1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
|
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
namespace {
/// This pass performs 'jump threading', which looks at blocks that have
/// multiple predecessors and multiple successors. If one or more of the
/// predecessors of the block can be proven to always jump to one of the
/// successors, we forward the edge from the predecessor to the successor by
/// duplicating the contents of this block.
///
/// An example of when this can occur is code like this:
///
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
///
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
TargetData *TD;
public:
static char ID; // Pass identification
JumpThreading() : FunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetData>();
}
bool runOnFunction(Function &F);
bool ProcessBlock(BasicBlock *BB);
void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessJumpOnPHI(PHINode *PN);
bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
};
}
char JumpThreading::ID = 0;
static RegisterPass<JumpThreading>
X("jump-threading", "Jump Threading");
// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
TD = &getAnalysis<TargetData>();
bool AnotherIteration = true, EverChanged = false;
while (AnotherIteration) {
AnotherIteration = false;
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
BasicBlock *BB = I;
while (ProcessBlock(BB))
Changed = true;
++I;
// If the block is trivially dead, zap it. This eliminates the successor
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
DOUT << " JT: Deleting dead block '" << BB->getNameStart()
<< "' with terminator: " << *BB->getTerminator();
DeleteDeadBlock(BB);
Changed = true;
}
}
AnotherIteration = Changed;
EverChanged |= Changed;
}
return EverChanged;
}
/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
/// value for the PHI, factor them together so we get one block to thread for
/// the whole group.
/// This is important for things like "phi i1 [true, true, false, true, x]"
/// where we only need to clone the block for the true blocks once.
///
BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
SmallVector<BasicBlock*, 16> CommonPreds;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == CstVal)
CommonPreds.push_back(PN->getIncomingBlock(i));
if (CommonPreds.size() == 1)
return CommonPreds[0];
DOUT << " Factoring out " << CommonPreds.size()
<< " common predecessors.\n";
return SplitBlockPredecessors(PN->getParent(),
&CommonPreds[0], CommonPreds.size(),
".thr_comm", this);
}
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
// If this is a pointer->pointer bitcast, it is free.
if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
continue;
// All other instructions count for at least one unit.
++Size;
// Calls are more expensive. If they are non-intrinsic calls, we model them
// as having cost of 4. If they are a non-vector intrinsic, we model them
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (isa<VectorType>(CI->getType()))
Size += 1;
}
}
// Threading through a switch statement is particularly profitable. If this
// block ends in a switch, decrease its cost to make it more likely to happen.
if (isa<SwitchInst>(I))
Size = Size > 6 ? Size-6 : 0;
return Size;
}
/// ProcessBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// If this block has a single predecessor, and if that pred has a single
// successor, merge the blocks. This encourages recursive jump threading
// because now the condition in this block can be threaded through
// predecessors of our predecessor block.
if (BasicBlock *SinglePred = BB->getSinglePredecessor())
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
SinglePred != BB) {
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(BB);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
return true;
}
// See if this block ends with a branch or switch. If so, see if the
// condition is a phi node. If so, and if an entry of the phi node is a
// constant, we can thread the block.
Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump.
if (BI->isUnconditional()) return false;
Condition = BI->getCondition();
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Condition = SI->getCondition();
else
return false; // Must be an invoke.
// If the terminator of this block is branching on a constant, simplify the
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
DOUT << " In block '" << BB->getNameStart()
<< "' folding terminator: " << *BB->getTerminator();
++NumFolds;
ConstantFoldTerminator(BB);
return true;
}
// If the terminator is branching on an undef, we can pick any of the
// successors to branch to. Since this is arbitrary, we pick the successor
// with the fewest predecessors. This should reduce the in-degree of the
// others.
if (isa<UndefValue>(Condition)) {
TerminatorInst *BBTerm = BB->getTerminator();
unsigned MinSucc = 0;
BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
// Compute the successor with the minimum number of predecessors.
unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
TestBB = BBTerm->getSuccessor(i);
unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
if (NumPreds < MinNumPreds)
MinSucc = i;
}
// Fold the branch/switch.
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
if (i == MinSucc) continue;
BBTerm->getSuccessor(i)->removePredecessor(BB);
}
DOUT << " In block '" << BB->getNameStart()
<< "' folding undef terminator: " << *BBTerm;
BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
BBTerm->eraseFromParent();
return true;
}
Instruction *CondInst = dyn_cast<Instruction>(Condition);
// If the condition is an instruction defined in another block, see if a
// predecessor has the same condition:
// br COND, BBX, BBY
// BBX:
// br COND, BBZ, BBW
if (!Condition->hasOneUse() && // Multiple uses.
(CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
if (isa<BranchInst>(BB->getTerminator())) {
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && PBI->getCondition() == Condition &&
ProcessBranchOnDuplicateCond(*PI, BB))
return true;
} else {
assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
for (; PI != E; ++PI)
if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
if (PSI->getCondition() == Condition &&
ProcessSwitchOnDuplicateCond(*PI, BB))
return true;
}
}
// If there is only a single predecessor of this block, nothing to fold.
if (BB->getSinglePredecessor())
return false;
// All the rest of our checks depend on the condition being an instruction.
if (CondInst == 0)
return false;
// See if this is a phi node in the current block.
if (PHINode *PN = dyn_cast<PHINode>(CondInst))
if (PN->getParent() == BB)
return ProcessJumpOnPHI(PN);
// If this is a conditional branch whose condition is and/or of a phi, try to
// simplify it.
if ((CondInst->getOpcode() == Instruction::And ||
CondInst->getOpcode() == Instruction::Or) &&
isa<BranchInst>(BB->getTerminator()) &&
ProcessBranchOnLogical(CondInst, BB,
CondInst->getOpcode() == Instruction::And))
return true;
// If we have "br (phi != 42)" and the phi node has any constant values as
// operands, we can thread through this block.
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst))
if (isa<PHINode>(CondCmp->getOperand(0)) &&
isa<Constant>(CondCmp->getOperand(1)) &&
ProcessBranchOnCompare(CondCmp, BB))
return true;
// Check for some cases that are worth simplifying. Right now we want to look
// for loads that are used by a switch or by the condition for the branch. If
// we see one, check to see if it's partially redundant. If so, insert a PHI
// which can then be used to thread the values.
//
// This is particularly important because reg2mem inserts loads and stores all
// over the place, and this blocks jump threading if we don't zap them.
Value *SimplifyValue = CondInst;
if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
if (isa<Constant>(CondCmp->getOperand(1)))
SimplifyValue = CondCmp->getOperand(0);
if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
if (SimplifyPartiallyRedundantLoad(LI))
return true;
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
// "(X == 4)" thread through this block.
return false;
}
/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
/// block that jump on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// br COND, DESTBB, BBY
/// DESTBB:
/// br COND, BBZ, BBW
///
/// If DESTBB has multiple predecessors, we can't just constant fold the branch
/// in DESTBB, we have to thread over it.
bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *BB) {
BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
// If both successors of PredBB go to DESTBB, we don't know anything. We can
// fold the branch to an unconditional one, which allows other recursive
// simplifications.
bool BranchDir;
if (PredBI->getSuccessor(1) != BB)
BranchDir = true;
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
DOUT << " In block '" << PredBB->getNameStart()
<< "' folding terminator: " << *PredBB->getTerminator();
++NumFolds;
ConstantFoldTerminator(PredBB);
return true;
}
BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
DOUT << " In block '" << BB->getNameStart()
<< "' folding condition to '" << BranchDir << "': "
<< *BB->getTerminator();
++NumFolds;
DestBI->setCondition(ConstantInt::get(Type::Int1Ty, BranchDir));
ConstantFoldTerminator(BB);
return true;
}
// Otherwise we need to thread from PredBB to DestBB's successor which
// involves code duplication. Check to see if it is worth it.
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - Cost is too high: " << JumpThreadCost << "\n";
return false;
}
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - would thread to self!\n";
return false;
}
// And finally, do it!
DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '"
<< SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
<< ", across block:\n "
<< *BB << "\n";
ThreadEdge(BB, PredBB, SuccBB);
++NumThreads;
return true;
}
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
/// block that switch on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// switch COND [... DESTBB, BBY ... ]
/// DESTBB:
/// switch COND [... BBZ, BBW ]
///
/// Optimizing switches like this is very important, because simplifycfg builds
/// switches out of repeated 'if' conditions.
bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *DestBB) {
// Can't thread edge to self.
if (PredBB == DestBB)
return false;
SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
// There are a variety of optimizations that we can potentially do on these
// blocks: we order them from most to least preferable.
// If DESTBB *just* contains the switch, then we can forward edges from PREDBB
// directly to their destination. This does not introduce *any* code size
// growth.
// FIXME: Thread if it just contains a PHI.
if (isa<SwitchInst>(DestBB->begin())) {
bool MadeChange = false;
// Ignore the default edge for now.
for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
ConstantInt *DestVal = DestSI->getCaseValue(i);
BasicBlock *DestSucc = DestSI->getSuccessor(i);
// Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
// PredSI has an explicit case for it. If so, forward. If it is covered
// by the default case, we can't update PredSI.
unsigned PredCase = PredSI->findCaseValue(DestVal);
if (PredCase == 0) continue;
// If PredSI doesn't go to DestBB on this value, then it won't reach the
// case on this condition.
if (PredSI->getSuccessor(PredCase) != DestBB &&
DestSI->getSuccessor(i) != DestBB)
continue;
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
DOUT << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI;
DOUT << "THROUGH: " << *DestSI;
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
SplitCriticalEdge(DestSI, i, this);
DestSucc = DestSI->getSuccessor(i);
}
FoldSingleEntryPHINodes(DestSucc);
PredSI->setSuccessor(PredCase, DestSucc);
MadeChange = true;
}
if (MadeChange)
return true;
}
return false;
}
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
/// load instruction, eliminate it by replacing it with a PHI node. This is an
/// important optimization that encourages jump threading, and needs to be run
/// interlaced with other jump threading tasks.
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// Don't hack volatile loads.
if (LI->isVolatile()) return false;
// If the load is defined in a block with exactly one predecessor, it can't be
// partially redundant.
BasicBlock *LoadBB = LI->getParent();
if (LoadBB->getSinglePredecessor())
return false;
Value *LoadedPtr = LI->getOperand(0);
// If the loaded operand is defined in the LoadBB, it can't be available.
// FIXME: Could do PHI translation, that would be fun :)
if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
if (PtrOp->getParent() == LoadBB)
return false;
// Scan a few instructions up from the load, to see if it is obviously live at
// the entry to its block.
BasicBlock::iterator BBIt = LI;
if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
BBIt, 6)) {
// If the value if the load is locally available within the block, just use
// it. This frequently occurs for reg2mem'd allocas.
//cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
}
// Otherwise, if we scanned the whole block and got to the top of the block,
// we know the block is locally transparent to the load. If not, something
// might clobber its value.
if (BBIt != LoadBB->begin())
return false;
SmallPtrSet<BasicBlock*, 8> PredsScanned;
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
AvailablePredsTy AvailablePreds;
BasicBlock *OneUnavailablePred = 0;
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *PredBB = *PI;
// If we already scanned this predecessor, skip it.
if (!PredsScanned.insert(PredBB))
continue;
// Scan the predecessor to see if the value is available in the pred.
BBIt = PredBB->end();
Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
if (!PredAvailable) {
OneUnavailablePred = PredBB;
continue;
}
// If so, this load is partially redundant. Remember this info so that we
// can create a PHI node.
AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
}
// If the loaded value isn't available in any predecessor, it isn't partially
// redundant.
if (AvailablePreds.empty()) return false;
// Okay, the loaded value is available in at least one (and maybe all!)
// predecessors. If the value is unavailable in more than one unique
// predecessor, we want to insert a merge block for those common predecessors.
// This ensures that we only have to insert one reload, thus not increasing
// code size.
BasicBlock *UnavailablePred = 0;
// If there is exactly one predecessor where the value is unavailable, the
// already computed 'OneUnavailablePred' block is it. If it ends in an
// unconditional branch, we know that it isn't a critical edge.
if (PredsScanned.size() == AvailablePreds.size()+1 &&
OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
UnavailablePred = OneUnavailablePred;
} else if (PredsScanned.size() != AvailablePreds.size()) {
// Otherwise, we had multiple unavailable predecessors or we had a critical
// edge from the one.
SmallVector<BasicBlock*, 8> PredsToSplit;
SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
AvailablePredSet.insert(AvailablePreds[i].first);
// Add all the unavailable predecessors to the PredsToSplit list.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI)
if (!AvailablePredSet.count(*PI))
PredsToSplit.push_back(*PI);
// Split them out to their own block.
UnavailablePred =
SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
"thread-split", this);
}
// If the value isn't available in all predecessors, then there will be
// exactly one where it isn't available. Insert a load on that edge and add
// it to the AvailablePreds list.
if (UnavailablePred) {
assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
"Can't handle critical edge here!");
Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
UnavailablePred->getTerminator());
AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
}
// Now we know that each predecessor of this block has a value in
// AvailablePreds, sort them for efficient access as we're walking the preds.
array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
// Create a PHI node at the start of the block for the PRE'd load value.
PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
PN->takeName(LI);
// Insert new entries into the PHI for each predecessor. A single block may
// have multiple entries here.
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
++PI) {
AvailablePredsTy::iterator I =
std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
std::make_pair(*PI, (Value*)0));
assert(I != AvailablePreds.end() && I->first == *PI &&
"Didn't find entry for predecessor!");
PN->addIncoming(I->second, I->first);
}
//cerr << "PRE: " << *LI << *PN << "\n";
LI->replaceAllUsesWith(PN);
LI->eraseFromParent();
return true;
}
/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
/// inputs to the phi node.
///
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
// See if the phi node has any constant values. If so, we can determine where
// the corresponding predecessor will branch.
ConstantInt *PredCst = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
break;
// If no incoming value has a constant, we don't know the destination of any
// predecessors.
if (PredCst == 0)
return false;
// See if the cost of duplicating this block is low enough.
BasicBlock *BB = PN->getParent();
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - Cost is too high: " << JumpThreadCost << "\n";
return false;
}
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
}
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - would thread to self!\n";
return false;
}
// And finally, do it!
DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '"
<< SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
<< ", across block:\n "
<< *BB << "\n";
ThreadEdge(BB, PredBB, SuccBB);
++NumThreads;
return true;
}
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
/// whose condition is an AND/OR where one side is PN. If PN has constant
/// operands that permit us to evaluate the condition for some operand, thread
/// through the block. For example with:
/// br (and X, phi(Y, Z, false))
/// the predecessor corresponding to the 'false' will always jump to the false
/// destination of the branch.
///
bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
bool isAnd) {
// If this is a binary operator tree of the same AND/OR opcode, check the
// LHS/RHS.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
if ((isAnd && BO->getOpcode() == Instruction::And) ||
(!isAnd && BO->getOpcode() == Instruction::Or)) {
if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
return true;
if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
return true;
}
// If this isn't a PHI node, we can't handle it.
PHINode *PN = dyn_cast<PHINode>(V);
if (!PN || PN->getParent() != BB) return false;
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
break;
}
}
// If no match, bail out.
if (PredNo == ~0U)
return false;
// See if the cost of duplicating this block is low enough.
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - Cost is too high: " << JumpThreadCost << "\n";
return false;
}
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
// Next, figure out which successor we are threading to. If this was an AND,
// the constant must be FALSE, and we must be targeting the 'false' block.
// If this is an OR, the constant must be TRUE, and we must be targeting the
// 'true' block.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - would thread to self!\n";
return false;
}
// And finally, do it!
DOUT << " Threading edge through bool from '" << PredBB->getNameStart()
<< "' to '" << SuccBB->getNameStart() << "' with cost: "
<< JumpThreadCost << ", across block:\n "
<< *BB << "\n";
ThreadEdge(BB, PredBB, SuccBB);
++NumThreads;
return true;
}
/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
/// node and a constant. If the PHI node contains any constants as inputs, we
/// can fold the compare for that edge and thread through it.
bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
Constant *RHS = cast<Constant>(Cmp->getOperand(1));
// If the phi isn't in the current block, an incoming edge to this block
// doesn't control the destination.
if (PN->getParent() != BB)
return false;
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
Constant *PredCst = 0;
bool TrueDirection = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
if (PredCst == 0) continue;
Constant *Res;
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
else
Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
PredCst, RHS);
// If this folded to a constant expr, we can't do anything.
if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
TrueDirection = ResC->getZExtValue();
break;
}
// If this folded to undef, just go the false way.
if (isa<UndefValue>(Res)) {
TrueDirection = false;
break;
}
// Otherwise, we can't fold this input.
PredCst = 0;
}
// If no match, bail out.
if (PredCst == 0)
return false;
// See if the cost of duplicating this block is low enough.
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - Cost is too high: " << JumpThreadCost << "\n";
return false;
}
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
// Next, get our successor.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DOUT << " Not threading BB '" << BB->getNameStart()
<< "' - would thread to self!\n";
return false;
}
// And finally, do it!
DOUT << " Threading edge through bool from '" << PredBB->getNameStart()
<< "' to '" << SuccBB->getNameStart() << "' with cost: "
<< JumpThreadCost << ", across block:\n "
<< *BB << "\n";
ThreadEdge(BB, PredBB, SuccBB);
++NumThreads;
return true;
}
/// ThreadEdge - We have decided that it is safe and profitable to thread an
/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
/// change.
void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
BasicBlock *SuccBB) {
// Jump Threading can not update SSA properties correctly if the values
// defined in the duplicated block are used outside of the block itself. For
// this reason, we spill all values that are used outside of BB to the stack.
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
if (!I->isUsedOutsideOfBlock(BB))
continue;
// We found a use of I outside of BB. Create a new stack slot to
// break this inter-block usage pattern.
DemoteRegToStack(*I);
}
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
DenseMap<Instruction*, Value*> ValueMapping;
BasicBlock *NewBB =
BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
NewBB->moveAfter(PredBB);
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getNameStart());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
if (Value *Remapped = ValueMapping[Inst])
New->setOperand(i, Remapped);
}
// We didn't copy the terminator from BB over to NewBB, because there is now
// an unconditional jump to SuccBB. Insert the unconditional jump.
BranchInst::Create(SuccBB, NewBB);
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
// PHI nodes for NewBB now.
for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
PHINode *PN = cast<PHINode>(PNI);
// Ok, we have a PHI node. Figure out what the incoming value was for the
// DestBlock.
Value *IV = PN->getIncomingValueForBlock(BB);
// Remap the value if necessary.
if (Instruction *Inst = dyn_cast<Instruction>(IV))
if (Value *MappedIV = ValueMapping[Inst])
IV = MappedIV;
PN->addIncoming(IV, NewBB);
}
// Ok, NewBB is good to go. Update the terminator of PredBB to jump to
// NewBB instead of BB. This eliminates predecessors from BB, which requires
// us to simplify any PHI nodes in BB.
TerminatorInst *PredTerm = PredBB->getTerminator();
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
if (PredTerm->getSuccessor(i) == BB) {
BB->removePredecessor(PredBB);
PredTerm->setSuccessor(i, NewBB);
}
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
BI = NewBB->begin();
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
continue;
}
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
}
|