//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// \brief Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPURegisterInfo.h" #include "AMDILDevices.h" #include "R600InstrInfo.h" #include "llvm/ADT/ValueMap.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Compiler.h" #include "llvm/CodeGen/SelectionDAG.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const AMDGPUSubtarget &Subtarget; public: AMDGPUDAGToDAGISel(TargetMachine &TM); virtual ~AMDGPUDAGToDAGISel(); SDNode *Select(SDNode *N); virtual const char *getPassName() const; private: inline SDValue getSmallIPtrImm(unsigned Imm); bool FoldOperands(unsigned, const R600InstrInfo *, std::vector &); // Complex pattern selectors bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2); bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2); bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2); static bool checkType(const Value *ptr, unsigned int addrspace); static const Value *getBasePointerValue(const Value *V); static bool isGlobalStore(const StoreSDNode *N); static bool isPrivateStore(const StoreSDNode *N); static bool isLocalStore(const StoreSDNode *N); static bool isRegionStore(const StoreSDNode *N); static bool isCPLoad(const LoadSDNode *N); static bool isConstantLoad(const LoadSDNode *N, int cbID); static bool isGlobalLoad(const LoadSDNode *N); static bool isParamLoad(const LoadSDNode *N); static bool isPrivateLoad(const LoadSDNode *N); static bool isLocalLoad(const LoadSDNode *N); static bool isRegionLoad(const LoadSDNode *N); bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; } // end anonymous namespace /// \brief This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM ) { return new AMDGPUDAGToDAGISel(TM); } AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM ) : SelectionDAGISel(TM), Subtarget(TM.getSubtarget()) { } AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() { } SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } bool AMDGPUDAGToDAGISel::SelectADDRParam( SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); R2 = CurDAG->getTargetConstant(0, MVT::i32); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } return true; } bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } return SelectADDRParam(Addr, R1, R2); } bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64); R2 = CurDAG->getTargetConstant(0, MVT::i64); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } return true; } SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } const R600InstrInfo *TII = static_cast(TM.getInstrInfo()); uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM); assert(ImmIdx != -1); // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) { const R600InstrInfo *TII = static_cast(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->isALUInstr(Result->getMachineOpcode())) { // Fold FNEG/FABS/CONST_ADDRESS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP); std::vector Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; } bool AMDGPUDAGToDAGISel::FoldOperands(unsigned Opcode, const R600InstrInfo *TII, std::vector &Ops) { int OperandIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0), TII->getOperandIdx(Opcode, R600Operands::SRC1), TII->getOperandIdx(Opcode, R600Operands::SRC2) }; int SelIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL), TII->getOperandIdx(Opcode, R600Operands::SRC2_SEL) }; int NegIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG), TII->getOperandIdx(Opcode, R600Operands::SRC2_NEG) }; int AbsIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS), -1 }; for (unsigned i = 0; i < 3; i++) { if (OperandIdx[i] < 0) return false; SDValue Operand = Ops[OperandIdx[i] - 1]; switch (Operand.getOpcode()) { case AMDGPUISD::CONST_ADDRESS: { SDValue CstOffset; if (!Operand.getValueType().isVector() && SelectGlobalValueConstantOffset(Operand.getOperand(0), CstOffset)) { Ops[OperandIdx[i] - 1] = CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32); Ops[SelIdx[i] - 1] = CstOffset; return true; } } break; case ISD::FNEG: if (NegIdx[i] < 0) break; Ops[OperandIdx[i] - 1] = Operand.getOperand(0); Ops[NegIdx[i] - 1] = CurDAG->getTargetConstant(1, MVT::i32); return true; case ISD::FABS: if (AbsIdx[i] < 0) break; Ops[OperandIdx[i] - 1] = Operand.getOperand(0); Ops[AbsIdx[i] - 1] = CurDAG->getTargetConstant(1, MVT::i32); return true; case ISD::BITCAST: Ops[OperandIdx[i] - 1] = Operand.getOperand(0); return true; default: break; } } return false; } bool AMDGPUDAGToDAGISel::checkType(const Value *ptr, unsigned int addrspace) { if (!ptr) { return false; } Type *ptrType = ptr->getType(); return dyn_cast(ptrType)->getAddressSpace() == addrspace; } const Value * AMDGPUDAGToDAGISel::getBasePointerValue(const Value *V) { if (!V) { return NULL; } const Value *ret = NULL; ValueMap ValueBitMap; std::queue > ValueQueue; ValueQueue.push(V); while (!ValueQueue.empty()) { V = ValueQueue.front(); if (ValueBitMap.find(V) == ValueBitMap.end()) { ValueBitMap[V] = true; if (dyn_cast(V) && dyn_cast(V->getType())) { ret = V; break; } else if (dyn_cast(V)) { ret = V; break; } else if (dyn_cast(V)) { const ConstantExpr *CE = dyn_cast(V); if (CE) { ValueQueue.push(CE->getOperand(0)); } } else if (const AllocaInst *AI = dyn_cast(V)) { ret = AI; break; } else if (const Instruction *I = dyn_cast(V)) { uint32_t numOps = I->getNumOperands(); for (uint32_t x = 0; x < numOps; ++x) { ValueQueue.push(I->getOperand(x)); } } else { assert(!"Found a Value that we didn't know how to handle!"); } } ValueQueue.pop(); } return ret; } bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) { return (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS)); } bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int cbID) { if (checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS)) { return true; } MachineMemOperand *MMO = N->getMemOperand(); const Value *V = MMO->getValue(); const Value *BV = getBasePointerValue(V); if (MMO && MMO->getValue() && ((V && dyn_cast(V)) || (BV && dyn_cast( getBasePointerValue(MMO->getValue()))))) { return checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS); } else { return false; } } bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS); } bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) { MachineMemOperand *MMO = N->getMemOperand(); if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { if (MMO) { const Value *V = MMO->getValue(); const PseudoSourceValue *PSV = dyn_cast(V); if (PSV && PSV == PseudoSourceValue::getConstantPool()) { return true; } } } return false; } bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) { if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { // Check to make sure we are not a constant pool load or a constant load // that is marked as a private load if (isCPLoad(N) || isConstantLoad(N, -1)) { return false; } } if (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_D_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS)) { return true; } return false; } const char *AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } #ifdef DEBUGTMP #undef INT64_C #endif #undef DEBUGTMP ///==== AMDGPU Functions ====/// bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!dyn_cast(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode * IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), CurDAG->getEntryNode().getDebugLoc(), AMDGPU::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; if ((C = dyn_cast(Addr))) { Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); } return true; }