %d ]", INT_RANGE_MIN (value), INT_RANGE_MAX (value)); else return g_strdup_printf ("[ %d, %d, %d ]", INT_RANGE_MIN (value) * INT_RANGE_STEP (value), INT_RANGE_MAX (value) * INT_RANGE_STEP (value), INT_RANGE_STEP (value)); } static gboolean gst_value_deserialize_int_range (GValue * dest, const gchar * s) { g_warning ("unimplemented"); return FALSE; } /*************** * int64 range * * * Values in the range are defined as any value greater or equal * to min*step, AND lesser or equal to max*step. * For step == 1, this falls back to the traditional range semantics. ***************/ #define INT64_RANGE_MIN(v) (((gint64 *)((v)->data[0].v_pointer))[0]) #define INT64_RANGE_MAX(v) (((gint64 *)((v)->data[0].v_pointer))[1]) #define INT64_RANGE_STEP(v) (((gint64 *)((v)->data[0].v_pointer))[2]) static void gst_value_init_int64_range (GValue * value) { gint64 *vals = g_slice_alloc0 (3 * sizeof (gint64)); value->data[0].v_pointer = vals; INT64_RANGE_MIN (value) = 0; INT64_RANGE_MAX (value) = 0; INT64_RANGE_STEP (value) = 1; } static void gst_value_free_int64_range (GValue * value) { g_return_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value)); g_slice_free1 (3 * sizeof (gint64), value->data[0].v_pointer); value->data[0].v_pointer = NULL; } static void gst_value_copy_int64_range (const GValue * src_value, GValue * dest_value) { gint64 *vals = (gint64 *) dest_value->data[0].v_pointer; gint64 *src_vals = (gint64 *) src_value->data[0].v_pointer; if (vals == NULL) { gst_value_init_int64_range (dest_value); } if (src_vals != NULL) { INT64_RANGE_MIN (dest_value) = INT64_RANGE_MIN (src_value); INT64_RANGE_MAX (dest_value) = INT64_RANGE_MAX (src_value); INT64_RANGE_STEP (dest_value) = INT64_RANGE_STEP (src_value); } } static gchar * gst_value_collect_int64_range (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { gint64 *vals = value->data[0].v_pointer; if (n_collect_values != 2) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); if (collect_values[0].v_int64 >= collect_values[1].v_int64) return g_strdup_printf ("range start is not smaller than end for `%s'", G_VALUE_TYPE_NAME (value)); if (vals == NULL) { gst_value_init_int64_range (value); } gst_value_set_int64_range_step (value, collect_values[0].v_int64, collect_values[1].v_int64, 1); return NULL; } static gchar * gst_value_lcopy_int64_range (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { guint64 *int_range_start = collect_values[0].v_pointer; guint64 *int_range_end = collect_values[1].v_pointer; guint64 *int_range_step = collect_values[2].v_pointer; gint64 *vals = (gint64 *) value->data[0].v_pointer; if (!int_range_start) return g_strdup_printf ("start value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!int_range_end) return g_strdup_printf ("end value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!int_range_step) return g_strdup_printf ("step value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (G_UNLIKELY (vals == NULL)) { return g_strdup_printf ("Uninitialised `%s' passed", G_VALUE_TYPE_NAME (value)); } *int_range_start = INT64_RANGE_MIN (value); *int_range_end = INT64_RANGE_MAX (value); *int_range_step = INT64_RANGE_STEP (value); return NULL; } /** * gst_value_set_int64_range_step: * @value: a GValue initialized to GST_TYPE_INT64_RANGE * @start: the start of the range * @end: the end of the range * @step: the step of the range * * Sets @value to the range specified by @start, @end and @step. */ void gst_value_set_int64_range_step (GValue * value, gint64 start, gint64 end, gint64 step) { g_return_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value)); g_return_if_fail (start < end); g_return_if_fail (step > 0); g_return_if_fail (start % step == 0); g_return_if_fail (end % step == 0); INT64_RANGE_MIN (value) = start / step; INT64_RANGE_MAX (value) = end / step; INT64_RANGE_STEP (value) = step; } /** * gst_value_set_int64_range: * @value: a GValue initialized to GST_TYPE_INT64_RANGE * @start: the start of the range * @end: the end of the range * * Sets @value to the range specified by @start and @end. */ void gst_value_set_int64_range (GValue * value, gint64 start, gint64 end) { gst_value_set_int64_range_step (value, start, end, 1); } /** * gst_value_get_int64_range_min: * @value: a GValue initialized to GST_TYPE_INT64_RANGE * * Gets the minimum of the range specified by @value. * * Returns: the minimum of the range */ gint64 gst_value_get_int64_range_min (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value), 0); return INT64_RANGE_MIN (value) * INT64_RANGE_STEP (value); } /** * gst_value_get_int64_range_max: * @value: a GValue initialized to GST_TYPE_INT64_RANGE * * Gets the maximum of the range specified by @value. * * Returns: the maximum of the range */ gint64 gst_value_get_int64_range_max (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value), 0); return INT64_RANGE_MAX (value) * INT64_RANGE_STEP (value); } /** * gst_value_get_int64_range_step: * @value: a GValue initialized to GST_TYPE_INT64_RANGE * * Gets the step of the range specified by @value. * * Returns: the step of the range */ gint64 gst_value_get_int64_range_step (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value), 0); return INT64_RANGE_STEP (value); } static void gst_value_transform_int64_range_string (const GValue * src_value, GValue * dest_value) { if (INT64_RANGE_STEP (src_value) == 1) dest_value->data[0].v_pointer = g_strdup_printf ("(gint64)[%" G_GINT64_FORMAT ",%" G_GINT64_FORMAT "]", INT64_RANGE_MIN (src_value), INT64_RANGE_MAX (src_value)); else dest_value->data[0].v_pointer = g_strdup_printf ("(gint64)[%" G_GINT64_FORMAT ",%" G_GINT64_FORMAT ",%" G_GINT64_FORMAT "]", INT64_RANGE_MIN (src_value) * INT64_RANGE_STEP (src_value), INT64_RANGE_MAX (src_value) * INT64_RANGE_STEP (src_value), INT64_RANGE_STEP (src_value)); } static gint gst_value_compare_int64_range (const GValue * value1, const GValue * value2) { /* calculate the number of values in each range */ gint64 n1 = INT64_RANGE_MAX (value1) - INT64_RANGE_MIN (value1) + 1; gint64 n2 = INT64_RANGE_MAX (value2) - INT64_RANGE_MIN (value2) + 1; /* they must be equal */ if (n1 != n2) return GST_VALUE_UNORDERED; /* if empty, equal */ if (n1 == 0) return GST_VALUE_EQUAL; /* if more than one value, then it is only equal if the step is equal and bounds lie on the same value */ if (n1 > 1) { if (INT64_RANGE_STEP (value1) == INT64_RANGE_STEP (value2) && INT64_RANGE_MIN (value1) == INT64_RANGE_MIN (value2) && INT64_RANGE_MAX (value1) == INT64_RANGE_MAX (value2)) { return GST_VALUE_EQUAL; } return GST_VALUE_UNORDERED; } else { /* if just one, only if the value is equal */ if (INT64_RANGE_MIN (value1) == INT64_RANGE_MIN (value2)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } } static gchar * gst_value_serialize_int64_range (const GValue * value) { if (INT64_RANGE_STEP (value) == 1) return g_strdup_printf ("[ %" G_GINT64_FORMAT ", %" G_GINT64_FORMAT " ]", INT64_RANGE_MIN (value), INT64_RANGE_MAX (value)); else return g_strdup_printf ("[ %" G_GINT64_FORMAT ", %" G_GINT64_FORMAT ", %" G_GINT64_FORMAT " ]", INT64_RANGE_MIN (value) * INT64_RANGE_STEP (value), INT64_RANGE_MAX (value) * INT64_RANGE_STEP (value), INT64_RANGE_STEP (value)); } static gboolean gst_value_deserialize_int64_range (GValue * dest, const gchar * s) { g_warning ("unimplemented"); return FALSE; } /**************** * double range * ****************/ static void gst_value_init_double_range (GValue * value) { value->data[0].v_double = 0; value->data[1].v_double = 0; } static void gst_value_copy_double_range (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_double = src_value->data[0].v_double; dest_value->data[1].v_double = src_value->data[1].v_double; } static gchar * gst_value_collect_double_range (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (n_collect_values != 2) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); if (collect_values[0].v_double >= collect_values[1].v_double) return g_strdup_printf ("range start is not smaller than end for `%s'", G_VALUE_TYPE_NAME (value)); value->data[0].v_double = collect_values[0].v_double; value->data[1].v_double = collect_values[1].v_double; return NULL; } static gchar * gst_value_lcopy_double_range (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { gdouble *double_range_start = collect_values[0].v_pointer; gdouble *double_range_end = collect_values[1].v_pointer; if (!double_range_start) return g_strdup_printf ("start value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!double_range_end) return g_strdup_printf ("end value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); *double_range_start = value->data[0].v_double; *double_range_end = value->data[1].v_double; return NULL; } /** * gst_value_set_double_range: * @value: a GValue initialized to GST_TYPE_DOUBLE_RANGE * @start: the start of the range * @end: the end of the range * * Sets @value to the range specified by @start and @end. */ void gst_value_set_double_range (GValue * value, gdouble start, gdouble end) { g_return_if_fail (GST_VALUE_HOLDS_DOUBLE_RANGE (value)); g_return_if_fail (start < end); value->data[0].v_double = start; value->data[1].v_double = end; } /** * gst_value_get_double_range_min: * @value: a GValue initialized to GST_TYPE_DOUBLE_RANGE * * Gets the minimum of the range specified by @value. * * Returns: the minimum of the range */ gdouble gst_value_get_double_range_min (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_DOUBLE_RANGE (value), 0); return value->data[0].v_double; } /** * gst_value_get_double_range_max: * @value: a GValue initialized to GST_TYPE_DOUBLE_RANGE * * Gets the maximum of the range specified by @value. * * Returns: the maximum of the range */ gdouble gst_value_get_double_range_max (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_DOUBLE_RANGE (value), 0); return value->data[1].v_double; } static void gst_value_transform_double_range_string (const GValue * src_value, GValue * dest_value) { gchar s1[G_ASCII_DTOSTR_BUF_SIZE], s2[G_ASCII_DTOSTR_BUF_SIZE]; dest_value->data[0].v_pointer = g_strdup_printf ("[%s,%s]", g_ascii_dtostr (s1, G_ASCII_DTOSTR_BUF_SIZE, src_value->data[0].v_double), g_ascii_dtostr (s2, G_ASCII_DTOSTR_BUF_SIZE, src_value->data[1].v_double)); } static gint gst_value_compare_double_range (const GValue * value1, const GValue * value2) { if (value2->data[0].v_double == value1->data[0].v_double && value2->data[1].v_double == value1->data[1].v_double) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gchar * gst_value_serialize_double_range (const GValue * value) { gchar d1[G_ASCII_DTOSTR_BUF_SIZE]; gchar d2[G_ASCII_DTOSTR_BUF_SIZE]; g_ascii_dtostr (d1, G_ASCII_DTOSTR_BUF_SIZE, value->data[0].v_double); g_ascii_dtostr (d2, G_ASCII_DTOSTR_BUF_SIZE, value->data[1].v_double); return g_strdup_printf ("[ %s, %s ]", d1, d2); } static gboolean gst_value_deserialize_double_range (GValue * dest, const gchar * s) { g_warning ("unimplemented"); return FALSE; } /**************** * fraction range * ****************/ static void gst_value_init_fraction_range (GValue * value) { GValue *vals; GType ftype; ftype = GST_TYPE_FRACTION; value->data[0].v_pointer = vals = g_slice_alloc0 (2 * sizeof (GValue)); g_value_init (&vals[0], ftype); g_value_init (&vals[1], ftype); } static void gst_value_free_fraction_range (GValue * value) { GValue *vals = (GValue *) value->data[0].v_pointer; if (vals != NULL) { /* we know the two values contain fractions without internal allocs */ /* g_value_unset (&vals[0]); */ /* g_value_unset (&vals[1]); */ g_slice_free1 (2 * sizeof (GValue), vals); value->data[0].v_pointer = NULL; } } static void gst_value_copy_fraction_range (const GValue * src_value, GValue * dest_value) { GValue *vals = (GValue *) dest_value->data[0].v_pointer; GValue *src_vals = (GValue *) src_value->data[0].v_pointer; if (vals == NULL) { gst_value_init_fraction_range (dest_value); vals = dest_value->data[0].v_pointer; } if (src_vals != NULL) { g_value_copy (&src_vals[0], &vals[0]); g_value_copy (&src_vals[1], &vals[1]); } } static gchar * gst_value_collect_fraction_range (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { GValue *vals = (GValue *) value->data[0].v_pointer; if (n_collect_values != 4) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); if (collect_values[1].v_int == 0) return g_strdup_printf ("passed '0' as first denominator for `%s'", G_VALUE_TYPE_NAME (value)); if (collect_values[3].v_int == 0) return g_strdup_printf ("passed '0' as second denominator for `%s'", G_VALUE_TYPE_NAME (value)); if (gst_util_fraction_compare (collect_values[0].v_int, collect_values[1].v_int, collect_values[2].v_int, collect_values[3].v_int) >= 0) return g_strdup_printf ("range start is not smaller than end for `%s'", G_VALUE_TYPE_NAME (value)); if (vals == NULL) { gst_value_init_fraction_range (value); vals = value->data[0].v_pointer; } gst_value_set_fraction (&vals[0], collect_values[0].v_int, collect_values[1].v_int); gst_value_set_fraction (&vals[1], collect_values[2].v_int, collect_values[3].v_int); return NULL; } static gchar * gst_value_lcopy_fraction_range (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { gint i; gint *dest_values[4]; GValue *vals = (GValue *) value->data[0].v_pointer; if (G_UNLIKELY (n_collect_values != 4)) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); for (i = 0; i < 4; i++) { if (G_UNLIKELY (collect_values[i].v_pointer == NULL)) { return g_strdup_printf ("value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); } dest_values[i] = collect_values[i].v_pointer; } if (G_UNLIKELY (vals == NULL)) { return g_strdup_printf ("Uninitialised `%s' passed", G_VALUE_TYPE_NAME (value)); } dest_values[0][0] = gst_value_get_fraction_numerator (&vals[0]); dest_values[1][0] = gst_value_get_fraction_denominator (&vals[0]); dest_values[2][0] = gst_value_get_fraction_numerator (&vals[1]); dest_values[3][0] = gst_value_get_fraction_denominator (&vals[1]); return NULL; } /** * gst_value_set_fraction_range: * @value: a GValue initialized to GST_TYPE_FRACTION_RANGE * @start: the start of the range (a GST_TYPE_FRACTION GValue) * @end: the end of the range (a GST_TYPE_FRACTION GValue) * * Sets @value to the range specified by @start and @end. */ void gst_value_set_fraction_range (GValue * value, const GValue * start, const GValue * end) { GValue *vals; g_return_if_fail (GST_VALUE_HOLDS_FRACTION_RANGE (value)); g_return_if_fail (GST_VALUE_HOLDS_FRACTION (start)); g_return_if_fail (GST_VALUE_HOLDS_FRACTION (end)); g_return_if_fail (gst_util_fraction_compare (start->data[0].v_int, start->data[1].v_int, end->data[0].v_int, end->data[1].v_int) < 0); vals = (GValue *) value->data[0].v_pointer; if (vals == NULL) { gst_value_init_fraction_range (value); vals = value->data[0].v_pointer; } g_value_copy (start, &vals[0]); g_value_copy (end, &vals[1]); } /** * gst_value_set_fraction_range_full: * @value: a GValue initialized to GST_TYPE_FRACTION_RANGE * @numerator_start: the numerator start of the range * @denominator_start: the denominator start of the range * @numerator_end: the numerator end of the range * @denominator_end: the denominator end of the range * * Sets @value to the range specified by @numerator_start/@denominator_start * and @numerator_end/@denominator_end. */ void gst_value_set_fraction_range_full (GValue * value, gint numerator_start, gint denominator_start, gint numerator_end, gint denominator_end) { GValue start = { 0 }; GValue end = { 0 }; g_return_if_fail (value != NULL); g_return_if_fail (denominator_start != 0); g_return_if_fail (denominator_end != 0); g_return_if_fail (gst_util_fraction_compare (numerator_start, denominator_start, numerator_end, denominator_end) < 0); g_value_init (&start, GST_TYPE_FRACTION); g_value_init (&end, GST_TYPE_FRACTION); gst_value_set_fraction (&start, numerator_start, denominator_start); gst_value_set_fraction (&end, numerator_end, denominator_end); gst_value_set_fraction_range (value, &start, &end); /* we know the two values contain fractions without internal allocs */ /* g_value_unset (&start); */ /* g_value_unset (&end); */ } /* FIXME 2.0: Don't leak the internal representation of fraction * ranges but instead return the numerator and denominator * separately. * This would allow to store fraction ranges as * data[0] = (min_n << 32) | (min_d) * data[1] = (max_n << 32) | (max_d) * without requiring an additional allocation for each value. */ /** * gst_value_get_fraction_range_min: * @value: a GValue initialized to GST_TYPE_FRACTION_RANGE * * Gets the minimum of the range specified by @value. * * Returns: the minimum of the range */ const GValue * gst_value_get_fraction_range_min (const GValue * value) { GValue *vals; g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION_RANGE (value), NULL); vals = (GValue *) value->data[0].v_pointer; if (vals != NULL) { return &vals[0]; } return NULL; } /** * gst_value_get_fraction_range_max: * @value: a GValue initialized to GST_TYPE_FRACTION_RANGE * * Gets the maximum of the range specified by @value. * * Returns: the maximum of the range */ const GValue * gst_value_get_fraction_range_max (const GValue * value) { GValue *vals; g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION_RANGE (value), NULL); vals = (GValue *) value->data[0].v_pointer; if (vals != NULL) { return &vals[1]; } return NULL; } static gchar * gst_value_serialize_fraction_range (const GValue * value) { GValue *vals = (GValue *) value->data[0].v_pointer; gchar *retval; if (vals == NULL) { retval = g_strdup ("[ 0/1, 0/1 ]"); } else { gchar *start, *end; start = gst_value_serialize_fraction (&vals[0]); end = gst_value_serialize_fraction (&vals[1]); retval = g_strdup_printf ("[ %s, %s ]", start, end); g_free (start); g_free (end); } return retval; } static void gst_value_transform_fraction_range_string (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = gst_value_serialize_fraction_range (src_value); } static gint gst_value_compare_fraction_range (const GValue * value1, const GValue * value2) { GValue *vals1, *vals2; GstValueCompareFunc compare; if (value2->data[0].v_pointer == value1->data[0].v_pointer) return GST_VALUE_EQUAL; /* Only possible if both are NULL */ if (value2->data[0].v_pointer == NULL || value1->data[0].v_pointer == NULL) return GST_VALUE_UNORDERED; vals1 = (GValue *) value1->data[0].v_pointer; vals2 = (GValue *) value2->data[0].v_pointer; if ((compare = gst_value_get_compare_func (&vals1[0]))) { if (gst_value_compare_with_func (&vals1[0], &vals2[0], compare) == GST_VALUE_EQUAL && gst_value_compare_with_func (&vals1[1], &vals2[1], compare) == GST_VALUE_EQUAL) return GST_VALUE_EQUAL; } return GST_VALUE_UNORDERED; } static gboolean gst_value_deserialize_fraction_range (GValue * dest, const gchar * s) { g_warning ("unimplemented"); return FALSE; } /*********** * GstCaps * ***********/ /** * gst_value_set_caps: * @value: a GValue initialized to GST_TYPE_CAPS * @caps: (transfer none): the caps to set the value to * * Sets the contents of @value to @caps. A reference to the * provided @caps will be taken by the @value. */ void gst_value_set_caps (GValue * value, const GstCaps * caps) { g_return_if_fail (G_IS_VALUE (value)); g_return_if_fail (G_VALUE_TYPE (value) == GST_TYPE_CAPS); g_return_if_fail (caps == NULL || GST_IS_CAPS (caps)); g_value_set_boxed (value, caps); } /** * gst_value_get_caps: * @value: a GValue initialized to GST_TYPE_CAPS * * Gets the contents of @value. The reference count of the returned * #GstCaps will not be modified, therefore the caller must take one * before getting rid of the @value. * * Returns: (transfer none): the contents of @value */ const GstCaps * gst_value_get_caps (const GValue * value) { g_return_val_if_fail (G_IS_VALUE (value), NULL); g_return_val_if_fail (G_VALUE_TYPE (value) == GST_TYPE_CAPS, NULL); return (GstCaps *) g_value_get_boxed (value); } static gint gst_value_compare_caps (const GValue * value1, const GValue * value2) { GstCaps *caps1 = GST_CAPS (gst_value_get_caps (value1)); GstCaps *caps2 = GST_CAPS (gst_value_get_caps (value2)); if (gst_caps_is_equal (caps1, caps2)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gchar * gst_value_serialize_caps (const GValue * value) { GstCaps *caps = g_value_get_boxed (value); return gst_string_take_and_wrap (gst_caps_to_string (caps)); } static gboolean gst_value_deserialize_caps (GValue * dest, const gchar * s) { GstCaps *caps; if (*s != '"') { caps = gst_caps_from_string (s); } else { gchar *str = gst_string_unwrap (s); if (G_UNLIKELY (!str)) return FALSE; caps = gst_caps_from_string (str); g_free (str); } if (caps) { g_value_take_boxed (dest, caps); return TRUE; } return FALSE; } /************** * GstSegment * **************/ static gchar * gst_value_serialize_segment_internal (const GValue * value, gboolean escape) { GstSegment *seg = g_value_get_boxed (value); gchar *t, *res; GstStructure *s; s = gst_structure_new ("GstSegment", "flags", GST_TYPE_SEGMENT_FLAGS, seg->flags, "rate", G_TYPE_DOUBLE, seg->rate, "applied-rate", G_TYPE_DOUBLE, seg->applied_rate, "format", GST_TYPE_FORMAT, seg->format, "base", G_TYPE_UINT64, seg->base, "offset", G_TYPE_UINT64, seg->offset, "start", G_TYPE_UINT64, seg->start, "stop", G_TYPE_UINT64, seg->stop, "time", G_TYPE_UINT64, seg->time, "position", G_TYPE_UINT64, seg->position, "duration", G_TYPE_UINT64, seg->duration, NULL); t = gst_structure_to_string (s); if (escape) { res = g_strdup_printf ("\"%s\"", t); g_free (t); } else { res = t; } gst_structure_free (s); return res; } static gchar * gst_value_serialize_segment (const GValue * value) { return gst_value_serialize_segment_internal (value, TRUE); } static gboolean gst_value_deserialize_segment (GValue * dest, const gchar * s) { GstStructure *str; GstSegment seg; gboolean res; str = gst_structure_from_string (s, NULL); if (str == NULL) return FALSE; res = gst_structure_get (str, "flags", GST_TYPE_SEGMENT_FLAGS, &seg.flags, "rate", G_TYPE_DOUBLE, &seg.rate, "applied-rate", G_TYPE_DOUBLE, &seg.applied_rate, "format", GST_TYPE_FORMAT, &seg.format, "base", G_TYPE_UINT64, &seg.base, "offset", G_TYPE_UINT64, &seg.offset, "start", G_TYPE_UINT64, &seg.start, "stop", G_TYPE_UINT64, &seg.stop, "time", G_TYPE_UINT64, &seg.time, "position", G_TYPE_UINT64, &seg.position, "duration", G_TYPE_UINT64, &seg.duration, NULL); gst_structure_free (str); if (res) g_value_set_boxed (dest, &seg); return res; } /**************** * GstStructure * ****************/ /** * gst_value_set_structure: * @value: a GValue initialized to GST_TYPE_STRUCTURE * @structure: the structure to set the value to * * Sets the contents of @value to @structure. The actual */ void gst_value_set_structure (GValue * value, const GstStructure * structure) { g_return_if_fail (G_IS_VALUE (value)); g_return_if_fail (G_VALUE_TYPE (value) == GST_TYPE_STRUCTURE); g_return_if_fail (structure == NULL || GST_IS_STRUCTURE (structure)); g_value_set_boxed (value, structure); } /** * gst_value_get_structure: * @value: a GValue initialized to GST_TYPE_STRUCTURE * * Gets the contents of @value. * * Returns: (transfer none): the contents of @value */ const GstStructure * gst_value_get_structure (const GValue * value) { g_return_val_if_fail (G_IS_VALUE (value), NULL); g_return_val_if_fail (G_VALUE_TYPE (value) == GST_TYPE_STRUCTURE, NULL); return (GstStructure *) g_value_get_boxed (value); } static gchar * gst_value_serialize_structure (const GValue * value) { GstStructure *structure = g_value_get_boxed (value); return gst_string_take_and_wrap (gst_structure_to_string (structure)); } static gboolean gst_value_deserialize_structure (GValue * dest, const gchar * s) { GstStructure *structure; if (*s != '"') { structure = gst_structure_from_string (s, NULL); } else { gchar *str = gst_string_unwrap (s); if (G_UNLIKELY (!str)) return FALSE; structure = gst_structure_from_string (str, NULL); g_free (str); } if (G_LIKELY (structure)) { g_value_take_boxed (dest, structure); return TRUE; } return FALSE; } static gboolean gst_value_compare_structure (const GValue * value1, const GValue * value2) { GstStructure *structure1 = GST_STRUCTURE (g_value_get_boxed (value1)); GstStructure *structure2 = GST_STRUCTURE (g_value_get_boxed (value2)); if (gst_structure_is_equal (structure1, structure2)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } /******************* * GstCapsFeatures * *******************/ /** * gst_value_set_caps_features: * @value: a GValue initialized to GST_TYPE_CAPS_FEATURES * @features: the features to set the value to * * Sets the contents of @value to @features. */ void gst_value_set_caps_features (GValue * value, const GstCapsFeatures * features) { g_return_if_fail (G_IS_VALUE (value)); g_return_if_fail (G_VALUE_TYPE (value) == GST_TYPE_CAPS_FEATURES); g_return_if_fail (features == NULL || GST_IS_CAPS_FEATURES (features)); g_value_set_boxed (value, features); } /** * gst_value_get_caps_features: * @value: a GValue initialized to GST_TYPE_CAPS_FEATURES * * Gets the contents of @value. * * Returns: (transfer none): the contents of @value */ const GstCapsFeatures * gst_value_get_caps_features (const GValue * value) { g_return_val_if_fail (G_IS_VALUE (value), NULL); g_return_val_if_fail (G_VALUE_TYPE (value) == GST_TYPE_CAPS_FEATURES, NULL); return (GstCapsFeatures *) g_value_get_boxed (value); } static gchar * gst_value_serialize_caps_features (const GValue * value) { GstCapsFeatures *features = g_value_get_boxed (value); return gst_string_take_and_wrap (gst_caps_features_to_string (features)); } static gboolean gst_value_deserialize_caps_features (GValue * dest, const gchar * s) { GstCapsFeatures *features; if (*s != '"') { features = gst_caps_features_from_string (s); } else { gchar *str = gst_string_unwrap (s); if (G_UNLIKELY (!str)) return FALSE; features = gst_caps_features_from_string (str); g_free (str); } if (G_LIKELY (features)) { g_value_take_boxed (dest, features); return TRUE; } return FALSE; } /************** * GstTagList * **************/ static gint gst_value_compare_tag_list (const GValue * value1, const GValue * value2) { GstTagList *taglist1 = GST_TAG_LIST (g_value_get_boxed (value1)); GstTagList *taglist2 = GST_TAG_LIST (g_value_get_boxed (value2)); if (gst_tag_list_is_equal (taglist1, taglist2)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gboolean gst_value_deserialize_tag_list (GValue * dest, const gchar * s) { GstTagList *taglist; if (*s != '"') { taglist = gst_tag_list_new_from_string (s); } else { gchar *str = gst_string_unwrap (s); if (G_UNLIKELY (!str)) return FALSE; taglist = gst_tag_list_new_from_string (str); g_free (str); } if (G_LIKELY (taglist != NULL)) { g_value_take_boxed (dest, taglist); return TRUE; } return FALSE; } static gchar * gst_value_serialize_tag_list (const GValue * value) { GstTagList *taglist = g_value_get_boxed (value); return gst_string_take_and_wrap (gst_tag_list_to_string (taglist)); } /************* * GstBuffer * *************/ static gint compare_buffer (GstBuffer * buf1, GstBuffer * buf2) { gsize size1, size2; GstMapInfo info1, info2; gint result, mret; if (buf1 == buf2) return GST_VALUE_EQUAL; size1 = gst_buffer_get_size (buf1); size2 = gst_buffer_get_size (buf2); if (size1 != size2) return GST_VALUE_UNORDERED; if (size1 == 0) return GST_VALUE_EQUAL; if (!gst_buffer_map (buf1, &info1, GST_MAP_READ)) return GST_VALUE_UNORDERED; if (!gst_buffer_map (buf2, &info2, GST_MAP_READ)) { gst_buffer_unmap (buf1, &info1); return GST_VALUE_UNORDERED; } mret = memcmp (info1.data, info2.data, info1.size); if (mret == 0) result = GST_VALUE_EQUAL; else if (mret < 0) result = GST_VALUE_LESS_THAN; else result = GST_VALUE_GREATER_THAN; gst_buffer_unmap (buf1, &info1); gst_buffer_unmap (buf2, &info2); return result; } static gint gst_value_compare_buffer (const GValue * value1, const GValue * value2) { GstBuffer *buf1 = gst_value_get_buffer (value1); GstBuffer *buf2 = gst_value_get_buffer (value2); return compare_buffer (buf1, buf2); } static gchar * gst_value_serialize_buffer (const GValue * value) { GstMapInfo info; guint8 *data; gint i; gchar *string; GstBuffer *buffer; buffer = gst_value_get_buffer (value); if (buffer == NULL) return NULL; if (!gst_buffer_map (buffer, &info, GST_MAP_READ)) return NULL; data = info.data; string = g_malloc (info.size * 2 + 1); for (i = 0; i < info.size; i++) { sprintf (string + i * 2, "%02x", data[i]); } string[info.size * 2] = 0; gst_buffer_unmap (buffer, &info); return string; } static gboolean gst_value_deserialize_buffer (GValue * dest, const gchar * s) { GstBuffer *buffer; gint len; gchar ts[3]; GstMapInfo info; guint8 *data; gint i; len = strlen (s); if (len & 1) goto wrong_length; buffer = gst_buffer_new_allocate (NULL, len / 2, NULL); if (!gst_buffer_map (buffer, &info, GST_MAP_WRITE)) goto map_failed; data = info.data; for (i = 0; i < len / 2; i++) { if (!isxdigit ((int) s[i * 2]) || !isxdigit ((int) s[i * 2 + 1])) goto wrong_char; ts[0] = s[i * 2 + 0]; ts[1] = s[i * 2 + 1]; ts[2] = 0; data[i] = (guint8) strtoul (ts, NULL, 16); } gst_buffer_unmap (buffer, &info); gst_value_take_buffer (dest, buffer); return TRUE; /* ERRORS */ wrong_length: { return FALSE; } map_failed: { return FALSE; } wrong_char: { gst_buffer_unref (buffer); gst_buffer_unmap (buffer, &info); return FALSE; } } /************* * GstSample * *************/ /* This function is mostly used for comparing image/buffer tags in taglists */ static gint gst_value_compare_sample (const GValue * value1, const GValue * value2) { GstBuffer *buf1 = gst_sample_get_buffer (gst_value_get_sample (value1)); GstBuffer *buf2 = gst_sample_get_buffer (gst_value_get_sample (value2)); /* FIXME: should we take into account anything else such as caps? */ return compare_buffer (buf1, buf2); } static gchar * gst_value_serialize_sample (const GValue * value) { const GstStructure *info_structure; GstSegment *segment; GstBuffer *buffer; GstCaps *caps; GstSample *sample; GValue val = { 0, }; gchar *info_str, *caps_str, *tmp; gchar *buf_str, *seg_str, *s; sample = g_value_get_boxed (value); buffer = gst_sample_get_buffer (sample); if (buffer) { g_value_init (&val, GST_TYPE_BUFFER); g_value_set_boxed (&val, buffer); buf_str = gst_value_serialize_buffer (&val); g_value_unset (&val); } else { buf_str = g_strdup ("None"); } caps = gst_sample_get_caps (sample); if (caps) { tmp = gst_caps_to_string (caps); caps_str = g_base64_encode ((guchar *) tmp, strlen (tmp) + 1); g_strdelimit (caps_str, "=", '_'); g_free (tmp); } else { caps_str = g_strdup ("None"); } segment = gst_sample_get_segment (sample); if (segment) { g_value_init (&val, GST_TYPE_SEGMENT); g_value_set_boxed (&val, segment); tmp = gst_value_serialize_segment_internal (&val, FALSE); seg_str = g_base64_encode ((guchar *) tmp, strlen (tmp) + 1); g_strdelimit (seg_str, "=", '_'); g_free (tmp); g_value_unset (&val); } else { seg_str = g_strdup ("None"); } info_structure = gst_sample_get_info (sample); if (info_structure) { tmp = gst_structure_to_string (info_structure); info_str = g_base64_encode ((guchar *) tmp, strlen (tmp) + 1); g_strdelimit (info_str, "=", '_'); g_free (tmp); } else { info_str = g_strdup ("None"); } s = g_strconcat (buf_str, ":", caps_str, ":", seg_str, ":", info_str, NULL); g_free (buf_str); g_free (caps_str); g_free (seg_str); g_free (info_str); return s; } static gboolean gst_value_deserialize_sample (GValue * dest, const gchar * s) { GValue bval = G_VALUE_INIT, sval = G_VALUE_INIT; GstStructure *info; GstSample *sample; GstCaps *caps; gboolean ret = FALSE; gchar **fields; gsize outlen; gint len; GST_TRACE ("deserialize '%s'", s); fields = g_strsplit (s, ":", -1); len = g_strv_length (fields); if (len != 4) goto wrong_length; g_value_init (&bval, GST_TYPE_BUFFER); g_value_init (&sval, GST_TYPE_SEGMENT); if (!gst_value_deserialize_buffer (&bval, fields[0])) goto fail; if (strcmp (fields[1], "None") != 0) { g_strdelimit (fields[1], "_", '='); g_base64_decode_inplace (fields[1], &outlen); GST_TRACE ("caps : %s", fields[1]); caps = gst_caps_from_string (fields[1]); if (caps == NULL) goto fail; } else { caps = NULL; } if (strcmp (fields[2], "None") != 0) { g_strdelimit (fields[2], "_", '='); g_base64_decode_inplace (fields[2], &outlen); GST_TRACE ("segment : %s", fields[2]); if (!gst_value_deserialize_segment (&sval, fields[2])) goto fail; } if (strcmp (fields[3], "None") != 0) { g_strdelimit (fields[3], "_", '='); g_base64_decode_inplace (fields[3], &outlen); GST_TRACE ("info : %s", fields[3]); info = gst_structure_from_string (fields[3], NULL); if (info == NULL) goto fail; } else { info = NULL; } sample = gst_sample_new (gst_value_get_buffer (&bval), caps, g_value_get_boxed (&sval), info); g_value_take_boxed (dest, sample); if (caps) gst_caps_unref (caps); ret = TRUE; fail: g_value_unset (&bval); g_value_unset (&sval); wrong_length: g_strfreev (fields); return ret; } /*********** * boolean * ***********/ static gint gst_value_compare_boolean (const GValue * value1, const GValue * value2) { if ((value1->data[0].v_int != 0) == (value2->data[0].v_int != 0)) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gchar * gst_value_serialize_boolean (const GValue * value) { if (value->data[0].v_int) { return g_strdup ("true"); } return g_strdup ("false"); } static gboolean gst_value_deserialize_boolean (GValue * dest, const gchar * s) { gboolean ret = FALSE; if (g_ascii_strcasecmp (s, "true") == 0 || g_ascii_strcasecmp (s, "yes") == 0 || g_ascii_strcasecmp (s, "t") == 0 || strcmp (s, "1") == 0) { g_value_set_boolean (dest, TRUE); ret = TRUE; } else if (g_ascii_strcasecmp (s, "false") == 0 || g_ascii_strcasecmp (s, "no") == 0 || g_ascii_strcasecmp (s, "f") == 0 || strcmp (s, "0") == 0) { g_value_set_boolean (dest, FALSE); ret = TRUE; } return ret; } #define CREATE_SERIALIZATION_START(_type,_macro) \ static gint \ gst_value_compare_ ## _type \ (const GValue * value1, const GValue * value2) \ { \ g ## _type val1 = g_value_get_ ## _type (value1); \ g ## _type val2 = g_value_get_ ## _type (value2); \ if (val1 > val2) \ return GST_VALUE_GREATER_THAN; \ if (val1 < val2) \ return GST_VALUE_LESS_THAN; \ return GST_VALUE_EQUAL; \ } \ \ static gchar * \ gst_value_serialize_ ## _type (const GValue * value) \ { \ GValue val = { 0, }; \ g_value_init (&val, G_TYPE_STRING); \ if (!g_value_transform (value, &val)) \ g_assert_not_reached (); \ /* NO_COPY_MADNESS!!! */ \ return (char *) g_value_get_string (&val); \ } /* deserialize the given s into to as a gint64. * check if the result is actually storeable in the given size number of * bytes. */ static gboolean gst_value_deserialize_int_helper (gint64 * to, const gchar * s, gint64 min, gint64 max, gint size) { gboolean ret = FALSE; gchar *end; guint64 mask = ~0; errno = 0; *to = g_ascii_strtoull (s, &end, 0); /* a range error is a definitive no-no */ if (errno == ERANGE) { return FALSE; } if (*end == 0) { ret = TRUE; } else { if (g_ascii_strcasecmp (s, "little_endian") == 0) { *to = G_LITTLE_ENDIAN; ret = TRUE; } else if (g_ascii_strcasecmp (s, "big_endian") == 0) { *to = G_BIG_ENDIAN; ret = TRUE; } else if (g_ascii_strcasecmp (s, "byte_order") == 0) { *to = G_BYTE_ORDER; ret = TRUE; } else if (g_ascii_strcasecmp (s, "min") == 0) { *to = min; ret = TRUE; } else if (g_ascii_strcasecmp (s, "max") == 0) { *to = max; ret = TRUE; } } if (ret) { /* by definition, a gint64 fits into a gint64; so ignore those */ if (size != sizeof (mask)) { if (*to >= 0) { /* for positive numbers, we create a mask of 1's outside of the range * and 0's inside the range. An and will thus keep only 1 bits * outside of the range */ mask <<= (size * 8); if ((mask & *to) != 0) { ret = FALSE; } } else { /* for negative numbers, we do a 2's complement version */ mask <<= ((size * 8) - 1); if ((mask & *to) != mask) { ret = FALSE; } } } } return ret; } #define CREATE_SERIALIZATION(_type,_macro) \ CREATE_SERIALIZATION_START(_type,_macro) \ \ static gboolean \ gst_value_deserialize_ ## _type (GValue * dest, const gchar *s) \ { \ gint64 x; \ \ if (gst_value_deserialize_int_helper (&x, s, G_MIN ## _macro, \ G_MAX ## _macro, sizeof (g ## _type))) { \ g_value_set_ ## _type (dest, /*(g ## _type)*/ x); \ return TRUE; \ } else { \ return FALSE; \ } \ } #define CREATE_USERIALIZATION(_type,_macro) \ CREATE_SERIALIZATION_START(_type,_macro) \ \ static gboolean \ gst_value_deserialize_ ## _type (GValue * dest, const gchar *s) \ { \ gint64 x; \ gchar *end; \ gboolean ret = FALSE; \ \ errno = 0; \ x = g_ascii_strtoull (s, &end, 0); \ /* a range error is a definitive no-no */ \ if (errno == ERANGE) { \ return FALSE; \ } \ /* the cast ensures the range check later on makes sense */ \ x = (g ## _type) x; \ if (*end == 0) { \ ret = TRUE; \ } else { \ if (g_ascii_strcasecmp (s, "little_endian") == 0) { \ x = G_LITTLE_ENDIAN; \ ret = TRUE; \ } else if (g_ascii_strcasecmp (s, "big_endian") == 0) { \ x = G_BIG_ENDIAN; \ ret = TRUE; \ } else if (g_ascii_strcasecmp (s, "byte_order") == 0) { \ x = G_BYTE_ORDER; \ ret = TRUE; \ } else if (g_ascii_strcasecmp (s, "min") == 0) { \ x = 0; \ ret = TRUE; \ } else if (g_ascii_strcasecmp (s, "max") == 0) { \ x = G_MAX ## _macro; \ ret = TRUE; \ } \ } \ if (ret) { \ if (x > G_MAX ## _macro) { \ ret = FALSE; \ } else { \ g_value_set_ ## _type (dest, x); \ } \ } \ return ret; \ } CREATE_SERIALIZATION (int, INT); CREATE_SERIALIZATION (int64, INT64); CREATE_SERIALIZATION (long, LONG); CREATE_USERIALIZATION (uint, UINT); CREATE_USERIALIZATION (uint64, UINT64); CREATE_USERIALIZATION (ulong, ULONG); /* FIXME 2.0: remove this again, plugins shouldn't have uchar properties */ #ifndef G_MAXUCHAR #define G_MAXUCHAR 255 #endif CREATE_USERIALIZATION (uchar, UCHAR); /********** * double * **********/ static gint gst_value_compare_double (const GValue * value1, const GValue * value2) { if (value1->data[0].v_double > value2->data[0].v_double) return GST_VALUE_GREATER_THAN; if (value1->data[0].v_double < value2->data[0].v_double) return GST_VALUE_LESS_THAN; if (value1->data[0].v_double == value2->data[0].v_double) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gchar * gst_value_serialize_double (const GValue * value) { gchar d[G_ASCII_DTOSTR_BUF_SIZE]; g_ascii_dtostr (d, G_ASCII_DTOSTR_BUF_SIZE, value->data[0].v_double); return g_strdup (d); } static gboolean gst_value_deserialize_double (GValue * dest, const gchar * s) { gdouble x; gboolean ret = FALSE; gchar *end; x = g_ascii_strtod (s, &end); if (*end == 0) { ret = TRUE; } else { if (g_ascii_strcasecmp (s, "min") == 0) { x = -G_MAXDOUBLE; ret = TRUE; } else if (g_ascii_strcasecmp (s, "max") == 0) { x = G_MAXDOUBLE; ret = TRUE; } } if (ret) { g_value_set_double (dest, x); } return ret; } /********* * float * *********/ static gint gst_value_compare_float (const GValue * value1, const GValue * value2) { if (value1->data[0].v_float > value2->data[0].v_float) return GST_VALUE_GREATER_THAN; if (value1->data[0].v_float < value2->data[0].v_float) return GST_VALUE_LESS_THAN; if (value1->data[0].v_float == value2->data[0].v_float) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static gchar * gst_value_serialize_float (const GValue * value) { gchar d[G_ASCII_DTOSTR_BUF_SIZE]; g_ascii_dtostr (d, G_ASCII_DTOSTR_BUF_SIZE, value->data[0].v_float); return g_strdup (d); } static gboolean gst_value_deserialize_float (GValue * dest, const gchar * s) { gdouble x; gboolean ret = FALSE; gchar *end; x = g_ascii_strtod (s, &end); if (*end == 0) { ret = TRUE; } else { if (g_ascii_strcasecmp (s, "min") == 0) { x = -G_MAXFLOAT; ret = TRUE; } else if (g_ascii_strcasecmp (s, "max") == 0) { x = G_MAXFLOAT; ret = TRUE; } } if (x > G_MAXFLOAT || x < -G_MAXFLOAT) ret = FALSE; if (ret) { g_value_set_float (dest, (float) x); } return ret; } /********** * string * **********/ static gint gst_value_compare_string (const GValue * value1, const GValue * value2) { if (G_UNLIKELY (!value1->data[0].v_pointer || !value2->data[0].v_pointer)) { /* if only one is NULL, no match - otherwise both NULL == EQUAL */ if (value1->data[0].v_pointer != value2->data[0].v_pointer) return GST_VALUE_UNORDERED; } else { gint x = strcmp (value1->data[0].v_pointer, value2->data[0].v_pointer); if (x < 0) return GST_VALUE_LESS_THAN; if (x > 0) return GST_VALUE_GREATER_THAN; } return GST_VALUE_EQUAL; } static gint gst_string_measure_wrapping (const gchar * s) { gint len; gboolean wrap = FALSE; if (G_UNLIKELY (s == NULL)) return -1; /* Special case: the actual string NULL needs wrapping */ if (G_UNLIKELY (strcmp (s, "NULL") == 0)) return 4; len = 0; while (*s) { if (GST_ASCII_IS_STRING (*s)) { len++; } else if (*s < 0x20 || *s >= 0x7f) { wrap = TRUE; len += 4; } else { wrap = TRUE; len += 2; } s++; } /* Wrap the string if we found something that needs * wrapping, or the empty string (len == 0) */ return (wrap || len == 0) ? len : -1; } static gchar * gst_string_wrap_inner (const gchar * s, gint len) { gchar *d, *e; e = d = g_malloc (len + 3); *e++ = '\"'; while (*s) { if (GST_ASCII_IS_STRING (*s)) { *e++ = *s++; } else if (*s < 0x20 || *s >= 0x7f) { *e++ = '\\'; *e++ = '0' + ((*(guchar *) s) >> 6); *e++ = '0' + (((*s) >> 3) & 0x7); *e++ = '0' + ((*s++) & 0x7); } else { *e++ = '\\'; *e++ = *s++; } } *e++ = '\"'; *e = 0; g_assert (e - d <= len + 3); return d; } /* Do string wrapping/escaping */ static gchar * gst_string_wrap (const gchar * s) { gint len = gst_string_measure_wrapping (s); if (G_LIKELY (len < 0)) return g_strdup (s); return gst_string_wrap_inner (s, len); } /* Same as above, but take ownership of the string */ static gchar * gst_string_take_and_wrap (gchar * s) { gchar *out; gint len = gst_string_measure_wrapping (s); if (G_LIKELY (len < 0)) return s; out = gst_string_wrap_inner (s, len); g_free (s); return out; } /* * This function takes a string delimited with double quotes (") * and unescapes any \xxx octal numbers. * * If sequences of \y are found where y is not in the range of * 0->3, y is copied unescaped. * * If \xyy is found where x is an octal number but y is not, an * error is encountered and %NULL is returned. * * the input string must be \0 terminated. */ static gchar * gst_string_unwrap (const gchar * s) { gchar *ret; gchar *read, *write; /* NULL string returns NULL */ if (s == NULL) return NULL; /* strings not starting with " are invalid */ if (*s != '"') return NULL; /* make copy of original string to hold the result. This * string will always be smaller than the original */ ret = g_strdup (s); read = ret; write = ret; /* need to move to the next position as we parsed the " */ read++; while (*read) { if (GST_ASCII_IS_STRING (*read)) { /* normal chars are just copied */ *write++ = *read++; } else if (*read == '"') { /* quote marks end of string */ break; } else if (*read == '\\') { /* got an escape char, move to next position to read a tripplet * of octal numbers */ read++; /* is the next char a possible first octal number? */ if (*read >= '0' && *read <= '3') { /* parse other 2 numbers, if one of them is not in the range of * an octal number, we error. We also catch the case where a zero * byte is found here. */ if (read[1] < '0' || read[1] > '7' || read[2] < '0' || read[2] > '7') goto beach; /* now convert the octal number to a byte again. */ *write++ = ((read[0] - '0') << 6) + ((read[1] - '0') << 3) + (read[2] - '0'); read += 3; } else { /* if we run into a \0 here, we definitely won't get a quote later */ if (*read == 0) goto beach; /* else copy \X sequence */ *write++ = *read++; } } else { /* weird character, error */ goto beach; } } /* if the string is not ending in " and zero terminated, we error */ if (*read != '"' || read[1] != '\0') goto beach; /* null terminate result string and return */ *write = '\0'; return ret; beach: g_free (ret); return NULL; } static gchar * gst_value_serialize_string (const GValue * value) { return gst_string_wrap (value->data[0].v_pointer); } static gboolean gst_value_deserialize_string (GValue * dest, const gchar * s) { if (G_UNLIKELY (strcmp (s, "NULL") == 0)) { g_value_set_string (dest, NULL); return TRUE; } else if (G_LIKELY (*s != '"' || s[strlen (s) - 1] != '"')) { if (!g_utf8_validate (s, -1, NULL)) return FALSE; g_value_set_string (dest, s); return TRUE; } else { /* strings delimited with double quotes should be unwrapped */ gchar *str = gst_string_unwrap (s); if (G_UNLIKELY (!str)) return FALSE; g_value_take_string (dest, str); } return TRUE; } /******** * enum * ********/ static gint gst_value_compare_enum (const GValue * value1, const GValue * value2) { GEnumValue *en1, *en2; GEnumClass *klass1 = (GEnumClass *) g_type_class_ref (G_VALUE_TYPE (value1)); GEnumClass *klass2 = (GEnumClass *) g_type_class_ref (G_VALUE_TYPE (value2)); g_return_val_if_fail (klass1, GST_VALUE_UNORDERED); g_return_val_if_fail (klass2, GST_VALUE_UNORDERED); en1 = g_enum_get_value (klass1, g_value_get_enum (value1)); en2 = g_enum_get_value (klass2, g_value_get_enum (value2)); g_type_class_unref (klass1); g_type_class_unref (klass2); g_return_val_if_fail (en1, GST_VALUE_UNORDERED); g_return_val_if_fail (en2, GST_VALUE_UNORDERED); if (en1->value < en2->value) return GST_VALUE_LESS_THAN; if (en1->value > en2->value) return GST_VALUE_GREATER_THAN; return GST_VALUE_EQUAL; } static gchar * gst_value_serialize_enum (const GValue * value) { GEnumValue *en; GEnumClass *klass = (GEnumClass *) g_type_class_ref (G_VALUE_TYPE (value)); g_return_val_if_fail (klass, NULL); en = g_enum_get_value (klass, g_value_get_enum (value)); g_type_class_unref (klass); /* might be one of the custom formats registered later */ if (G_UNLIKELY (en == NULL && G_VALUE_TYPE (value) == GST_TYPE_FORMAT)) { const GstFormatDefinition *format_def; format_def = gst_format_get_details ((GstFormat) g_value_get_enum (value)); g_return_val_if_fail (format_def != NULL, NULL); return g_strdup (format_def->description); } g_return_val_if_fail (en, NULL); return g_strdup (en->value_name); } static gint gst_value_deserialize_enum_iter_cmp (const GValue * format_def_value, const gchar * s) { const GstFormatDefinition *format_def = g_value_get_pointer (format_def_value); if (g_ascii_strcasecmp (s, format_def->nick) == 0) return 0; return g_ascii_strcasecmp (s, format_def->description); } static gboolean gst_value_deserialize_enum (GValue * dest, const gchar * s) { GEnumValue *en; gchar *endptr = NULL; GEnumClass *klass = (GEnumClass *) g_type_class_ref (G_VALUE_TYPE (dest)); g_return_val_if_fail (klass, FALSE); if (!(en = g_enum_get_value_by_name (klass, s))) { if (!(en = g_enum_get_value_by_nick (klass, s))) { gint i = strtol (s, &endptr, 0); if (endptr && *endptr == '\0') { en = g_enum_get_value (klass, i); } } } g_type_class_unref (klass); /* might be one of the custom formats registered later */ if (G_UNLIKELY (en == NULL && G_VALUE_TYPE (dest) == GST_TYPE_FORMAT)) { GValue res = { 0, }; const GstFormatDefinition *format_def; GstIterator *iter; gboolean found; iter = gst_format_iterate_definitions (); found = gst_iterator_find_custom (iter, (GCompareFunc) gst_value_deserialize_enum_iter_cmp, &res, (gpointer) s); if (found) { format_def = g_value_get_pointer (&res); g_return_val_if_fail (format_def != NULL, FALSE); g_value_set_enum (dest, (gint) format_def->value); g_value_unset (&res); } gst_iterator_free (iter); return found; } /* enum name/nick not found */ if (en == NULL) return FALSE; g_value_set_enum (dest, en->value); return TRUE; } /******** * flags * ********/ /* we just compare the value here */ static gint gst_value_compare_gflags (const GValue * value1, const GValue * value2) { guint fl1, fl2; GFlagsClass *klass1 = (GFlagsClass *) g_type_class_ref (G_VALUE_TYPE (value1)); GFlagsClass *klass2 = (GFlagsClass *) g_type_class_ref (G_VALUE_TYPE (value2)); g_return_val_if_fail (klass1, GST_VALUE_UNORDERED); g_return_val_if_fail (klass2, GST_VALUE_UNORDERED); fl1 = g_value_get_flags (value1); fl2 = g_value_get_flags (value2); g_type_class_unref (klass1); g_type_class_unref (klass2); if (fl1 < fl2) return GST_VALUE_LESS_THAN; if (fl1 > fl2) return GST_VALUE_GREATER_THAN; return GST_VALUE_EQUAL; } /* the different flags are serialized separated with a + */ static gchar * gst_value_serialize_gflags (const GValue * value) { guint flags; GFlagsValue *fl; GFlagsClass *klass = (GFlagsClass *) g_type_class_ref (G_VALUE_TYPE (value)); gchar *result, *tmp; gboolean first = TRUE; g_return_val_if_fail (klass, NULL); flags = g_value_get_flags (value); /* if no flags are set, try to serialize to the _NONE string */ if (!flags) { fl = g_flags_get_first_value (klass, flags); if (fl) return g_strdup (fl->value_name); else return g_strdup ("0"); } /* some flags are set, so serialize one by one */ result = g_strdup (""); while (flags) { fl = g_flags_get_first_value (klass, flags); if (fl != NULL) { tmp = g_strconcat (result, (first ? "" : "+"), fl->value_name, NULL); g_free (result); result = tmp; first = FALSE; /* clear flag */ flags &= ~fl->value; } } g_type_class_unref (klass); return result; } static gboolean gst_value_gflags_str_to_flags (GFlagsClass * klass, const gchar * s, guint * out_flags, guint * out_mask) { GFlagsValue *fl; gchar delimiter; const gchar *pos = NULL; const gchar *next; gchar *cur_str, *endptr; guint flags = 0; guint mask = 0; guint val; g_return_val_if_fail (klass, FALSE); /* split into parts delimited with + or / and * compose the set of flags and mask. */ pos = s; if (*pos == '\0') goto done; /* Empty string, nothing to do */ /* As a special case if the first char isn't a delimiter, assume * it's a '+' - for GFlags strings, which don't start with a * delimiter, while GFlagSet always will */ if (*pos == '/' || *pos == '+') { delimiter = *pos; pos++; } else { delimiter = '+'; } do { /* Find the next delimiter */ next = pos; while (*next != '\0' && *next != '+' && *next != '/') next++; cur_str = g_strndup (pos, next - pos); if ((fl = g_flags_get_value_by_name (klass, cur_str))) val = fl->value; else if ((fl = g_flags_get_value_by_nick (klass, cur_str))) val = fl->value; else { val = strtoul (cur_str, &endptr, 0); /* direct numeric value */ if (endptr == NULL || *endptr != '\0') val = 0; /* Invalid numeric, ignore it */ } g_free (cur_str); if (val) { mask |= val; if (delimiter == '+') flags |= val; } /* Advance to the next delimiter */ pos = next; delimiter = *pos; pos++; } while (delimiter != '\0'); done: if (out_flags) *out_flags = flags; if (out_mask) *out_mask = mask; return TRUE; } static gboolean gst_value_deserialize_gflags (GValue * dest, const gchar * s) { GFlagsClass *klass = (GFlagsClass *) g_type_class_ref (G_VALUE_TYPE (dest)); gboolean res = FALSE; guint flags = 0; if (gst_value_gflags_str_to_flags (klass, s, &flags, NULL)) { g_value_set_flags (dest, flags); res = TRUE; } g_type_class_unref (klass); return res; } /**************** * subset * ****************/ static gboolean gst_value_is_subset_int_range_int_range (const GValue * value1, const GValue * value2) { gint gcd; g_return_val_if_fail (GST_VALUE_HOLDS_INT_RANGE (value1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_INT_RANGE (value2), FALSE); if (INT_RANGE_MIN (value1) * INT_RANGE_STEP (value1) < INT_RANGE_MIN (value2) * INT_RANGE_STEP (value2)) return FALSE; if (INT_RANGE_MAX (value1) * INT_RANGE_STEP (value1) > INT_RANGE_MAX (value2) * INT_RANGE_STEP (value2)) return FALSE; if (INT_RANGE_MIN (value2) == INT_RANGE_MAX (value2)) { if ((INT_RANGE_MIN (value2) * INT_RANGE_STEP (value2)) % INT_RANGE_STEP (value1)) return FALSE; return TRUE; } gcd = gst_util_greatest_common_divisor (INT_RANGE_STEP (value1), INT_RANGE_STEP (value2)); if (gcd != MIN (INT_RANGE_STEP (value1), INT_RANGE_STEP (value2))) return FALSE; return TRUE; } static gboolean gst_value_is_subset_int64_range_int64_range (const GValue * value1, const GValue * value2) { gint64 gcd; g_return_val_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_INT64_RANGE (value2), FALSE); if (INT64_RANGE_MIN (value1) < INT64_RANGE_MIN (value2)) return FALSE; if (INT64_RANGE_MAX (value1) > INT64_RANGE_MAX (value2)) return FALSE; if (INT64_RANGE_MIN (value2) == INT64_RANGE_MAX (value2)) { if ((INT64_RANGE_MIN (value2) * INT64_RANGE_STEP (value2)) % INT64_RANGE_STEP (value1)) return FALSE; return TRUE; } gcd = gst_util_greatest_common_divisor_int64 (INT64_RANGE_STEP (value1), INT64_RANGE_STEP (value2)); if (gcd != MIN (INT64_RANGE_STEP (value1), INT64_RANGE_STEP (value2))) return FALSE; return TRUE; } /* A flag set is a subset of another if the superset allows the * flags of the subset */ static gboolean gst_value_is_subset_flagset_flagset (const GValue * value1, const GValue * value2) { guint f1, f2; guint m1, m2; g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (value1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (value2), FALSE); f1 = value1->data[0].v_uint; f2 = value2->data[0].v_uint; m1 = value1->data[1].v_uint; m2 = value2->data[1].v_uint; /* Not a subset if masked bits of superset disagree */ if ((f1 & m1) != (f2 & (m1 & m2))) return FALSE; return TRUE; } /** * gst_value_is_subset: * @value1: a #GValue * @value2: a #GValue * * Check that @value1 is a subset of @value2. * * Return: %TRUE is @value1 is a subset of @value2 */ gboolean gst_value_is_subset (const GValue * value1, const GValue * value2) { /* special case for int/int64 ranges, since we cannot compute the difference for those when they have different steps, and it's actually a lot simpler to compute whether a range is a subset of another. */ if (GST_VALUE_HOLDS_INT_RANGE (value1) && GST_VALUE_HOLDS_INT_RANGE (value2)) { return gst_value_is_subset_int_range_int_range (value1, value2); } else if (GST_VALUE_HOLDS_INT64_RANGE (value1) && GST_VALUE_HOLDS_INT64_RANGE (value2)) { return gst_value_is_subset_int64_range_int64_range (value1, value2); } else if (GST_VALUE_HOLDS_FLAG_SET (value1) && GST_VALUE_HOLDS_FLAG_SET (value2)) { return gst_value_is_subset_flagset_flagset (value1, value2); } /* * 1 - [1,2] = empty * -> !subset * * [1,2] - 1 = 2 * -> 1 - [1,2] = empty * -> subset * * [1,3] - [1,2] = 3 * -> [1,2] - [1,3] = empty * -> subset * * {1,2} - {1,3} = 2 * -> {1,3} - {1,2} = 3 * -> !subset * * First caps subtraction needs to return a non-empty set, second * subtractions needs to give en empty set. * Both substractions are switched below, as it's faster that way. */ if (!gst_value_subtract (NULL, value1, value2)) { if (gst_value_subtract (NULL, value2, value1)) { return TRUE; } } return FALSE; } /********* * union * *********/ static gboolean gst_value_union_int_int_range (GValue * dest, const GValue * src1, const GValue * src2) { gint v = src1->data[0].v_int; /* check if it's already in the range */ if (INT_RANGE_MIN (src2) * INT_RANGE_STEP (src2) <= v && INT_RANGE_MAX (src2) * INT_RANGE_STEP (src2) >= v && v % INT_RANGE_STEP (src2) == 0) { if (dest) gst_value_init_and_copy (dest, src2); return TRUE; } /* check if it extends the range */ if (v == (INT_RANGE_MIN (src2) - 1) * INT_RANGE_STEP (src2)) { if (dest) { guint64 new_min = (guint) ((INT_RANGE_MIN (src2) - 1) * INT_RANGE_STEP (src2)); guint64 new_max = (guint) (INT_RANGE_MAX (src2) * INT_RANGE_STEP (src2)); gst_value_init_and_copy (dest, src2); dest->data[0].v_uint64 = (new_min << 32) | (new_max); } return TRUE; } if (v == (INT_RANGE_MAX (src2) + 1) * INT_RANGE_STEP (src2)) { if (dest) { guint64 new_min = (guint) (INT_RANGE_MIN (src2) * INT_RANGE_STEP (src2)); guint64 new_max = (guint) ((INT_RANGE_MAX (src2) + 1) * INT_RANGE_STEP (src2)); gst_value_init_and_copy (dest, src2); dest->data[0].v_uint64 = (new_min << 32) | (new_max); } return TRUE; } return FALSE; } static gboolean gst_value_union_int_range_int_range (GValue * dest, const GValue * src1, const GValue * src2) { /* We can union in several special cases: 1 - one is a subset of another 2 - same step and not disjoint 3 - different step, at least one with one value which matches a 'next' or 'previous' - anything else ? */ /* 1 - subset */ if (gst_value_is_subset_int_range_int_range (src1, src2)) { if (dest) gst_value_init_and_copy (dest, src2); return TRUE; } if (gst_value_is_subset_int_range_int_range (src2, src1)) { if (dest) gst_value_init_and_copy (dest, src1); return TRUE; } /* 2 - same step and not disjoint */ if (INT_RANGE_STEP (src1) == INT_RANGE_STEP (src2)) { if ((INT_RANGE_MIN (src1) <= INT_RANGE_MAX (src2) + 1 && INT_RANGE_MAX (src1) >= INT_RANGE_MIN (src2) - 1) || (INT_RANGE_MIN (src2) <= INT_RANGE_MAX (src1) + 1 && INT_RANGE_MAX (src2) >= INT_RANGE_MIN (src1) - 1)) { if (dest) { gint step = INT_RANGE_STEP (src1); gint min = step * MIN (INT_RANGE_MIN (src1), INT_RANGE_MIN (src2)); gint max = step * MAX (INT_RANGE_MAX (src1), INT_RANGE_MAX (src2)); g_value_init (dest, GST_TYPE_INT_RANGE); gst_value_set_int_range_step (dest, min, max, step); } return TRUE; } } /* 3 - single value matches next or previous */ if (INT_RANGE_STEP (src1) != INT_RANGE_STEP (src2)) { gint n1 = INT_RANGE_MAX (src1) - INT_RANGE_MIN (src1) + 1; gint n2 = INT_RANGE_MAX (src2) - INT_RANGE_MIN (src2) + 1; if (n1 == 1 || n2 == 1) { const GValue *range_value = NULL; gint scalar = 0; if (n1 == 1) { range_value = src2; scalar = INT_RANGE_MIN (src1) * INT_RANGE_STEP (src1); } else if (n2 == 1) { range_value = src1; scalar = INT_RANGE_MIN (src2) * INT_RANGE_STEP (src2); } if (scalar == (INT_RANGE_MIN (range_value) - 1) * INT_RANGE_STEP (range_value)) { if (dest) { guint64 new_min = (guint) ((INT_RANGE_MIN (range_value) - 1) * INT_RANGE_STEP (range_value)); guint64 new_max = (guint) (INT_RANGE_MAX (range_value) * INT_RANGE_STEP (range_value)); gst_value_init_and_copy (dest, range_value); dest->data[0].v_uint64 = (new_min << 32) | (new_max); } return TRUE; } else if (scalar == (INT_RANGE_MAX (range_value) + 1) * INT_RANGE_STEP (range_value)) { if (dest) { guint64 new_min = (guint) (INT_RANGE_MIN (range_value) * INT_RANGE_STEP (range_value)); guint64 new_max = (guint) ((INT_RANGE_MAX (range_value) + 1) * INT_RANGE_STEP (range_value)); gst_value_init_and_copy (dest, range_value); dest->data[0].v_uint64 = (new_min << 32) | (new_max); } return TRUE; } } } /* If we get there, we did not find a way to make a union that can be represented with our simplistic model. */ return FALSE; } static gboolean gst_value_union_flagset_flagset (GValue * dest, const GValue * src1, const GValue * src2) { /* We can union 2 flag sets where they do not disagree on * required (masked) flag bits */ guint64 f1, f2; guint64 m1, m2; g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (src1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (src2), FALSE); f1 = src1->data[0].v_uint; f2 = src2->data[0].v_uint; m1 = src1->data[1].v_uint; m2 = src2->data[1].v_uint; /* Can't union if masked bits disagree */ if ((f1 & (m1 & m2)) != (f2 & (m1 & m2))) return FALSE; if (dest) { g_value_init (dest, GST_TYPE_FLAG_SET); /* Copy masked bits from src2 to src1 */ f1 &= ~m2; f1 |= (f2 & m2); m1 |= m2; gst_value_set_flagset (dest, f1, m1); } return TRUE; } /**************** * intersection * ****************/ static gboolean gst_value_intersect_int_int_range (GValue * dest, const GValue * src1, const GValue * src2) { if (INT_RANGE_MIN (src2) * INT_RANGE_STEP (src2) <= src1->data[0].v_int && INT_RANGE_MAX (src2) * INT_RANGE_STEP (src2) >= src1->data[0].v_int && src1->data[0].v_int % INT_RANGE_STEP (src2) == 0) { if (dest) gst_value_init_and_copy (dest, src1); return TRUE; } return FALSE; } static gboolean gst_value_intersect_int_range_int_range (GValue * dest, const GValue * src1, const GValue * src2) { gint min; gint max; gint step; step = INT_RANGE_STEP (src1) / gst_util_greatest_common_divisor (INT_RANGE_STEP (src1), INT_RANGE_STEP (src2)); if (G_MAXINT32 / INT_RANGE_STEP (src2) < step) return FALSE; step *= INT_RANGE_STEP (src2); min = MAX (INT_RANGE_MIN (src1) * INT_RANGE_STEP (src1), INT_RANGE_MIN (src2) * INT_RANGE_STEP (src2)); min = (min + step - 1) / step * step; max = MIN (INT_RANGE_MAX (src1) * INT_RANGE_STEP (src1), INT_RANGE_MAX (src2) * INT_RANGE_STEP (src2)); max = max / step * step; if (min < max) { if (dest) { g_value_init (dest, GST_TYPE_INT_RANGE); gst_value_set_int_range_step (dest, min, max, step); } return TRUE; } if (min == max) { if (dest) { g_value_init (dest, G_TYPE_INT); g_value_set_int (dest, min); } return TRUE; } return FALSE; } #define INT64_RANGE_MIN_VAL(v) (INT64_RANGE_MIN (v) * INT64_RANGE_STEP (v)) #define INT64_RANGE_MAX_VAL(v) (INT64_RANGE_MAX (v) * INT64_RANGE_STEP (v)) static gboolean gst_value_intersect_int64_int64_range (GValue * dest, const GValue * src1, const GValue * src2) { if (INT64_RANGE_MIN_VAL (src2) <= src1->data[0].v_int64 && INT64_RANGE_MAX_VAL (src2) >= src1->data[0].v_int64 && src1->data[0].v_int64 % INT64_RANGE_STEP (src2) == 0) { if (dest) gst_value_init_and_copy (dest, src1); return TRUE; } return FALSE; } static gboolean gst_value_intersect_int64_range_int64_range (GValue * dest, const GValue * src1, const GValue * src2) { gint64 min; gint64 max; gint64 step; step = INT64_RANGE_STEP (src1) / gst_util_greatest_common_divisor_int64 (INT64_RANGE_STEP (src1), INT64_RANGE_STEP (src2)); if (G_MAXINT64 / INT64_RANGE_STEP (src2) < step) return FALSE; step *= INT64_RANGE_STEP (src2); min = MAX (INT64_RANGE_MIN (src1) * INT64_RANGE_STEP (src1), INT64_RANGE_MIN (src2) * INT64_RANGE_STEP (src2)); min = (min + step - 1) / step * step; max = MIN (INT64_RANGE_MAX (src1) * INT64_RANGE_STEP (src1), INT64_RANGE_MAX (src2) * INT64_RANGE_STEP (src2)); max = max / step * step; if (min < max) { if (dest) { g_value_init (dest, GST_TYPE_INT64_RANGE); gst_value_set_int64_range_step (dest, min, max, step); } return TRUE; } if (min == max) { if (dest) { g_value_init (dest, G_TYPE_INT64); g_value_set_int64 (dest, min); } return TRUE; } return FALSE; } static gboolean gst_value_intersect_double_double_range (GValue * dest, const GValue * src1, const GValue * src2) { if (src2->data[0].v_double <= src1->data[0].v_double && src2->data[1].v_double >= src1->data[0].v_double) { if (dest) gst_value_init_and_copy (dest, src1); return TRUE; } return FALSE; } static gboolean gst_value_intersect_double_range_double_range (GValue * dest, const GValue * src1, const GValue * src2) { gdouble min; gdouble max; min = MAX (src1->data[0].v_double, src2->data[0].v_double); max = MIN (src1->data[1].v_double, src2->data[1].v_double); if (min < max) { if (dest) { g_value_init (dest, GST_TYPE_DOUBLE_RANGE); gst_value_set_double_range (dest, min, max); } return TRUE; } if (min == max) { if (dest) { g_value_init (dest, G_TYPE_DOUBLE); g_value_set_int (dest, (int) min); } return TRUE; } return FALSE; } static gboolean gst_value_intersect_list (GValue * dest, const GValue * value1, const GValue * value2) { guint i, size; GValue intersection = { 0, }; gboolean ret = FALSE; size = VALUE_LIST_SIZE (value1); for (i = 0; i < size; i++) { const GValue *cur = VALUE_LIST_GET_VALUE (value1, i); /* quicker version when we don't need the resulting set */ if (!dest) { if (gst_value_intersect (NULL, cur, value2)) { ret = TRUE; break; } continue; } if (gst_value_intersect (&intersection, cur, value2)) { /* append value */ if (!ret) { gst_value_move (dest, &intersection); ret = TRUE; } else if (GST_VALUE_HOLDS_LIST (dest)) { _gst_value_list_append_and_take_value (dest, &intersection); } else { GValue temp; gst_value_move (&temp, dest); gst_value_list_merge (dest, &temp, &intersection); g_value_unset (&temp); g_value_unset (&intersection); } } } return ret; } static gboolean gst_value_intersect_array (GValue * dest, const GValue * src1, const GValue * src2) { guint size; guint n; GValue val = { 0 }; /* only works on similar-sized arrays */ size = gst_value_array_get_size (src1); if (size != gst_value_array_get_size (src2)) return FALSE; /* quicker value when we don't need the resulting set */ if (!dest) { for (n = 0; n < size; n++) { if (!gst_value_intersect (NULL, gst_value_array_get_value (src1, n), gst_value_array_get_value (src2, n))) { return FALSE; } } return TRUE; } g_value_init (dest, GST_TYPE_ARRAY); for (n = 0; n < size; n++) { if (!gst_value_intersect (&val, gst_value_array_get_value (src1, n), gst_value_array_get_value (src2, n))) { g_value_unset (dest); return FALSE; } _gst_value_array_append_and_take_value (dest, &val); } return TRUE; } static gboolean gst_value_intersect_fraction_fraction_range (GValue * dest, const GValue * src1, const GValue * src2) { gint res1, res2; GValue *vals; GstValueCompareFunc compare; vals = src2->data[0].v_pointer; if (vals == NULL) return FALSE; if ((compare = gst_value_get_compare_func (src1))) { res1 = gst_value_compare_with_func (&vals[0], src1, compare); res2 = gst_value_compare_with_func (&vals[1], src1, compare); if ((res1 == GST_VALUE_EQUAL || res1 == GST_VALUE_LESS_THAN) && (res2 == GST_VALUE_EQUAL || res2 == GST_VALUE_GREATER_THAN)) { if (dest) gst_value_init_and_copy (dest, src1); return TRUE; } } return FALSE; } static gboolean gst_value_intersect_fraction_range_fraction_range (GValue * dest, const GValue * src1, const GValue * src2) { GValue *min; GValue *max; gint res; GValue *vals1, *vals2; GstValueCompareFunc compare; vals1 = src1->data[0].v_pointer; vals2 = src2->data[0].v_pointer; g_return_val_if_fail (vals1 != NULL && vals2 != NULL, FALSE); if ((compare = gst_value_get_compare_func (&vals1[0]))) { /* min = MAX (src1.start, src2.start) */ res = gst_value_compare_with_func (&vals1[0], &vals2[0], compare); g_return_val_if_fail (res != GST_VALUE_UNORDERED, FALSE); if (res == GST_VALUE_LESS_THAN) min = &vals2[0]; /* Take the max of the 2 */ else min = &vals1[0]; /* max = MIN (src1.end, src2.end) */ res = gst_value_compare_with_func (&vals1[1], &vals2[1], compare); g_return_val_if_fail (res != GST_VALUE_UNORDERED, FALSE); if (res == GST_VALUE_GREATER_THAN) max = &vals2[1]; /* Take the min of the 2 */ else max = &vals1[1]; res = gst_value_compare_with_func (min, max, compare); g_return_val_if_fail (res != GST_VALUE_UNORDERED, FALSE); if (res == GST_VALUE_LESS_THAN) { if (dest) { g_value_init (dest, GST_TYPE_FRACTION_RANGE); vals1 = dest->data[0].v_pointer; g_value_copy (min, &vals1[0]); g_value_copy (max, &vals1[1]); } return TRUE; } if (res == GST_VALUE_EQUAL) { if (dest) gst_value_init_and_copy (dest, min); return TRUE; } } return FALSE; } /* Two flagsets intersect if the masked bits in both * flagsets are exactly equal */ static gboolean gst_value_intersect_flagset_flagset (GValue * dest, const GValue * src1, const GValue * src2) { guint f1, f2; guint m1, m2; GType type1, type2, flagset_type; g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (src1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (src2), FALSE); f1 = src1->data[0].v_uint; f2 = src2->data[0].v_uint; m1 = src1->data[1].v_uint; m2 = src2->data[1].v_uint; /* Don't intersect if masked bits disagree */ if ((f1 & (m1 & m2)) != (f2 & (m1 & m2))) return FALSE; /* Allow intersection with the generic FlagSet type, on one * side, but not 2 different subtypes - that makes no sense */ type1 = G_VALUE_TYPE (src1); type2 = G_VALUE_TYPE (src2); flagset_type = GST_TYPE_FLAG_SET; if (type1 != type2 && type1 != flagset_type && type2 != flagset_type) return FALSE; if (dest) { GType dest_type; /* Prefer an output type that matches a sub-type, * rather than the generic type */ if (type1 != flagset_type) dest_type = type1; else dest_type = type2; g_value_init (dest, dest_type); /* The compatible set is all the bits from src1 that it * cares about and all the bits from src2 that it cares * about. */ dest->data[0].v_uint = (f1 & m1) | (f2 & m2); dest->data[1].v_uint = m1 | m2; } return TRUE; } /*************** * subtraction * ***************/ static gboolean gst_value_subtract_int_int_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint min = gst_value_get_int_range_min (subtrahend); gint max = gst_value_get_int_range_max (subtrahend); gint step = gst_value_get_int_range_step (subtrahend); gint val = g_value_get_int (minuend); if (step == 0) return FALSE; /* subtracting a range from an int only works if the int is not in the * range */ if (val < min || val > max || val % step) { /* and the result is the int */ if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } return FALSE; } /* creates a new int range based on input values. */ static gboolean gst_value_create_new_range (GValue * dest, gint min1, gint max1, gint min2, gint max2, gint step) { GValue v1 = { 0, }; GValue v2 = { 0, }; GValue *pv1, *pv2; /* yeah, hungarian! */ g_return_val_if_fail (step > 0, FALSE); g_return_val_if_fail (min1 % step == 0, FALSE); g_return_val_if_fail (max1 % step == 0, FALSE); g_return_val_if_fail (min2 % step == 0, FALSE); g_return_val_if_fail (max2 % step == 0, FALSE); if (min1 <= max1 && min2 <= max2) { pv1 = &v1; pv2 = &v2; } else if (min1 <= max1) { pv1 = dest; pv2 = NULL; } else if (min2 <= max2) { pv1 = NULL; pv2 = dest; } else { return FALSE; } if (!dest) return TRUE; if (min1 < max1) { g_value_init (pv1, GST_TYPE_INT_RANGE); gst_value_set_int_range_step (pv1, min1, max1, step); } else if (min1 == max1) { g_value_init (pv1, G_TYPE_INT); g_value_set_int (pv1, min1); } if (min2 < max2) { g_value_init (pv2, GST_TYPE_INT_RANGE); gst_value_set_int_range_step (pv2, min2, max2, step); } else if (min2 == max2) { g_value_init (pv2, G_TYPE_INT); g_value_set_int (pv2, min2); } if (min1 <= max1 && min2 <= max2) { gst_value_list_concat_and_take_values (dest, pv1, pv2); } return TRUE; } static gboolean gst_value_subtract_int_range_int (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint min = gst_value_get_int_range_min (minuend); gint max = gst_value_get_int_range_max (minuend); gint step = gst_value_get_int_range_step (minuend); gint val = g_value_get_int (subtrahend); g_return_val_if_fail (min < max, FALSE); if (step == 0) return FALSE; /* value is outside of the range, return range unchanged */ if (val < min || val > max || val % step) { if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } else { /* max must be MAXINT too as val <= max */ if (val >= G_MAXINT - step + 1) { max -= step; val -= step; } /* min must be MININT too as val >= max */ if (val <= G_MININT + step - 1) { min += step; val += step; } if (dest) gst_value_create_new_range (dest, min, val - step, val + step, max, step); } return TRUE; } static gboolean gst_value_subtract_int_range_int_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint min1 = gst_value_get_int_range_min (minuend); gint max1 = gst_value_get_int_range_max (minuend); gint step1 = gst_value_get_int_range_step (minuend); gint min2 = gst_value_get_int_range_min (subtrahend); gint max2 = gst_value_get_int_range_max (subtrahend); gint step2 = gst_value_get_int_range_step (subtrahend); gint step; if (step1 != step2) { /* ENOIMPL */ g_assert (FALSE); return FALSE; } step = step1; if (step == 0) return FALSE; if (max2 >= max1 && min2 <= min1) { return FALSE; } else if (max2 >= max1) { return gst_value_create_new_range (dest, min1, MIN (min2 - step, max1), step, 0, step); } else if (min2 <= min1) { return gst_value_create_new_range (dest, MAX (max2 + step, min1), max1, step, 0, step); } else { return gst_value_create_new_range (dest, min1, MIN (min2 - step, max1), MAX (max2 + step, min1), max1, step); } } static gboolean gst_value_subtract_int64_int64_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint64 min = gst_value_get_int64_range_min (subtrahend); gint64 max = gst_value_get_int64_range_max (subtrahend); gint64 step = gst_value_get_int64_range_step (subtrahend); gint64 val = g_value_get_int64 (minuend); if (step == 0) return FALSE; /* subtracting a range from an int64 only works if the int64 is not in the * range */ if (val < min || val > max || val % step) { /* and the result is the int64 */ if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } return FALSE; } /* creates a new int64 range based on input values. */ static gboolean gst_value_create_new_int64_range (GValue * dest, gint64 min1, gint64 max1, gint64 min2, gint64 max2, gint64 step) { GValue v1 = { 0, }; GValue v2 = { 0, }; GValue *pv1, *pv2; /* yeah, hungarian! */ g_return_val_if_fail (step > 0, FALSE); g_return_val_if_fail (min1 % step == 0, FALSE); g_return_val_if_fail (max1 % step == 0, FALSE); g_return_val_if_fail (min2 % step == 0, FALSE); g_return_val_if_fail (max2 % step == 0, FALSE); if (min1 <= max1 && min2 <= max2) { pv1 = &v1; pv2 = &v2; } else if (min1 <= max1) { pv1 = dest; pv2 = NULL; } else if (min2 <= max2) { pv1 = NULL; pv2 = dest; } else { return FALSE; } if (!dest) return TRUE; if (min1 < max1) { g_value_init (pv1, GST_TYPE_INT64_RANGE); gst_value_set_int64_range_step (pv1, min1, max1, step); } else if (min1 == max1) { g_value_init (pv1, G_TYPE_INT64); g_value_set_int64 (pv1, min1); } if (min2 < max2) { g_value_init (pv2, GST_TYPE_INT64_RANGE); gst_value_set_int64_range_step (pv2, min2, max2, step); } else if (min2 == max2) { g_value_init (pv2, G_TYPE_INT64); g_value_set_int64 (pv2, min2); } if (min1 <= max1 && min2 <= max2) { gst_value_list_concat_and_take_values (dest, pv1, pv2); } return TRUE; } static gboolean gst_value_subtract_int64_range_int64 (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint64 min = gst_value_get_int64_range_min (minuend); gint64 max = gst_value_get_int64_range_max (minuend); gint64 step = gst_value_get_int64_range_step (minuend); gint64 val = g_value_get_int64 (subtrahend); g_return_val_if_fail (min < max, FALSE); if (step == 0) return FALSE; /* value is outside of the range, return range unchanged */ if (val < min || val > max || val % step) { if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } else { /* max must be MAXINT64 too as val <= max */ if (val >= G_MAXINT64 - step + 1) { max -= step; val -= step; } /* min must be MININT64 too as val >= max */ if (val <= G_MININT64 + step - 1) { min += step; val += step; } if (dest) gst_value_create_new_int64_range (dest, min, val - step, val + step, max, step); } return TRUE; } static gboolean gst_value_subtract_int64_range_int64_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint64 min1 = gst_value_get_int64_range_min (minuend); gint64 max1 = gst_value_get_int64_range_max (minuend); gint64 step1 = gst_value_get_int64_range_step (minuend); gint64 min2 = gst_value_get_int64_range_min (subtrahend); gint64 max2 = gst_value_get_int64_range_max (subtrahend); gint64 step2 = gst_value_get_int64_range_step (subtrahend); gint64 step; if (step1 != step2) { /* ENOIMPL */ g_assert (FALSE); return FALSE; } if (step1 == 0) return FALSE; step = step1; if (max2 >= max1 && min2 <= min1) { return FALSE; } else if (max2 >= max1) { return gst_value_create_new_int64_range (dest, min1, MIN (min2 - step, max1), step, 0, step); } else if (min2 <= min1) { return gst_value_create_new_int64_range (dest, MAX (max2 + step, min1), max1, step, 0, step); } else { return gst_value_create_new_int64_range (dest, min1, MIN (min2 - step, max1), MAX (max2 + step, min1), max1, step); } } static gboolean gst_value_subtract_double_double_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gdouble min = gst_value_get_double_range_min (subtrahend); gdouble max = gst_value_get_double_range_max (subtrahend); gdouble val = g_value_get_double (minuend); if (val < min || val > max) { if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } return FALSE; } static gboolean gst_value_subtract_double_range_double (GValue * dest, const GValue * minuend, const GValue * subtrahend) { /* since we don't have open ranges, we cannot create a hole in * a double range. We return the original range */ if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } static gboolean gst_value_subtract_double_range_double_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { /* since we don't have open ranges, we have to approximate */ /* done like with ints */ gdouble min1 = gst_value_get_double_range_min (minuend); gdouble max2 = gst_value_get_double_range_max (minuend); gdouble max1 = MIN (gst_value_get_double_range_min (subtrahend), max2); gdouble min2 = MAX (gst_value_get_double_range_max (subtrahend), min1); GValue v1 = { 0, }; GValue v2 = { 0, }; GValue *pv1, *pv2; /* yeah, hungarian! */ if (min1 < max1 && min2 < max2) { pv1 = &v1; pv2 = &v2; } else if (min1 < max1) { pv1 = dest; pv2 = NULL; } else if (min2 < max2) { pv1 = NULL; pv2 = dest; } else { return FALSE; } if (!dest) return TRUE; if (min1 < max1) { g_value_init (pv1, GST_TYPE_DOUBLE_RANGE); gst_value_set_double_range (pv1, min1, max1); } if (min2 < max2) { g_value_init (pv2, GST_TYPE_DOUBLE_RANGE); gst_value_set_double_range (pv2, min2, max2); } if (min1 < max1 && min2 < max2) { gst_value_list_concat_and_take_values (dest, pv1, pv2); } return TRUE; } static gboolean gst_value_subtract_from_list (GValue * dest, const GValue * minuend, const GValue * subtrahend) { guint i, size; GValue subtraction = { 0, }; gboolean ret = FALSE; size = VALUE_LIST_SIZE (minuend); for (i = 0; i < size; i++) { const GValue *cur = VALUE_LIST_GET_VALUE (minuend, i); /* quicker version when we can discard the result */ if (!dest) { if (gst_value_subtract (NULL, cur, subtrahend)) { ret = TRUE; break; } continue; } if (gst_value_subtract (&subtraction, cur, subtrahend)) { if (!ret) { gst_value_move (dest, &subtraction); ret = TRUE; } else if (G_VALUE_TYPE (dest) == GST_TYPE_LIST && G_VALUE_TYPE (&subtraction) != GST_TYPE_LIST) { _gst_value_list_append_and_take_value (dest, &subtraction); } else { GValue temp; gst_value_move (&temp, dest); gst_value_list_concat_and_take_values (dest, &temp, &subtraction); } } } return ret; } static gboolean gst_value_subtract_list (GValue * dest, const GValue * minuend, const GValue * subtrahend) { guint i, size; GValue data[2] = { {0,}, {0,} }; GValue *subtraction = &data[0], *result = &data[1]; gst_value_init_and_copy (result, minuend); size = VALUE_LIST_SIZE (subtrahend); for (i = 0; i < size; i++) { const GValue *cur = VALUE_LIST_GET_VALUE (subtrahend, i); if (gst_value_subtract (subtraction, result, cur)) { GValue *temp = result; result = subtraction; subtraction = temp; g_value_unset (subtraction); } else { g_value_unset (result); return FALSE; } } if (dest) { gst_value_move (dest, result); } else { g_value_unset (result); } return TRUE; } static gboolean gst_value_subtract_fraction_fraction_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { const GValue *min = gst_value_get_fraction_range_min (subtrahend); const GValue *max = gst_value_get_fraction_range_max (subtrahend); GstValueCompareFunc compare; if ((compare = gst_value_get_compare_func (minuend))) { /* subtracting a range from an fraction only works if the fraction * is not in the range */ if (gst_value_compare_with_func (minuend, min, compare) == GST_VALUE_LESS_THAN || gst_value_compare_with_func (minuend, max, compare) == GST_VALUE_GREATER_THAN) { /* and the result is the value */ if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } } return FALSE; } static gboolean gst_value_subtract_fraction_range_fraction (GValue * dest, const GValue * minuend, const GValue * subtrahend) { /* since we don't have open ranges, we cannot create a hole in * a range. We return the original range */ if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } static gboolean gst_value_subtract_fraction_range_fraction_range (GValue * dest, const GValue * minuend, const GValue * subtrahend) { /* since we don't have open ranges, we have to approximate */ /* done like with ints and doubles. Creates a list of 2 fraction ranges */ const GValue *min1 = gst_value_get_fraction_range_min (minuend); const GValue *max2 = gst_value_get_fraction_range_max (minuend); const GValue *max1 = gst_value_get_fraction_range_min (subtrahend); const GValue *min2 = gst_value_get_fraction_range_max (subtrahend); gint cmp1, cmp2; GValue v1 = { 0, }; GValue v2 = { 0, }; GValue *pv1, *pv2; /* yeah, hungarian! */ GstValueCompareFunc compare; g_return_val_if_fail (min1 != NULL && max1 != NULL, FALSE); g_return_val_if_fail (min2 != NULL && max2 != NULL, FALSE); compare = gst_value_get_compare_func (min1); g_return_val_if_fail (compare, FALSE); cmp1 = gst_value_compare_with_func (max2, max1, compare); g_return_val_if_fail (cmp1 != GST_VALUE_UNORDERED, FALSE); if (cmp1 == GST_VALUE_LESS_THAN) max1 = max2; cmp1 = gst_value_compare_with_func (min1, min2, compare); g_return_val_if_fail (cmp1 != GST_VALUE_UNORDERED, FALSE); if (cmp1 == GST_VALUE_GREATER_THAN) min2 = min1; cmp1 = gst_value_compare_with_func (min1, max1, compare); cmp2 = gst_value_compare_with_func (min2, max2, compare); if (cmp1 == GST_VALUE_LESS_THAN && cmp2 == GST_VALUE_LESS_THAN) { pv1 = &v1; pv2 = &v2; } else if (cmp1 == GST_VALUE_LESS_THAN) { pv1 = dest; pv2 = NULL; } else if (cmp2 == GST_VALUE_LESS_THAN) { pv1 = NULL; pv2 = dest; } else { return FALSE; } if (!dest) return TRUE; if (cmp1 == GST_VALUE_LESS_THAN) { g_value_init (pv1, GST_TYPE_FRACTION_RANGE); gst_value_set_fraction_range (pv1, min1, max1); } if (cmp2 == GST_VALUE_LESS_THAN) { g_value_init (pv2, GST_TYPE_FRACTION_RANGE); gst_value_set_fraction_range (pv2, min2, max2); } if (cmp1 == GST_VALUE_LESS_THAN && cmp2 == GST_VALUE_LESS_THAN) { gst_value_list_concat_and_take_values (dest, pv1, pv2); } return TRUE; } /************** * comparison * **************/ /* * gst_value_get_compare_func: * @value1: a value to get the compare function for * * Determines the compare function to be used with values of the same type as * @value1. The function can be given to gst_value_compare_with_func(). * * Returns: A #GstValueCompareFunc value */ static GstValueCompareFunc gst_value_get_compare_func (const GValue * value1) { GstValueTable *table, *best = NULL; guint i; GType type1; type1 = G_VALUE_TYPE (value1); /* this is a fast check */ best = gst_value_hash_lookup_type (type1); /* slower checks */ if (G_UNLIKELY (!best || !best->compare)) { guint len = gst_value_table->len; best = NULL; for (i = 0; i < len; i++) { table = &g_array_index (gst_value_table, GstValueTable, i); if (table->compare && g_type_is_a (type1, table->type)) { if (!best || g_type_is_a (table->type, best->type)) best = table; } } } if (G_LIKELY (best)) return best->compare; return NULL; } static inline gboolean gst_value_can_compare_unchecked (const GValue * value1, const GValue * value2) { if (G_VALUE_TYPE (value1) != G_VALUE_TYPE (value2)) return FALSE; return gst_value_get_compare_func (value1) != NULL; } /** * gst_value_can_compare: * @value1: a value to compare * @value2: another value to compare * * Determines if @value1 and @value2 can be compared. * * Returns: %TRUE if the values can be compared */ gboolean gst_value_can_compare (const GValue * value1, const GValue * value2) { g_return_val_if_fail (G_IS_VALUE (value1), FALSE); g_return_val_if_fail (G_IS_VALUE (value2), FALSE); return gst_value_can_compare_unchecked (value1, value2); } static gboolean gst_value_list_equals_range (const GValue * list, const GValue * value) { const GValue *first; guint list_size, n; g_assert (G_IS_VALUE (list)); g_assert (G_IS_VALUE (value)); g_assert (GST_VALUE_HOLDS_LIST (list)); /* TODO: compare against an empty list ? No type though... */ list_size = VALUE_LIST_SIZE (list); if (list_size == 0) return FALSE; /* compare the basic types - they have to match */ first = VALUE_LIST_GET_VALUE (list, 0); #define CHECK_TYPES(type,prefix) \ (prefix##_VALUE_HOLDS_##type(first) && GST_VALUE_HOLDS_##type##_RANGE (value)) if (CHECK_TYPES (INT, G)) { const gint rmin = gst_value_get_int_range_min (value); const gint rmax = gst_value_get_int_range_max (value); const gint rstep = gst_value_get_int_range_step (value); if (rstep == 0) return FALSE; /* note: this will overflow for min 0 and max INT_MAX, but this would only be equal to a list of INT_MAX elements, which seems very unlikely */ if (list_size != rmax / rstep - rmin / rstep + 1) return FALSE; for (n = 0; n < list_size; ++n) { gint v = g_value_get_int (VALUE_LIST_GET_VALUE (list, n)); if (v < rmin || v > rmax || v % rstep) { return FALSE; } } return TRUE; } else if (CHECK_TYPES (INT64, G)) { const gint64 rmin = gst_value_get_int64_range_min (value); const gint64 rmax = gst_value_get_int64_range_max (value); const gint64 rstep = gst_value_get_int64_range_step (value); GST_DEBUG ("List/range of int64s"); if (rstep == 0) return FALSE; if (list_size != rmax / rstep - rmin / rstep + 1) return FALSE; for (n = 0; n < list_size; ++n) { gint64 v = g_value_get_int64 (VALUE_LIST_GET_VALUE (list, n)); if (v < rmin || v > rmax || v % rstep) return FALSE; } return TRUE; } #undef CHECK_TYPES /* other combinations don't make sense for equality */ return FALSE; } /* "Pure" variant of gst_value_compare which is guaranteed to * not have list arguments and therefore does basic comparisions */ static inline gint _gst_value_compare_nolist (const GValue * value1, const GValue * value2) { GstValueCompareFunc compare; if (G_VALUE_TYPE (value1) != G_VALUE_TYPE (value2)) return GST_VALUE_UNORDERED; compare = gst_value_get_compare_func (value1); if (compare) { return compare (value1, value2); } g_critical ("unable to compare values of type %s\n", g_type_name (G_VALUE_TYPE (value1))); return GST_VALUE_UNORDERED; } /** * gst_value_compare: * @value1: a value to compare * @value2: another value to compare * * Compares @value1 and @value2. If @value1 and @value2 cannot be * compared, the function returns GST_VALUE_UNORDERED. Otherwise, * if @value1 is greater than @value2, GST_VALUE_GREATER_THAN is returned. * If @value1 is less than @value2, GST_VALUE_LESS_THAN is returned. * If the values are equal, GST_VALUE_EQUAL is returned. * * Returns: comparison result */ gint gst_value_compare (const GValue * value1, const GValue * value2) { gboolean value1_is_list; gboolean value2_is_list; g_return_val_if_fail (G_IS_VALUE (value1), GST_VALUE_LESS_THAN); g_return_val_if_fail (G_IS_VALUE (value2), GST_VALUE_GREATER_THAN); value1_is_list = G_VALUE_TYPE (value1) == GST_TYPE_LIST; value2_is_list = G_VALUE_TYPE (value2) == GST_TYPE_LIST; /* Special cases: lists and scalar values ("{ 1 }" and "1" are equal), as well as lists and ranges ("{ 1, 2 }" and "[ 1, 2 ]" are equal) */ if (value1_is_list && !value2_is_list) { gint i, n, ret; if (gst_value_list_equals_range (value1, value2)) { return GST_VALUE_EQUAL; } n = gst_value_list_get_size (value1); if (n == 0) return GST_VALUE_UNORDERED; for (i = 0; i < n; i++) { const GValue *elt; elt = gst_value_list_get_value (value1, i); ret = gst_value_compare (elt, value2); if (ret != GST_VALUE_EQUAL && n == 1) return ret; else if (ret != GST_VALUE_EQUAL) return GST_VALUE_UNORDERED; } return GST_VALUE_EQUAL; } else if (value2_is_list && !value1_is_list) { gint i, n, ret; if (gst_value_list_equals_range (value2, value1)) { return GST_VALUE_EQUAL; } n = gst_value_list_get_size (value2); if (n == 0) return GST_VALUE_UNORDERED; for (i = 0; i < n; i++) { const GValue *elt; elt = gst_value_list_get_value (value2, i); ret = gst_value_compare (elt, value1); if (ret != GST_VALUE_EQUAL && n == 1) return ret; else if (ret != GST_VALUE_EQUAL) return GST_VALUE_UNORDERED; } return GST_VALUE_EQUAL; } /* And now handle the generic case */ return _gst_value_compare_nolist (value1, value2); } /* * gst_value_compare_with_func: * @value1: a value to compare * @value2: another value to compare * @compare: compare function * * Compares @value1 and @value2 using the @compare function. Works like * gst_value_compare() but allows to save time determining the compare function * a multiple times. * * Returns: comparison result */ static gint gst_value_compare_with_func (const GValue * value1, const GValue * value2, GstValueCompareFunc compare) { g_assert (compare); if (G_VALUE_TYPE (value1) != G_VALUE_TYPE (value2)) return GST_VALUE_UNORDERED; return compare (value1, value2); } /* union */ /** * gst_value_can_union: * @value1: a value to union * @value2: another value to union * * Determines if @value1 and @value2 can be non-trivially unioned. * Any two values can be trivially unioned by adding both of them * to a GstValueList. However, certain types have the possibility * to be unioned in a simpler way. For example, an integer range * and an integer can be unioned if the integer is a subset of the * integer range. If there is the possibility that two values can * be unioned, this function returns %TRUE. * * Returns: %TRUE if there is a function allowing the two values to * be unioned. */ gboolean gst_value_can_union (const GValue * value1, const GValue * value2) { GstValueUnionInfo *union_info; guint i, len; g_return_val_if_fail (G_IS_VALUE (value1), FALSE); g_return_val_if_fail (G_IS_VALUE (value2), FALSE); len = gst_value_union_funcs->len; for (i = 0; i < len; i++) { union_info = &g_array_index (gst_value_union_funcs, GstValueUnionInfo, i); if (union_info->type1 == G_VALUE_TYPE (value1) && union_info->type2 == G_VALUE_TYPE (value2)) return TRUE; if (union_info->type1 == G_VALUE_TYPE (value2) && union_info->type2 == G_VALUE_TYPE (value1)) return TRUE; } return FALSE; } /** * gst_value_union: * @dest: (out caller-allocates): the destination value * @value1: a value to union * @value2: another value to union * * Creates a GValue corresponding to the union of @value1 and @value2. * * Returns: %TRUE if the union succeeded. */ gboolean gst_value_union (GValue * dest, const GValue * value1, const GValue * value2) { const GstValueUnionInfo *union_info; guint i, len; GType type1, type2; g_return_val_if_fail (dest != NULL, FALSE); g_return_val_if_fail (G_IS_VALUE (value1), FALSE); g_return_val_if_fail (G_IS_VALUE (value2), FALSE); g_return_val_if_fail (gst_value_list_or_array_are_compatible (value1, value2), FALSE); len = gst_value_union_funcs->len; type1 = G_VALUE_TYPE (value1); type2 = G_VALUE_TYPE (value2); for (i = 0; i < len; i++) { union_info = &g_array_index (gst_value_union_funcs, GstValueUnionInfo, i); if (union_info->type1 == type1 && union_info->type2 == type2) { return union_info->func (dest, value1, value2); } if (union_info->type1 == type2 && union_info->type2 == type1) { return union_info->func (dest, value2, value1); } } gst_value_list_concat (dest, value1, value2); return TRUE; } /* gst_value_register_union_func: (skip) * @type1: a type to union * @type2: another type to union * @func: a function that implements creating a union between the two types * * Registers a union function that can create a union between #GValue items * of the type @type1 and @type2. * * Union functions should be registered at startup before any pipelines are * started, as gst_value_register_union_func() is not thread-safe and cannot * be used at the same time as gst_value_union() or gst_value_can_union(). */ static void gst_value_register_union_func (GType type1, GType type2, GstValueUnionFunc func) { GstValueUnionInfo union_info; union_info.type1 = type1; union_info.type2 = type2; union_info.func = func; g_array_append_val (gst_value_union_funcs, union_info); } /* intersection */ /** * gst_value_can_intersect: * @value1: a value to intersect * @value2: another value to intersect * * Determines if intersecting two values will produce a valid result. * Two values will produce a valid intersection if they have the same * type. * * Returns: %TRUE if the values can intersect */ gboolean gst_value_can_intersect (const GValue * value1, const GValue * value2) { GstValueIntersectInfo *intersect_info; guint i, len; GType type1, type2; g_return_val_if_fail (G_IS_VALUE (value1), FALSE); g_return_val_if_fail (G_IS_VALUE (value2), FALSE); type1 = G_VALUE_TYPE (value1); type2 = G_VALUE_TYPE (value2); /* practically all GstValue types have a compare function (_can_compare=TRUE) * GstStructure and GstCaps have not, but are intersectable */ if (type1 == type2) return TRUE; /* special cases */ if (type1 == GST_TYPE_LIST || type2 == GST_TYPE_LIST) return TRUE; /* check registered intersect functions */ len = gst_value_intersect_funcs->len; for (i = 0; i < len; i++) { intersect_info = &g_array_index (gst_value_intersect_funcs, GstValueIntersectInfo, i); if ((intersect_info->type1 == type1 && intersect_info->type2 == type2) || (intersect_info->type1 == type2 && intersect_info->type2 == type1)) return TRUE; } return gst_value_can_compare_unchecked (value1, value2); } /** * gst_value_intersect: * @dest: (out caller-allocates) (transfer full) (allow-none): * a uninitialized #GValue that will hold the calculated * intersection value. May be %NULL if the resulting set if not * needed. * @value1: a value to intersect * @value2: another value to intersect * * Calculates the intersection of two values. If the values have * a non-empty intersection, the value representing the intersection * is placed in @dest, unless %NULL. If the intersection is non-empty, * @dest is not modified. * * Returns: %TRUE if the intersection is non-empty */ gboolean gst_value_intersect (GValue * dest, const GValue * value1, const GValue * value2) { GstValueIntersectInfo *intersect_info; guint i, len; GType type1, type2; g_return_val_if_fail (G_IS_VALUE (value1), FALSE); g_return_val_if_fail (G_IS_VALUE (value2), FALSE); type1 = G_VALUE_TYPE (value1); type2 = G_VALUE_TYPE (value2); /* special cases first */ if (type1 == GST_TYPE_LIST) return gst_value_intersect_list (dest, value1, value2); if (type2 == GST_TYPE_LIST) return gst_value_intersect_list (dest, value2, value1); if (_gst_value_compare_nolist (value1, value2) == GST_VALUE_EQUAL) { if (dest) gst_value_init_and_copy (dest, value1); return TRUE; } len = gst_value_intersect_funcs->len; for (i = 0; i < len; i++) { intersect_info = &g_array_index (gst_value_intersect_funcs, GstValueIntersectInfo, i); if (intersect_info->type1 == type1 && intersect_info->type2 == type2) { return intersect_info->func (dest, value1, value2); } if (intersect_info->type1 == type2 && intersect_info->type2 == type1) { return intersect_info->func (dest, value2, value1); } } /* Failed to find a direct intersection, check if these are * GstFlagSet sub-types. */ if (G_UNLIKELY (GST_VALUE_HOLDS_FLAG_SET (value1) && GST_VALUE_HOLDS_FLAG_SET (value2))) { return gst_value_intersect_flagset_flagset (dest, value1, value2); } return FALSE; } /* gst_value_register_intersect_func: (skip) * @type1: the first type to intersect * @type2: the second type to intersect * @func: the intersection function * * Registers a function that is called to calculate the intersection * of the values having the types @type1 and @type2. * * Intersect functions should be registered at startup before any pipelines are * started, as gst_value_register_intersect_func() is not thread-safe and * cannot be used at the same time as gst_value_intersect() or * gst_value_can_intersect(). */ static void gst_value_register_intersect_func (GType type1, GType type2, GstValueIntersectFunc func) { GstValueIntersectInfo intersect_info; intersect_info.type1 = type1; intersect_info.type2 = type2; intersect_info.func = func; g_array_append_val (gst_value_intersect_funcs, intersect_info); } /* subtraction */ /** * gst_value_subtract: * @dest: (out caller-allocates) (allow-none): the destination value * for the result if the subtraction is not empty. May be %NULL, * in which case the resulting set will not be computed, which can * give a fair speedup. * @minuend: the value to subtract from * @subtrahend: the value to subtract * * Subtracts @subtrahend from @minuend and stores the result in @dest. * Note that this means subtraction as in sets, not as in mathematics. * * Returns: %TRUE if the subtraction is not empty */ gboolean gst_value_subtract (GValue * dest, const GValue * minuend, const GValue * subtrahend) { GstValueSubtractInfo *info; guint i, len; GType mtype, stype; g_return_val_if_fail (G_IS_VALUE (minuend), FALSE); g_return_val_if_fail (G_IS_VALUE (subtrahend), FALSE); mtype = G_VALUE_TYPE (minuend); stype = G_VALUE_TYPE (subtrahend); /* special cases first */ if (mtype == GST_TYPE_LIST) return gst_value_subtract_from_list (dest, minuend, subtrahend); if (stype == GST_TYPE_LIST) return gst_value_subtract_list (dest, minuend, subtrahend); len = gst_value_subtract_funcs->len; for (i = 0; i < len; i++) { info = &g_array_index (gst_value_subtract_funcs, GstValueSubtractInfo, i); if (info->minuend == mtype && info->subtrahend == stype) { return info->func (dest, minuend, subtrahend); } } if (_gst_value_compare_nolist (minuend, subtrahend) != GST_VALUE_EQUAL) { if (dest) gst_value_init_and_copy (dest, minuend); return TRUE; } return FALSE; } #if 0 gboolean gst_value_subtract (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gboolean ret = gst_value_subtract2 (dest, minuend, subtrahend); g_printerr ("\"%s\" - \"%s\" = \"%s\"\n", gst_value_serialize (minuend), gst_value_serialize (subtrahend), ret ? gst_value_serialize (dest) : "---"); return ret; } #endif /** * gst_value_can_subtract: * @minuend: the value to subtract from * @subtrahend: the value to subtract * * Checks if it's possible to subtract @subtrahend from @minuend. * * Returns: %TRUE if a subtraction is possible */ gboolean gst_value_can_subtract (const GValue * minuend, const GValue * subtrahend) { GstValueSubtractInfo *info; guint i, len; GType mtype, stype; g_return_val_if_fail (G_IS_VALUE (minuend), FALSE); g_return_val_if_fail (G_IS_VALUE (subtrahend), FALSE); mtype = G_VALUE_TYPE (minuend); stype = G_VALUE_TYPE (subtrahend); /* special cases */ if (mtype == GST_TYPE_LIST || stype == GST_TYPE_LIST) return TRUE; len = gst_value_subtract_funcs->len; for (i = 0; i < len; i++) { info = &g_array_index (gst_value_subtract_funcs, GstValueSubtractInfo, i); if (info->minuend == mtype && info->subtrahend == stype) return TRUE; } return gst_value_can_compare_unchecked (minuend, subtrahend); } /* gst_value_register_subtract_func: (skip) * @minuend_type: type of the minuend * @subtrahend_type: type of the subtrahend * @func: function to use * * Registers @func as a function capable of subtracting the values of * @subtrahend_type from values of @minuend_type. * * Subtract functions should be registered at startup before any pipelines are * started, as gst_value_register_subtract_func() is not thread-safe and * cannot be used at the same time as gst_value_subtract(). */ static void gst_value_register_subtract_func (GType minuend_type, GType subtrahend_type, GstValueSubtractFunc func) { GstValueSubtractInfo info; g_return_if_fail (!gst_type_is_fixed (minuend_type) || !gst_type_is_fixed (subtrahend_type)); info.minuend = minuend_type; info.subtrahend = subtrahend_type; info.func = func; g_array_append_val (gst_value_subtract_funcs, info); } /** * gst_value_register: * @table: structure containing functions to register * * Registers functions to perform calculations on #GValue items of a given * type. Each type can only be added once. */ void gst_value_register (const GstValueTable * table) { GstValueTable *found; g_return_if_fail (table != NULL); g_array_append_val (gst_value_table, *table); found = gst_value_hash_lookup_type (table->type); if (found) g_warning ("adding type %s multiple times", g_type_name (table->type)); /* FIXME: we're not really doing the const justice, we assume the table is * static */ gst_value_hash_add_type (table->type, table); } /** * gst_value_init_and_copy: * @dest: (out caller-allocates): the target value * @src: the source value * * Initialises the target value to be of the same type as source and then copies * the contents from source to target. */ void gst_value_init_and_copy (GValue * dest, const GValue * src) { g_return_if_fail (G_IS_VALUE (src)); g_return_if_fail (dest != NULL); g_value_init (dest, G_VALUE_TYPE (src)); g_value_copy (src, dest); } /* move src into dest and clear src */ static void gst_value_move (GValue * dest, GValue * src) { g_assert (G_IS_VALUE (src)); g_assert (dest != NULL); *dest = *src; memset (src, 0, sizeof (GValue)); } /** * gst_value_serialize: * @value: a #GValue to serialize * * tries to transform the given @value into a string representation that allows * getting back this string later on using gst_value_deserialize(). * * Free-function: g_free * * Returns: (transfer full) (nullable): the serialization for @value * or %NULL if none exists */ gchar * gst_value_serialize (const GValue * value) { guint i, len; GValue s_val = { 0 }; GstValueTable *table, *best; gchar *s; GType type; g_return_val_if_fail (G_IS_VALUE (value), NULL); type = G_VALUE_TYPE (value); best = gst_value_hash_lookup_type (type); if (G_UNLIKELY (!best || !best->serialize)) { len = gst_value_table->len; best = NULL; for (i = 0; i < len; i++) { table = &g_array_index (gst_value_table, GstValueTable, i); if (table->serialize && g_type_is_a (type, table->type)) { if (!best || g_type_is_a (table->type, best->type)) best = table; } } } if (G_LIKELY (best)) return best->serialize (value); g_value_init (&s_val, G_TYPE_STRING); if (g_value_transform (value, &s_val)) { s = gst_string_wrap (g_value_get_string (&s_val)); } else { s = NULL; } g_value_unset (&s_val); return s; } /** * gst_value_deserialize: * @dest: (out caller-allocates): #GValue to fill with contents of * deserialization * @src: string to deserialize * * Tries to deserialize a string into the type specified by the given GValue. * If the operation succeeds, %TRUE is returned, %FALSE otherwise. * * Returns: %TRUE on success */ gboolean gst_value_deserialize (GValue * dest, const gchar * src) { GstValueTable *table, *best; guint i, len; GType type; g_return_val_if_fail (src != NULL, FALSE); g_return_val_if_fail (G_IS_VALUE (dest), FALSE); type = G_VALUE_TYPE (dest); best = gst_value_hash_lookup_type (type); if (G_UNLIKELY (!best || !best->deserialize)) { len = gst_value_table->len; best = NULL; for (i = 0; i < len; i++) { table = &g_array_index (gst_value_table, GstValueTable, i); if (table->deserialize && g_type_is_a (type, table->type)) { if (!best || g_type_is_a (table->type, best->type)) best = table; } } } if (G_LIKELY (best)) return best->deserialize (dest, src); return FALSE; } /** * gst_value_is_fixed: * @value: the #GValue to check * * Tests if the given GValue, if available in a GstStructure (or any other * container) contains a "fixed" (which means: one value) or an "unfixed" * (which means: multiple possible values, such as data lists or data * ranges) value. * * Returns: true if the value is "fixed". */ gboolean gst_value_is_fixed (const GValue * value) { GType type; g_return_val_if_fail (G_IS_VALUE (value), FALSE); type = G_VALUE_TYPE (value); /* the most common types are just basic plain glib types */ if (type <= G_TYPE_MAKE_FUNDAMENTAL (G_TYPE_RESERVED_GLIB_LAST)) { return TRUE; } if (type == GST_TYPE_ARRAY) { gint size, n; const GValue *kid; /* check recursively */ size = gst_value_array_get_size (value); for (n = 0; n < size; n++) { kid = gst_value_array_get_value (value, n); if (!gst_value_is_fixed (kid)) return FALSE; } return TRUE; } else if (GST_VALUE_HOLDS_FLAG_SET (value)) { /* Flagsets are only fixed if there are no 'don't care' bits */ return (gst_value_get_flagset_mask (value) == GST_FLAG_SET_MASK_EXACT); } return gst_type_is_fixed (type); } /** * gst_value_fixate: * @dest: the #GValue destination * @src: the #GValue to fixate * * Fixate @src into a new value @dest. * For ranges, the first element is taken. For lists and arrays, the * first item is fixated and returned. * If @src is already fixed, this function returns %FALSE. * * Returns: %TRUE if @dest contains a fixated version of @src. */ gboolean gst_value_fixate (GValue * dest, const GValue * src) { g_return_val_if_fail (G_IS_VALUE (src), FALSE); g_return_val_if_fail (dest != NULL, FALSE); if (G_VALUE_TYPE (src) == GST_TYPE_INT_RANGE) { g_value_init (dest, G_TYPE_INT); g_value_set_int (dest, gst_value_get_int_range_min (src)); } else if (G_VALUE_TYPE (src) == GST_TYPE_DOUBLE_RANGE) { g_value_init (dest, G_TYPE_DOUBLE); g_value_set_double (dest, gst_value_get_double_range_min (src)); } else if (G_VALUE_TYPE (src) == GST_TYPE_FRACTION_RANGE) { gst_value_init_and_copy (dest, gst_value_get_fraction_range_min (src)); } else if (G_VALUE_TYPE (src) == GST_TYPE_LIST) { GValue temp = { 0 }; /* list could be empty */ if (gst_value_list_get_size (src) <= 0) return FALSE; gst_value_init_and_copy (&temp, gst_value_list_get_value (src, 0)); if (!gst_value_fixate (dest, &temp)) { gst_value_move (dest, &temp); } else { g_value_unset (&temp); } } else if (G_VALUE_TYPE (src) == GST_TYPE_ARRAY) { gboolean res = FALSE; guint n, len; len = gst_value_array_get_size (src); g_value_init (dest, GST_TYPE_ARRAY); for (n = 0; n < len; n++) { GValue kid = { 0 }; const GValue *orig_kid = gst_value_array_get_value (src, n); if (!gst_value_fixate (&kid, orig_kid)) gst_value_init_and_copy (&kid, orig_kid); else res = TRUE; _gst_value_array_append_and_take_value (dest, &kid); } if (!res) g_value_unset (dest); return res; } else if (GST_VALUE_HOLDS_FLAG_SET (src)) { guint flags; if (gst_value_get_flagset_mask (src) == GST_FLAG_SET_MASK_EXACT) return FALSE; /* Already fixed */ flags = gst_value_get_flagset_flags (src); g_value_init (dest, G_VALUE_TYPE (src)); gst_value_set_flagset (dest, flags, GST_FLAG_SET_MASK_EXACT); return TRUE; } else { return FALSE; } return TRUE; } /************ * fraction * ************/ /* helper functions */ static void gst_value_init_fraction (GValue * value) { value->data[0].v_int = 0; value->data[1].v_int = 1; } static void gst_value_copy_fraction (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_int = src_value->data[0].v_int; dest_value->data[1].v_int = src_value->data[1].v_int; } static gchar * gst_value_collect_fraction (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (n_collect_values != 2) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); if (collect_values[1].v_int == 0) return g_strdup_printf ("passed '0' as denominator for `%s'", G_VALUE_TYPE_NAME (value)); if (collect_values[0].v_int < -G_MAXINT) return g_strdup_printf ("passed value smaller than -G_MAXINT as numerator for `%s'", G_VALUE_TYPE_NAME (value)); if (collect_values[1].v_int < -G_MAXINT) return g_strdup_printf ("passed value smaller than -G_MAXINT as denominator for `%s'", G_VALUE_TYPE_NAME (value)); gst_value_set_fraction (value, collect_values[0].v_int, collect_values[1].v_int); return NULL; } static gchar * gst_value_lcopy_fraction (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { gint *numerator = collect_values[0].v_pointer; gint *denominator = collect_values[1].v_pointer; if (!numerator) return g_strdup_printf ("numerator for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); if (!denominator) return g_strdup_printf ("denominator for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); *numerator = value->data[0].v_int; *denominator = value->data[1].v_int; return NULL; } /** * gst_value_set_fraction: * @value: a GValue initialized to #GST_TYPE_FRACTION * @numerator: the numerator of the fraction * @denominator: the denominator of the fraction * * Sets @value to the fraction specified by @numerator over @denominator. * The fraction gets reduced to the smallest numerator and denominator, * and if necessary the sign is moved to the numerator. */ void gst_value_set_fraction (GValue * value, gint numerator, gint denominator) { gint gcd = 0; g_return_if_fail (GST_VALUE_HOLDS_FRACTION (value)); g_return_if_fail (denominator != 0); g_return_if_fail (denominator >= -G_MAXINT); g_return_if_fail (numerator >= -G_MAXINT); /* normalize sign */ if (denominator < 0) { numerator = -numerator; denominator = -denominator; } /* check for reduction */ gcd = gst_util_greatest_common_divisor (numerator, denominator); if (gcd) { numerator /= gcd; denominator /= gcd; } g_assert (denominator > 0); value->data[0].v_int = numerator; value->data[1].v_int = denominator; } /** * gst_value_get_fraction_numerator: * @value: a GValue initialized to #GST_TYPE_FRACTION * * Gets the numerator of the fraction specified by @value. * * Returns: the numerator of the fraction. */ gint gst_value_get_fraction_numerator (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (value), 0); return value->data[0].v_int; } /** * gst_value_get_fraction_denominator: * @value: a GValue initialized to #GST_TYPE_FRACTION * * Gets the denominator of the fraction specified by @value. * * Returns: the denominator of the fraction. */ gint gst_value_get_fraction_denominator (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (value), 1); return value->data[1].v_int; } /** * gst_value_fraction_multiply: * @product: a GValue initialized to #GST_TYPE_FRACTION * @factor1: a GValue initialized to #GST_TYPE_FRACTION * @factor2: a GValue initialized to #GST_TYPE_FRACTION * * Multiplies the two #GValue items containing a #GST_TYPE_FRACTION and sets * @product to the product of the two fractions. * * Returns: %FALSE in case of an error (like integer overflow), %TRUE otherwise. */ gboolean gst_value_fraction_multiply (GValue * product, const GValue * factor1, const GValue * factor2) { gint n1, n2, d1, d2; gint res_n, res_d; g_return_val_if_fail (product != NULL, FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (factor1), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (factor2), FALSE); n1 = factor1->data[0].v_int; n2 = factor2->data[0].v_int; d1 = factor1->data[1].v_int; d2 = factor2->data[1].v_int; if (!gst_util_fraction_multiply (n1, d1, n2, d2, &res_n, &res_d)) return FALSE; gst_value_set_fraction (product, res_n, res_d); return TRUE; } /** * gst_value_fraction_subtract: * @dest: a GValue initialized to #GST_TYPE_FRACTION * @minuend: a GValue initialized to #GST_TYPE_FRACTION * @subtrahend: a GValue initialized to #GST_TYPE_FRACTION * * Subtracts the @subtrahend from the @minuend and sets @dest to the result. * * Returns: %FALSE in case of an error (like integer overflow), %TRUE otherwise. */ gboolean gst_value_fraction_subtract (GValue * dest, const GValue * minuend, const GValue * subtrahend) { gint n1, n2, d1, d2; gint res_n, res_d; g_return_val_if_fail (dest != NULL, FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (minuend), FALSE); g_return_val_if_fail (GST_VALUE_HOLDS_FRACTION (subtrahend), FALSE); n1 = minuend->data[0].v_int; n2 = subtrahend->data[0].v_int; d1 = minuend->data[1].v_int; d2 = subtrahend->data[1].v_int; if (!gst_util_fraction_add (n1, d1, -n2, d2, &res_n, &res_d)) return FALSE; gst_value_set_fraction (dest, res_n, res_d); return TRUE; } static gchar * gst_value_serialize_fraction (const GValue * value) { gint32 numerator = value->data[0].v_int; gint32 denominator = value->data[1].v_int; gboolean positive = TRUE; /* get the sign and make components absolute */ if (numerator < 0) { numerator = -numerator; positive = !positive; } if (denominator < 0) { denominator = -denominator; positive = !positive; } return g_strdup_printf ("%s%d/%d", positive ? "" : "-", numerator, denominator); } static gboolean gst_value_deserialize_fraction (GValue * dest, const gchar * s) { gint num, den; gint num_chars; if (G_UNLIKELY (s == NULL)) return FALSE; if (G_UNLIKELY (dest == NULL || !GST_VALUE_HOLDS_FRACTION (dest))) return FALSE; if (sscanf (s, "%d/%d%n", &num, &den, &num_chars) >= 2) { if (s[num_chars] != 0) return FALSE; if (den == 0) return FALSE; gst_value_set_fraction (dest, num, den); return TRUE; } else if (g_ascii_strcasecmp (s, "1/max") == 0) { gst_value_set_fraction (dest, 1, G_MAXINT); return TRUE; } else if (sscanf (s, "%d%n", &num, &num_chars) >= 1) { if (s[num_chars] != 0) return FALSE; gst_value_set_fraction (dest, num, 1); return TRUE; } else if (g_ascii_strcasecmp (s, "min") == 0) { gst_value_set_fraction (dest, -G_MAXINT, 1); return TRUE; } else if (g_ascii_strcasecmp (s, "max") == 0) { gst_value_set_fraction (dest, G_MAXINT, 1); return TRUE; } return FALSE; } static void gst_value_transform_fraction_string (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = gst_value_serialize_fraction (src_value); } static void gst_value_transform_string_fraction (const GValue * src_value, GValue * dest_value) { if (!gst_value_deserialize_fraction (dest_value, src_value->data[0].v_pointer)) /* If the deserialize fails, ensure we leave the fraction in a * valid, if incorrect, state */ gst_value_set_fraction (dest_value, 0, 1); } static void gst_value_transform_double_fraction (const GValue * src_value, GValue * dest_value) { gdouble src = g_value_get_double (src_value); gint n, d; gst_util_double_to_fraction (src, &n, &d); gst_value_set_fraction (dest_value, n, d); } static void gst_value_transform_float_fraction (const GValue * src_value, GValue * dest_value) { gfloat src = g_value_get_float (src_value); gint n, d; gst_util_double_to_fraction (src, &n, &d); gst_value_set_fraction (dest_value, n, d); } static void gst_value_transform_fraction_double (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_double = ((double) src_value->data[0].v_int) / ((double) src_value->data[1].v_int); } static void gst_value_transform_fraction_float (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_float = ((float) src_value->data[0].v_int) / ((float) src_value->data[1].v_int); } static gint gst_value_compare_fraction (const GValue * value1, const GValue * value2) { gint n1, n2; gint d1, d2; gint ret; n1 = value1->data[0].v_int; n2 = value2->data[0].v_int; d1 = value1->data[1].v_int; d2 = value2->data[1].v_int; /* fractions are reduced when set, so we can quickly see if they're equal */ if (n1 == n2 && d1 == d2) return GST_VALUE_EQUAL; if (d1 == 0 && d2 == 0) return GST_VALUE_UNORDERED; else if (d1 == 0) return GST_VALUE_GREATER_THAN; else if (d2 == 0) return GST_VALUE_LESS_THAN; ret = gst_util_fraction_compare (n1, d1, n2, d2); if (ret == -1) return GST_VALUE_LESS_THAN; else if (ret == 1) return GST_VALUE_GREATER_THAN; /* Equality can't happen here because we check for that * first already */ g_return_val_if_reached (GST_VALUE_UNORDERED); } /********* * GDate * *********/ static gint gst_value_compare_date (const GValue * value1, const GValue * value2) { const GDate *date1 = (const GDate *) g_value_get_boxed (value1); const GDate *date2 = (const GDate *) g_value_get_boxed (value2); guint32 j1, j2; if (date1 == date2) return GST_VALUE_EQUAL; if ((date1 == NULL || !g_date_valid (date1)) && (date2 != NULL && g_date_valid (date2))) { return GST_VALUE_LESS_THAN; } if ((date2 == NULL || !g_date_valid (date2)) && (date1 != NULL && g_date_valid (date1))) { return GST_VALUE_GREATER_THAN; } if (date1 == NULL || date2 == NULL || !g_date_valid (date1) || !g_date_valid (date2)) { return GST_VALUE_UNORDERED; } j1 = g_date_get_julian (date1); j2 = g_date_get_julian (date2); if (j1 == j2) return GST_VALUE_EQUAL; else if (j1 < j2) return GST_VALUE_LESS_THAN; else return GST_VALUE_GREATER_THAN; } static gchar * gst_value_serialize_date (const GValue * val) { const GDate *date = (const GDate *) g_value_get_boxed (val); if (date == NULL || !g_date_valid (date)) return g_strdup ("9999-99-99"); return g_strdup_printf ("%04u-%02u-%02u", g_date_get_year (date), g_date_get_month (date), g_date_get_day (date)); } static gboolean gst_value_deserialize_date (GValue * dest, const gchar * s) { guint year, month, day; if (!s || sscanf (s, "%04u-%02u-%02u", &year, &month, &day) != 3) return FALSE; if (!g_date_valid_dmy (day, month, year)) return FALSE; g_value_take_boxed (dest, g_date_new_dmy (day, month, year)); return TRUE; } /************* * GstDateTime * *************/ static gint gst_value_compare_date_time (const GValue * value1, const GValue * value2) { const GstDateTime *date1 = (const GstDateTime *) g_value_get_boxed (value1); const GstDateTime *date2 = (const GstDateTime *) g_value_get_boxed (value2); if (date1 == date2) return GST_VALUE_EQUAL; if ((date1 == NULL) && (date2 != NULL)) { return GST_VALUE_LESS_THAN; } if ((date2 == NULL) && (date1 != NULL)) { return GST_VALUE_LESS_THAN; } /* returns GST_VALUE_* */ return __gst_date_time_compare (date1, date2); } static gchar * gst_value_serialize_date_time (const GValue * val) { GstDateTime *date = (GstDateTime *) g_value_get_boxed (val); if (date == NULL) return g_strdup ("null"); return __gst_date_time_serialize (date, TRUE); } static gboolean gst_value_deserialize_date_time (GValue * dest, const gchar * s) { GstDateTime *datetime; if (!s || strcmp (s, "null") == 0) { return FALSE; } datetime = gst_date_time_new_from_iso8601_string (s); if (datetime != NULL) { g_value_take_boxed (dest, datetime); return TRUE; } GST_WARNING ("Failed to deserialize date time string '%s'", s); return FALSE; } static void gst_value_transform_date_string (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = gst_value_serialize_date (src_value); } static void gst_value_transform_string_date (const GValue * src_value, GValue * dest_value) { gst_value_deserialize_date (dest_value, src_value->data[0].v_pointer); } /************ * bitmask * ************/ /* helper functions */ static void gst_value_init_bitmask (GValue * value) { value->data[0].v_uint64 = 0; } static void gst_value_copy_bitmask (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_uint64 = src_value->data[0].v_uint64; } static gchar * gst_value_collect_bitmask (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (n_collect_values != 1) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); gst_value_set_bitmask (value, (guint64) collect_values[0].v_int64); return NULL; } static gchar * gst_value_lcopy_bitmask (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { guint64 *bitmask = collect_values[0].v_pointer; if (!bitmask) return g_strdup_printf ("value for `%s' passed as NULL", G_VALUE_TYPE_NAME (value)); *bitmask = value->data[0].v_uint64; return NULL; } /** * gst_value_set_bitmask: * @value: a GValue initialized to #GST_TYPE_BITMASK * @bitmask: the bitmask * * Sets @value to the bitmask specified by @bitmask. */ void gst_value_set_bitmask (GValue * value, guint64 bitmask) { g_return_if_fail (GST_VALUE_HOLDS_BITMASK (value)); value->data[0].v_uint64 = bitmask; } /** * gst_value_get_bitmask: * @value: a GValue initialized to #GST_TYPE_BITMASK * * Gets the bitmask specified by @value. * * Returns: the bitmask. */ guint64 gst_value_get_bitmask (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_BITMASK (value), 0); return value->data[0].v_uint64; } static gchar * gst_value_serialize_bitmask (const GValue * value) { guint64 bitmask = value->data[0].v_uint64; return g_strdup_printf ("0x%016" G_GINT64_MODIFIER "x", bitmask); } static gboolean gst_value_deserialize_bitmask (GValue * dest, const gchar * s) { gchar *endptr = NULL; guint64 val; if (G_UNLIKELY (s == NULL)) return FALSE; if (G_UNLIKELY (dest == NULL || !GST_VALUE_HOLDS_BITMASK (dest))) return FALSE; errno = 0; val = g_ascii_strtoull (s, &endptr, 16); if (val == G_MAXUINT64 && (errno == ERANGE || errno == EINVAL)) return FALSE; if (val == 0 && endptr == s) return FALSE; gst_value_set_bitmask (dest, val); return TRUE; } static void gst_value_transform_bitmask_string (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = gst_value_serialize_bitmask (src_value); } static void gst_value_transform_string_bitmask (const GValue * src_value, GValue * dest_value) { if (!gst_value_deserialize_bitmask (dest_value, src_value->data[0].v_pointer)) gst_value_set_bitmask (dest_value, 0); } static void gst_value_transform_uint64_bitmask (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_uint64 = src_value->data[0].v_uint64; } static void gst_value_transform_bitmask_uint64 (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_uint64 = src_value->data[0].v_uint64; } static gint gst_value_compare_bitmask (const GValue * value1, const GValue * value2) { guint64 v1, v2; v1 = value1->data[0].v_uint64; v2 = value2->data[0].v_uint64; if (v1 == v2) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } /************ * flagset * ************/ /* helper functions */ static void gst_value_init_flagset (GValue * value) { value->data[0].v_uint = 0; value->data[1].v_uint = 0; } static void gst_value_copy_flagset (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_uint = src_value->data[0].v_uint; dest_value->data[1].v_uint = src_value->data[1].v_uint; } static gchar * gst_value_collect_flagset (GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { if (n_collect_values != 2) return g_strdup_printf ("not enough value locations for `%s' passed", G_VALUE_TYPE_NAME (value)); gst_value_set_flagset (value, (guint) collect_values[0].v_int, (guint) collect_values[1].v_int); return NULL; } static gchar * gst_value_lcopy_flagset (const GValue * value, guint n_collect_values, GTypeCValue * collect_values, guint collect_flags) { guint *flags = collect_values[0].v_pointer; guint *mask = collect_values[1].v_pointer; *flags = value->data[0].v_uint; *mask = value->data[1].v_uint; return NULL; } /** * gst_value_set_flagset: * @value: a GValue initialized to %GST_TYPE_FLAG_SET * @flags: The value of the flags set or unset * @mask: The mask indicate which flags bits must match for comparisons * * Sets @value to the flags and mask values provided in @flags and @mask. * The @flags value indicates the values of flags, the @mask represents * which bits in the flag value have been set, and which are "don't care" * * Since: 1.6 */ void gst_value_set_flagset (GValue * value, guint flags, guint mask) { g_return_if_fail (GST_VALUE_HOLDS_FLAG_SET (value)); /* Normalise and only keep flags mentioned in the mask */ value->data[0].v_uint = flags & mask; value->data[1].v_uint = mask; } /** * gst_value_get_flagset_flags: * @value: a GValue initialized to #GST_TYPE_FLAG_SET * * Retrieve the flags field of a GstFlagSet @value. * * Returns: the flags field of the flagset instance. * * Since: 1.6 */ guint gst_value_get_flagset_flags (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (value), 0); return value->data[0].v_uint; } /** * gst_value_get_flagset_mask: * @value: a GValue initialized to #GST_TYPE_FLAG_SET * * Retrieve the mask field of a GstFlagSet @value. * * Returns: the mask field of the flagset instance. * * Since: 1.6 */ guint gst_value_get_flagset_mask (const GValue * value) { g_return_val_if_fail (GST_VALUE_HOLDS_FLAG_SET (value), 1); return value->data[1].v_uint; } static gchar * gst_value_serialize_flagset (const GValue * value) { guint flags = value->data[0].v_uint; guint mask = value->data[1].v_uint; GstFlagSetClass *set_klass = (GstFlagSetClass *) g_type_class_ref (G_VALUE_TYPE (value)); gchar *result; result = g_strdup_printf ("%x:%x", flags, mask); /* If this flag set class has an associated GFlags GType, and some * bits in the mask, serialize the bits in human-readable form to * aid debugging */ if (mask && set_klass->flags_type) { GFlagsClass *flags_klass = (GFlagsClass *) (g_type_class_ref (set_klass->flags_type)); GFlagsValue *fl; gchar *tmp; gboolean first = TRUE; g_return_val_if_fail (flags_klass, NULL); /* some bits in the mask are set, so serialize one by one, according * to whether that bit is set or cleared in the flags value */ while (mask) { fl = g_flags_get_first_value (flags_klass, mask); if (fl == NULL) { /* No more bits match in the flags mask - time to stop */ mask = 0; break; } tmp = g_strconcat (result, first ? ":" : "", (flags & fl->value) ? "+" : "/", fl->value_nick, NULL); g_free (result); result = tmp; first = FALSE; /* clear flag */ mask &= ~fl->value; } g_type_class_unref (flags_klass); } g_type_class_unref (set_klass); return result; } static gboolean gst_value_deserialize_flagset (GValue * dest, const gchar * s) { gboolean res = FALSE; guint flags, mask; gchar *cur, *next; if (G_UNLIKELY (s == NULL)) return FALSE; if (G_UNLIKELY (dest == NULL || !GST_VALUE_HOLDS_FLAG_SET (dest))) return FALSE; /* Flagset strings look like %x:%x - hex flags : hex bitmask, * 32-bit each, or like a concatenated list of flag nicks, * with either '+' or '/' in front. The first form * may optionally be followed by ':' and a set of text flag descriptions * for easier debugging */ /* Try and interpret as hex form first, as it's the most efficient */ /* Read the flags first */ flags = strtoul (s, &next, 16); if (G_UNLIKELY ((flags == 0 && errno == EINVAL) || s == next)) goto try_as_flags_string; /* Next char should be a colon */ if (next[0] == ':') next++; /* Read the mask */ cur = next; mask = strtoul (cur, &next, 16); if (G_UNLIKELY ((mask == 0 && errno == EINVAL) || cur == next)) goto try_as_flags_string; /* Next char should be NULL terminator, or a ':' */ if (G_UNLIKELY (next[0] != 0 && next[0] != ':')) goto try_as_flags_string; res = TRUE; try_as_flags_string: if (!res) { const gchar *set_class = g_type_name (G_VALUE_TYPE (dest)); GFlagsClass *flags_klass = NULL; const gchar *end; if (g_str_equal (set_class, "GstFlagSet")) goto done; /* There's no hope to parse a generic flag set */ /* Flags class is the FlagSet class with 'Set' removed from the end */ end = g_strrstr (set_class, "Set"); if (end != NULL) { gchar *class_name = g_strndup (set_class, end - set_class); GType flags_type = g_type_from_name (class_name); g_free (class_name); if (flags_type != 0) flags_klass = g_type_class_ref (flags_type); } if (flags_klass) { res = gst_value_gflags_str_to_flags (flags_klass, s, &flags, &mask); g_type_class_unref (flags_klass); } } if (res) gst_value_set_flagset (dest, flags, mask); done: return res; } static void gst_value_transform_flagset_string (const GValue * src_value, GValue * dest_value) { dest_value->data[0].v_pointer = gst_value_serialize_flagset (src_value); } static void gst_value_transform_string_flagset (const GValue * src_value, GValue * dest_value) { if (!gst_value_deserialize_flagset (dest_value, src_value->data[0].v_pointer)) { /* If the deserialize fails, ensure we leave the flags in a * valid, if incorrect, state */ gst_value_set_flagset (dest_value, 0, 0); } } static gint gst_value_compare_flagset (const GValue * value1, const GValue * value2) { guint v1, v2; guint m1, m2; v1 = value1->data[0].v_uint; v2 = value2->data[0].v_uint; m1 = value1->data[1].v_uint; m2 = value2->data[1].v_uint; if (v1 == v2 && m1 == m2) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } /*********************** * GstAllocationParams * ***********************/ static gint gst_value_compare_allocation_params (const GValue * value1, const GValue * value2) { GstAllocationParams *v1, *v2; v1 = value1->data[0].v_pointer; v2 = value2->data[0].v_pointer; if (v1 == NULL && v1 == v2) return GST_VALUE_EQUAL; if (v1 == NULL || v2 == NULL) return GST_VALUE_UNORDERED; if (v1->flags == v2->flags && v1->align == v2->align && v1->prefix == v2->prefix && v1->padding == v2->padding) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } /************ * GObject * ************/ static gint gst_value_compare_object (const GValue * value1, const GValue * value2) { gpointer v1, v2; v1 = value1->data[0].v_pointer; v2 = value2->data[0].v_pointer; if (v1 == v2) return GST_VALUE_EQUAL; return GST_VALUE_UNORDERED; } static void gst_value_transform_object_string (const GValue * src_value, GValue * dest_value) { GstObject *obj; gchar *str; obj = g_value_get_object (src_value); if (obj) { str = g_strdup_printf ("(%s) %s", G_OBJECT_TYPE_NAME (obj), GST_OBJECT_NAME (obj)); } else { str = g_strdup ("NULL"); } dest_value->data[0].v_pointer = str; } static GTypeInfo _info = { 0, NULL, NULL, NULL, NULL, NULL, 0, 0, NULL, NULL, }; static GTypeFundamentalInfo _finfo = { 0 }; #define FUNC_VALUE_GET_TYPE_CLASSED(type, name, csize, flags) \ GType _gst_ ## type ## _type = 0; \ \ GType gst_ ## type ## _get_type (void) \ { \ static volatile GType gst_ ## type ## _type = 0; \ \ if (g_once_init_enter (&gst_ ## type ## _type)) { \ GType _type; \ _info.class_size = csize; \ _finfo.type_flags = flags; \ _info.value_table = & _gst_ ## type ## _value_table; \ _type = g_type_register_fundamental ( \ g_type_fundamental_next (), \ name, &_info, &_finfo, 0); \ _gst_ ## type ## _type = _type; \ g_once_init_leave(&gst_ ## type ## _type, _type); \ } \ \ return gst_ ## type ## _type; \ } #define FUNC_VALUE_GET_TYPE(type, name) \ FUNC_VALUE_GET_TYPE_CLASSED(type, name, 0, 0) static const GTypeValueTable _gst_int_range_value_table = { gst_value_init_int_range, NULL, gst_value_copy_int_range, NULL, (char *) "ii", gst_value_collect_int_range, (char *) "pp", gst_value_lcopy_int_range }; FUNC_VALUE_GET_TYPE (int_range, "GstIntRange"); static const GTypeValueTable _gst_int64_range_value_table = { gst_value_init_int64_range, gst_value_free_int64_range, gst_value_copy_int64_range, NULL, (char *) "qq", gst_value_collect_int64_range, (char *) "pp", gst_value_lcopy_int64_range }; FUNC_VALUE_GET_TYPE (int64_range, "GstInt64Range"); static const GTypeValueTable _gst_double_range_value_table = { gst_value_init_double_range, NULL, gst_value_copy_double_range, NULL, (char *) "dd", gst_value_collect_double_range, (char *) "pp", gst_value_lcopy_double_range }; FUNC_VALUE_GET_TYPE (double_range, "GstDoubleRange"); static const GTypeValueTable _gst_fraction_range_value_table = { gst_value_init_fraction_range, gst_value_free_fraction_range, gst_value_copy_fraction_range, NULL, (char *) "iiii", gst_value_collect_fraction_range, (char *) "pppp", gst_value_lcopy_fraction_range }; FUNC_VALUE_GET_TYPE (fraction_range, "GstFractionRange"); static const GTypeValueTable _gst_value_list_value_table = { gst_value_init_list_or_array, gst_value_free_list_or_array, gst_value_copy_list_or_array, gst_value_list_or_array_peek_pointer, (char *) "p", gst_value_collect_list_or_array, (char *) "p", gst_value_lcopy_list_or_array }; FUNC_VALUE_GET_TYPE (value_list, "GstValueList"); static const GTypeValueTable _gst_value_array_value_table = { gst_value_init_list_or_array, gst_value_free_list_or_array, gst_value_copy_list_or_array, gst_value_list_or_array_peek_pointer, (char *) "p", gst_value_collect_list_or_array, (char *) "p", gst_value_lcopy_list_or_array }; FUNC_VALUE_GET_TYPE (value_array, "GstValueArray"); static const GTypeValueTable _gst_fraction_value_table = { gst_value_init_fraction, NULL, gst_value_copy_fraction, NULL, (char *) "ii", gst_value_collect_fraction, (char *) "pp", gst_value_lcopy_fraction }; FUNC_VALUE_GET_TYPE (fraction, "GstFraction"); static const GTypeValueTable _gst_bitmask_value_table = { gst_value_init_bitmask, NULL, gst_value_copy_bitmask, NULL, (char *) "q", gst_value_collect_bitmask, (char *) "p", gst_value_lcopy_bitmask }; FUNC_VALUE_GET_TYPE (bitmask, "GstBitmask"); static const GTypeValueTable _gst_flagset_value_table = { gst_value_init_flagset, NULL, gst_value_copy_flagset, NULL, (char *) "ii", gst_value_collect_flagset, (char *) "pp", gst_value_lcopy_flagset }; FUNC_VALUE_GET_TYPE_CLASSED (flagset, "GstFlagSet", sizeof (GstFlagSetClass), G_TYPE_FLAG_CLASSED | G_TYPE_FLAG_DERIVABLE); GType gst_g_thread_get_type (void) { #if GLIB_CHECK_VERSION(2,35,3) return G_TYPE_THREAD; #else static volatile gsize type_id = 0; if (g_once_init_enter (&type_id)) { GType tmp = g_boxed_type_register_static (g_intern_static_string ("GstGThread"), (GBoxedCopyFunc) g_thread_ref, (GBoxedFreeFunc) g_thread_unref); g_once_init_leave (&type_id, tmp); } return type_id; #endif } #define SERIAL_VTABLE(t,c,s,d) { t, c, s, d } #define REGISTER_SERIALIZATION_CONST(_gtype, _type) \ G_STMT_START { \ static const GstValueTable gst_value = \ SERIAL_VTABLE (_gtype, gst_value_compare_ ## _type, \ gst_value_serialize_ ## _type, gst_value_deserialize_ ## _type); \ gst_value_register (&gst_value); \ } G_STMT_END #define REGISTER_SERIALIZATION(_gtype, _type) \ G_STMT_START { \ static GstValueTable gst_value = \ SERIAL_VTABLE (0, gst_value_compare_ ## _type, \ gst_value_serialize_ ## _type, gst_value_deserialize_ ## _type); \ gst_value.type = _gtype; \ gst_value_register (&gst_value); \ } G_STMT_END #define REGISTER_SERIALIZATION_NO_COMPARE(_gtype, _type) \ G_STMT_START { \ static GstValueTable gst_value = \ SERIAL_VTABLE (0, NULL, \ gst_value_serialize_ ## _type, gst_value_deserialize_ ## _type); \ gst_value.type = _gtype; \ gst_value_register (&gst_value); \ } G_STMT_END #define REGISTER_SERIALIZATION_COMPARE_ONLY(_gtype, _type) \ G_STMT_START { \ static GstValueTable gst_value = \ SERIAL_VTABLE (0, gst_value_compare_ ## _type, \ NULL, NULL); \ gst_value.type = _gtype; \ gst_value_register (&gst_value); \ } G_STMT_END /* These initial sizes are used for the tables * below, and save a couple of reallocs at startup */ static const gint GST_VALUE_TABLE_DEFAULT_SIZE = 33; static const gint GST_VALUE_UNION_TABLE_DEFAULT_SIZE = 3; static const gint GST_VALUE_INTERSECT_TABLE_DEFAULT_SIZE = 10; static const gint GST_VALUE_SUBTRACT_TABLE_DEFAULT_SIZE = 12; void _priv_gst_value_initialize (void) { gst_value_table = g_array_sized_new (FALSE, FALSE, sizeof (GstValueTable), GST_VALUE_TABLE_DEFAULT_SIZE); gst_value_hash = g_hash_table_new (NULL, NULL); gst_value_union_funcs = g_array_sized_new (FALSE, FALSE, sizeof (GstValueUnionInfo), GST_VALUE_UNION_TABLE_DEFAULT_SIZE); gst_value_intersect_funcs = g_array_sized_new (FALSE, FALSE, sizeof (GstValueIntersectInfo), GST_VALUE_INTERSECT_TABLE_DEFAULT_SIZE); gst_value_subtract_funcs = g_array_sized_new (FALSE, FALSE, sizeof (GstValueSubtractInfo), GST_VALUE_SUBTRACT_TABLE_DEFAULT_SIZE); REGISTER_SERIALIZATION (gst_int_range_get_type (), int_range); REGISTER_SERIALIZATION (gst_int64_range_get_type (), int64_range); REGISTER_SERIALIZATION (gst_double_range_get_type (), double_range); REGISTER_SERIALIZATION (gst_fraction_range_get_type (), fraction_range); REGISTER_SERIALIZATION (gst_value_list_get_type (), value_list); REGISTER_SERIALIZATION (gst_value_array_get_type (), value_array); REGISTER_SERIALIZATION (gst_buffer_get_type (), buffer); REGISTER_SERIALIZATION (gst_sample_get_type (), sample); REGISTER_SERIALIZATION (gst_fraction_get_type (), fraction); REGISTER_SERIALIZATION (gst_caps_get_type (), caps); REGISTER_SERIALIZATION (gst_tag_list_get_type (), tag_list); REGISTER_SERIALIZATION (G_TYPE_DATE, date); REGISTER_SERIALIZATION (gst_date_time_get_type (), date_time); REGISTER_SERIALIZATION (gst_bitmask_get_type (), bitmask); REGISTER_SERIALIZATION (gst_structure_get_type (), structure); REGISTER_SERIALIZATION (gst_flagset_get_type (), flagset); REGISTER_SERIALIZATION_NO_COMPARE (gst_segment_get_type (), segment); REGISTER_SERIALIZATION_NO_COMPARE (gst_caps_features_get_type (), caps_features); REGISTER_SERIALIZATION_COMPARE_ONLY (gst_allocation_params_get_type (), allocation_params); REGISTER_SERIALIZATION_COMPARE_ONLY (G_TYPE_OBJECT, object); REGISTER_SERIALIZATION_CONST (G_TYPE_DOUBLE, double); REGISTER_SERIALIZATION_CONST (G_TYPE_FLOAT, float); REGISTER_SERIALIZATION_CONST (G_TYPE_STRING, string); REGISTER_SERIALIZATION_CONST (G_TYPE_BOOLEAN, boolean); REGISTER_SERIALIZATION_CONST (G_TYPE_ENUM, enum); REGISTER_SERIALIZATION_CONST (G_TYPE_FLAGS, gflags); REGISTER_SERIALIZATION_CONST (G_TYPE_INT, int); REGISTER_SERIALIZATION_CONST (G_TYPE_INT64, int64); REGISTER_SERIALIZATION_CONST (G_TYPE_LONG, long); REGISTER_SERIALIZATION_CONST (G_TYPE_UINT, uint); REGISTER_SERIALIZATION_CONST (G_TYPE_UINT64, uint64); REGISTER_SERIALIZATION_CONST (G_TYPE_ULONG, ulong); REGISTER_SERIALIZATION_CONST (G_TYPE_UCHAR, uchar); g_value_register_transform_func (GST_TYPE_INT_RANGE, G_TYPE_STRING, gst_value_transform_int_range_string); g_value_register_transform_func (GST_TYPE_INT64_RANGE, G_TYPE_STRING, gst_value_transform_int64_range_string); g_value_register_transform_func (GST_TYPE_DOUBLE_RANGE, G_TYPE_STRING, gst_value_transform_double_range_string); g_value_register_transform_func (GST_TYPE_FRACTION_RANGE, G_TYPE_STRING, gst_value_transform_fraction_range_string); g_value_register_transform_func (GST_TYPE_LIST, G_TYPE_STRING, gst_value_transform_list_string); g_value_register_transform_func (GST_TYPE_ARRAY, G_TYPE_STRING, gst_value_transform_array_string); g_value_register_transform_func (GST_TYPE_FRACTION, G_TYPE_STRING, gst_value_transform_fraction_string); g_value_register_transform_func (G_TYPE_STRING, GST_TYPE_FRACTION, gst_value_transform_string_fraction); g_value_register_transform_func (GST_TYPE_FRACTION, G_TYPE_DOUBLE, gst_value_transform_fraction_double); g_value_register_transform_func (GST_TYPE_FRACTION, G_TYPE_FLOAT, gst_value_transform_fraction_float); g_value_register_transform_func (G_TYPE_DOUBLE, GST_TYPE_FRACTION, gst_value_transform_double_fraction); g_value_register_transform_func (G_TYPE_FLOAT, GST_TYPE_FRACTION, gst_value_transform_float_fraction); g_value_register_transform_func (G_TYPE_DATE, G_TYPE_STRING, gst_value_transform_date_string); g_value_register_transform_func (G_TYPE_STRING, G_TYPE_DATE, gst_value_transform_string_date); g_value_register_transform_func (GST_TYPE_OBJECT, G_TYPE_STRING, gst_value_transform_object_string); g_value_register_transform_func (GST_TYPE_BITMASK, G_TYPE_UINT64, gst_value_transform_bitmask_uint64); g_value_register_transform_func (GST_TYPE_BITMASK, G_TYPE_STRING, gst_value_transform_bitmask_string); g_value_register_transform_func (G_TYPE_UINT64, GST_TYPE_BITMASK, gst_value_transform_uint64_bitmask); g_value_register_transform_func (G_TYPE_STRING, GST_TYPE_BITMASK, gst_value_transform_string_bitmask); g_value_register_transform_func (GST_TYPE_FLAG_SET, G_TYPE_STRING, gst_value_transform_flagset_string); g_value_register_transform_func (G_TYPE_STRING, GST_TYPE_FLAG_SET, gst_value_transform_string_flagset); gst_value_register_intersect_func (G_TYPE_INT, GST_TYPE_INT_RANGE, gst_value_intersect_int_int_range); gst_value_register_intersect_func (GST_TYPE_INT_RANGE, GST_TYPE_INT_RANGE, gst_value_intersect_int_range_int_range); gst_value_register_intersect_func (G_TYPE_INT64, GST_TYPE_INT64_RANGE, gst_value_intersect_int64_int64_range); gst_value_register_intersect_func (GST_TYPE_INT64_RANGE, GST_TYPE_INT64_RANGE, gst_value_intersect_int64_range_int64_range); gst_value_register_intersect_func (G_TYPE_DOUBLE, GST_TYPE_DOUBLE_RANGE, gst_value_intersect_double_double_range); gst_value_register_intersect_func (GST_TYPE_DOUBLE_RANGE, GST_TYPE_DOUBLE_RANGE, gst_value_intersect_double_range_double_range); gst_value_register_intersect_func (GST_TYPE_ARRAY, GST_TYPE_ARRAY, gst_value_intersect_array); gst_value_register_intersect_func (GST_TYPE_FRACTION, GST_TYPE_FRACTION_RANGE, gst_value_intersect_fraction_fraction_range); gst_value_register_intersect_func (GST_TYPE_FRACTION_RANGE, GST_TYPE_FRACTION_RANGE, gst_value_intersect_fraction_range_fraction_range); gst_value_register_intersect_func (GST_TYPE_FLAG_SET, GST_TYPE_FLAG_SET, gst_value_intersect_flagset_flagset); gst_value_register_subtract_func (G_TYPE_INT, GST_TYPE_INT_RANGE, gst_value_subtract_int_int_range); gst_value_register_subtract_func (GST_TYPE_INT_RANGE, G_TYPE_INT, gst_value_subtract_int_range_int); gst_value_register_subtract_func (GST_TYPE_INT_RANGE, GST_TYPE_INT_RANGE, gst_value_subtract_int_range_int_range); gst_value_register_subtract_func (G_TYPE_INT64, GST_TYPE_INT64_RANGE, gst_value_subtract_int64_int64_range); gst_value_register_subtract_func (GST_TYPE_INT64_RANGE, G_TYPE_INT64, gst_value_subtract_int64_range_int64); gst_value_register_subtract_func (GST_TYPE_INT64_RANGE, GST_TYPE_INT64_RANGE, gst_value_subtract_int64_range_int64_range); gst_value_register_subtract_func (G_TYPE_DOUBLE, GST_TYPE_DOUBLE_RANGE, gst_value_subtract_double_double_range); gst_value_register_subtract_func (GST_TYPE_DOUBLE_RANGE, G_TYPE_DOUBLE, gst_value_subtract_double_range_double); gst_value_register_subtract_func (GST_TYPE_DOUBLE_RANGE, GST_TYPE_DOUBLE_RANGE, gst_value_subtract_double_range_double_range); gst_value_register_subtract_func (GST_TYPE_FRACTION, GST_TYPE_FRACTION_RANGE, gst_value_subtract_fraction_fraction_range); gst_value_register_subtract_func (GST_TYPE_FRACTION_RANGE, GST_TYPE_FRACTION, gst_value_subtract_fraction_range_fraction); gst_value_register_subtract_func (GST_TYPE_FRACTION_RANGE, GST_TYPE_FRACTION_RANGE, gst_value_subtract_fraction_range_fraction_range); /* see bug #317246, #64994, #65041 */ { volatile GType date_type = G_TYPE_DATE; g_type_name (date_type); } gst_value_register_union_func (G_TYPE_INT, GST_TYPE_INT_RANGE, gst_value_union_int_int_range); gst_value_register_union_func (GST_TYPE_INT_RANGE, GST_TYPE_INT_RANGE, gst_value_union_int_range_int_range); gst_value_register_union_func (GST_TYPE_FLAG_SET, GST_TYPE_FLAG_SET, gst_value_union_flagset_flagset); #if GST_VERSION_NANO == 1 /* If building from git master, check starting array sizes matched actual size * so we can keep the defines in sync and save a few reallocs on startup */ if (gst_value_table->len != GST_VALUE_TABLE_DEFAULT_SIZE) { GST_ERROR ("Wrong initial gst_value_table size. " "Please set GST_VALUE_TABLE_DEFAULT_SIZE to %u in gstvalue.c", gst_value_table->len); } if (gst_value_union_funcs->len != GST_VALUE_UNION_TABLE_DEFAULT_SIZE) { GST_ERROR ("Wrong initial gst_value_union_funcs table size. " "Please set GST_VALUE_UNION_TABLE_DEFAULT_SIZE to %u in gstvalue.c", gst_value_union_funcs->len); } if (gst_value_intersect_funcs->len != GST_VALUE_INTERSECT_TABLE_DEFAULT_SIZE) { GST_ERROR ("Wrong initial gst_value_intersect_funcs table size. " "Please set GST_VALUE_INTERSECT_TABLE_DEFAULT_SIZE to %u in gstvalue.c", gst_value_intersect_funcs->len); } if (gst_value_subtract_funcs->len != GST_VALUE_SUBTRACT_TABLE_DEFAULT_SIZE) { GST_ERROR ("Wrong initial gst_value_subtract_funcs table size. " "Please set GST_VALUE_SUBTRACT_TABLE_DEFAULT_SIZE to %u in gstvalue.c", gst_value_subtract_funcs->len); } #endif #if 0 /* Implement these if needed */ gst_value_register_union_func (GST_TYPE_FRACTION, GST_TYPE_FRACTION_RANGE, gst_value_union_fraction_fraction_range); gst_value_register_union_func (GST_TYPE_FRACTION_RANGE, GST_TYPE_FRACTION_RANGE, gst_value_union_fraction_range_fraction_range); #endif } static void gst_flagset_class_init (gpointer g_class, gpointer class_data) { GstFlagSetClass *f_class = (GstFlagSetClass *) (g_class); f_class->flags_type = (GType) GPOINTER_TO_SIZE (class_data); } /** * gst_flagset_register: * @flags_type: a #GType of a #G_TYPE_FLAGS type. * * Create a new sub-class of #GST_TYPE_FLAG_SET * which will pretty-print the human-readable flags * when serializing, for easier debugging. * * Since: 1.6 */ GType gst_flagset_register (GType flags_type) { GTypeInfo info = { sizeof (GstFlagSetClass), NULL, NULL, (GClassInitFunc) gst_flagset_class_init, NULL, GSIZE_TO_POINTER (flags_type), 0, 0, NULL, NULL }; GType t; gchar *class_name; g_return_val_if_fail (G_TYPE_IS_FLAGS (flags_type), 0); class_name = g_strdup_printf ("%sSet", g_type_name (flags_type)); t = g_type_register_static (GST_TYPE_FLAG_SET, g_intern_string (class_name), &info, 0); g_free (class_name); return t; }