/* * sound/oss/sequencer.c * * The sequencer personality manager. */ /* * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ /* * Thomas Sailer : ioctl code reworked (vmalloc/vfree removed) * Alan Cox : reformatted and fixed a pair of null pointer bugs */ #include #include #include "sound_config.h" #include "midi_ctrl.h" static int sequencer_ok; static struct sound_timer_operations *tmr; static int tmr_no = -1; /* Currently selected timer */ static int pending_timer = -1; /* For timer change operation */ extern unsigned long seq_time; static int obsolete_api_used; static DEFINE_SPINLOCK(lock); /* * Local counts for number of synth and MIDI devices. These are initialized * by the sequencer_open. */ static int max_mididev; static int max_synthdev; /* * The seq_mode gives the operating mode of the sequencer: * 1 = level1 (the default) * 2 = level2 (extended capabilities) */ #define SEQ_1 1 #define SEQ_2 2 static int seq_mode = SEQ_1; static DECLARE_WAIT_QUEUE_HEAD(seq_sleeper); static DECLARE_WAIT_QUEUE_HEAD(midi_sleeper); static int midi_opened[MAX_MIDI_DEV]; static int midi_written[MAX_MIDI_DEV]; static unsigned long prev_input_time; static int prev_event_time; #include "tuning.h" #define EV_SZ 8 #define IEV_SZ 8 static unsigned char *queue; static unsigned char *iqueue; static volatile int qhead, qtail, qlen; static volatile int iqhead, iqtail, iqlen; static volatile int seq_playing; static volatile int sequencer_busy; static int output_threshold; static long pre_event_timeout; static unsigned synth_open_mask; static int seq_queue(unsigned char *note, char nonblock); static void seq_startplay(void); static int seq_sync(void); static void seq_reset(void); #if MAX_SYNTH_DEV > 15 #error Too many synthesizer devices enabled. #endif int sequencer_read(int dev, struct file *file, char __user *buf, int count) { int c = count, p = 0; int ev_len; unsigned long flags; dev = dev >> 4; ev_len = seq_mode == SEQ_1 ? 4 : 8; spin_lock_irqsave(&lock,flags); if (!iqlen) { spin_unlock_irqrestore(&lock,flags); if (file->f_flags & O_NONBLOCK) { return -EAGAIN; } interruptible_sleep_on_timeout(&midi_sleeper, pre_event_timeout); spin_lock_irqsave(&lock,flags); if (!iqlen) { spin_unlock_irqrestore(&lock,flags); return 0; } } while (iqlen && c >= ev_len) { char *fixit = (char *) &iqueue[iqhead * IEV_SZ]; spin_unlock_irqrestore(&lock,flags); if (copy_to_user(&(buf)[p], fixit, ev_len)) return count - c; p += ev_len; c -= ev_len; spin_lock_irqsave(&lock,flags); iqhead = (iqhead + 1) % SEQ_MAX_QUEUE; iqlen--; } spin_unlock_irqrestore(&lock,flags); return count - c; } static void sequencer_midi_output(int dev) { /* * Currently NOP */ } void seq_copy_to_input(unsigned char *event_rec, int len) { unsigned long flags; /* * Verify that the len is valid for the current mode. */ if (len != 4 && len != 8) return; if ((seq_mode == SEQ_1) != (len == 4)) return; if (iqlen >= (SEQ_MAX_QUEUE - 1)) return; /* Overflow */ spin_lock_irqsave(&lock,flags); memcpy(&iqueue[iqtail * IEV_SZ], event_rec, len); iqlen++; iqtail = (iqtail + 1) % SEQ_MAX_QUEUE; wake_up(&midi_sleeper); spin_unlock_irqrestore(&lock,flags); } EXPORT_SYMBOL(seq_copy_to_input); static void sequencer_midi_input(int dev, unsigned char data) { unsigned int tstamp; unsigned char event_rec[4]; if (data == 0xfe) /* Ignore active sensing */ return; tstamp = jiffies - seq_time; if (tstamp != prev_input_time) { tstamp = (tstamp << 8) | SEQ_WAIT; seq_copy_to_input((unsigned char *) &tstamp, 4); prev_input_time = tstamp; } event_rec[0] = SEQ_MIDIPUTC; event_rec[1] = data; event_rec[2] = dev; event_rec[3] = 0; seq_copy_to_input(event_rec, 4); } void seq_input_event(unsigned char *event_rec, int len) { unsigned long this_time; if (seq_mode == SEQ_2) this_time = tmr->get_time(tmr_no); else this_time = jiffies - seq_time; if (this_time != prev_input_time) { unsigned char tmp_event[8]; tmp_event[0] = EV_TIMING; tmp_event[1] = TMR_WAIT_ABS; tmp_event[2] = 0; tmp_event[3] = 0; *(unsigned int *) &tmp_event[4] = this_time; seq_copy_to_input(tmp_event, 8); prev_input_time = this_time; } seq_copy_to_input(event_rec, len); } EXPORT_SYMBOL(seq_input_event); int sequencer_write(int dev, struct file *file, const char __user *buf, int count) { unsigned char event_rec[EV_SZ], ev_code; int p = 0, c, ev_size; int err; int mode = translate_mode(file); dev = dev >> 4; DEB(printk("sequencer_write(dev=%d, count=%d)\n", dev, count)); if (mode == OPEN_READ) return -EIO; c = count; while (c >= 4) { if (copy_from_user((char *) event_rec, &(buf)[p], 4)) goto out; ev_code = event_rec[0]; if (ev_code == SEQ_FULLSIZE) { int err, fmt; dev = *(unsigned short *) &event_rec[2]; if (dev < 0 || dev >= max_synthdev || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; fmt = (*(short *) &event_rec[0]) & 0xffff; err = synth_devs[dev]->load_patch(dev, fmt, buf, p + 4, c, 0); if (err < 0) return err; return err; } if (ev_code >= 128) { if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED) { printk(KERN_WARNING "Sequencer: Invalid level 2 event %x\n", ev_code); return -EINVAL; } ev_size = 8; if (c < ev_size) { if (!seq_playing) seq_startplay(); return count - c; } if (copy_from_user((char *)&event_rec[4], &(buf)[p + 4], 4)) goto out; } else { if (seq_mode == SEQ_2) { printk(KERN_WARNING "Sequencer: 4 byte event in level 2 mode\n"); return -EINVAL; } ev_size = 4; if (event_rec[0] != SEQ_MIDIPUTC) obsolete_api_used = 1; } if (event_rec[0] == SEQ_MIDIPUTC) { if (!midi_opened[event_rec[2]]) { int mode; int dev = event_rec[2]; if (dev >= max_mididev || midi_devs[dev]==NULL) { /*printk("Sequencer Error: Nonexistent MIDI device %d\n", dev);*/ return -ENXIO; } mode = translate_mode(file); if ((err = midi_devs[dev]->open(dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) { seq_reset(); printk(KERN_WARNING "Sequencer Error: Unable to open Midi #%d\n", dev); return err; } midi_opened[dev] = 1; } } if (!seq_queue(event_rec, (file->f_flags & (O_NONBLOCK) ? 1 : 0))) { int processed = count - c; if (!seq_playing) seq_startplay(); if (!processed && (file->f_flags & O_NONBLOCK)) return -EAGAIN; else return processed; } p += ev_size; c -= ev_size; } if (!seq_playing) seq_startplay(); out: return count; } static int seq_queue(unsigned char *note, char nonblock) { /* * Test if there is space in the queue */ if (qlen >= SEQ_MAX_QUEUE) if (!seq_playing) seq_startplay(); /* * Give chance to drain the queue */ if (!nonblock && qlen >= SEQ_MAX_QUEUE && !waitqueue_active(&seq_sleeper)) { /* * Sleep until there is enough space on the queue */ interruptible_sleep_on(&seq_sleeper); } if (qlen >= SEQ_MAX_QUEUE) { return 0; /* * To be sure */ } memcpy(&queue[qtail * EV_SZ], note, EV_SZ); qtail = (qtail + 1) % SEQ_MAX_QUEUE; qlen++; return 1; } static int extended_event(unsigned char *q) { int dev = q[2]; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; switch (q[1]) { case SEQ_NOTEOFF: synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]); break; case SEQ_NOTEON: if (q[4] > 127 && q[4] != 255) return 0; if (q[5] == 0) { synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]); break; } synth_devs[dev]->start_note(dev, q[3], q[4], q[5]); break; case SEQ_PGMCHANGE: synth_devs[dev]->set_instr(dev, q[3], q[4]); break; case SEQ_AFTERTOUCH: synth_devs[dev]->aftertouch(dev, q[3], q[4]); break; case SEQ_BALANCE: synth_devs[dev]->panning(dev, q[3], (char) q[4]); break; case SEQ_CONTROLLER: synth_devs[dev]->controller(dev, q[3], q[4], (short) (q[5] | (q[6] << 8))); break; case SEQ_VOLMODE: if (synth_devs[dev]->volume_method != NULL) synth_devs[dev]->volume_method(dev, q[3]); break; default: return -EINVAL; } return 0; } static int find_voice(int dev, int chn, int note) { unsigned short key; int i; key = (chn << 8) | (note + 1); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if (synth_devs[dev]->alloc.map[i] == key) return i; return -1; } static int alloc_voice(int dev, int chn, int note) { unsigned short key; int voice; key = (chn << 8) | (note + 1); voice = synth_devs[dev]->alloc_voice(dev, chn, note, &synth_devs[dev]->alloc); synth_devs[dev]->alloc.map[voice] = key; synth_devs[dev]->alloc.alloc_times[voice] = synth_devs[dev]->alloc.timestamp++; return voice; } static void seq_chn_voice_event(unsigned char *event_rec) { #define dev event_rec[1] #define cmd event_rec[2] #define chn event_rec[3] #define note event_rec[4] #define parm event_rec[5] int voice = -1; if ((int) dev > max_synthdev || synth_devs[dev] == NULL) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (seq_mode == SEQ_2) { if (synth_devs[dev]->alloc_voice) voice = find_voice(dev, chn, note); if (cmd == MIDI_NOTEON && parm == 0) { cmd = MIDI_NOTEOFF; parm = 64; } } switch (cmd) { case MIDI_NOTEON: if (note > 127 && note != 255) /* Not a seq2 feature */ return; if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice) { /* Internal synthesizer (FM, GUS, etc) */ voice = alloc_voice(dev, chn, note); } if (voice == -1) voice = chn; if (seq_mode == SEQ_2 && (int) dev < num_synths) { /* * The MIDI channel 10 is a percussive channel. Use the note * number to select the proper patch (128 to 255) to play. */ if (chn == 9) { synth_devs[dev]->set_instr(dev, voice, 128 + note); synth_devs[dev]->chn_info[chn].pgm_num = 128 + note; } synth_devs[dev]->setup_voice(dev, voice, chn); } synth_devs[dev]->start_note(dev, voice, note, parm); break; case MIDI_NOTEOFF: if (voice == -1) voice = chn; synth_devs[dev]->kill_note(dev, voice, note, parm); break; case MIDI_KEY_PRESSURE: if (voice == -1) voice = chn; synth_devs[dev]->aftertouch(dev, voice, parm); break; default:; } #undef dev #undef cmd #undef chn #undef note #undef parm } static void seq_chn_common_event(unsigned char *event_rec) { unsigned char dev = event_rec[1]; unsigned char cmd = event_rec[2]; unsigned char chn = event_rec[3]; unsigned char p1 = event_rec[4]; /* unsigned char p2 = event_rec[5]; */ unsigned short w14 = *(short *) &event_rec[6]; if ((int) dev > max_synthdev || synth_devs[dev] == NULL) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; switch (cmd) { case MIDI_PGM_CHANGE: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].pgm_num = p1; if ((int) dev >= num_synths) synth_devs[dev]->set_instr(dev, chn, p1); } else synth_devs[dev]->set_instr(dev, chn, p1); break; case MIDI_CTL_CHANGE: if (seq_mode == SEQ_2) { if (chn > 15 || p1 > 127) break; synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f; if (p1 < 32) /* Setting MSB should clear LSB to 0 */ synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0; if ((int) dev < num_synths) { int val = w14 & 0x7f; int i, key; if (p1 < 64) /* Combine MSB and LSB */ { val = ((synth_devs[dev]-> chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7) | (synth_devs[dev]-> chn_info[chn].controllers[p1 | 32] & 0x7f); p1 &= ~32; } /* Handle all playing notes on this channel */ key = ((int) chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->controller(dev, i, p1, val); } else synth_devs[dev]->controller(dev, chn, p1, w14); } else /* Mode 1 */ synth_devs[dev]->controller(dev, chn, p1, w14); break; case MIDI_PITCH_BEND: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].bender_value = w14; if ((int) dev < num_synths) { /* Handle all playing notes on this channel */ int i, key; key = (chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->bender(dev, i, w14); } else synth_devs[dev]->bender(dev, chn, w14); } else /* MODE 1 */ synth_devs[dev]->bender(dev, chn, w14); break; default:; } } static int seq_timing_event(unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *(int *) &event_rec[4]; if (seq_mode == SEQ_2) { int ret; if ((ret = tmr->event(tmr_no, event_rec)) == TIMER_ARMED) if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); return ret; } switch (cmd) { case TMR_WAIT_REL: parm += prev_event_time; /* * NOTE! No break here. Execution of TMR_WAIT_REL continues in the * next case (TMR_WAIT_ABS) */ case TMR_WAIT_ABS: if (parm > 0) { long time; time = parm; prev_event_time = time; seq_playing = 1; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); return TIMER_ARMED; } break; case TMR_START: seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case TMR_STOP: break; case TMR_CONTINUE: break; case TMR_TEMPO: break; case TMR_ECHO: if (seq_mode == SEQ_2) seq_copy_to_input(event_rec, 8); else { parm = (parm << 8 | SEQ_ECHO); seq_copy_to_input((unsigned char *) &parm, 4); } break; default:; } return TIMER_NOT_ARMED; } static void seq_local_event(unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *((unsigned int *) &event_rec[4]); switch (cmd) { case LOCL_STARTAUDIO: DMAbuf_start_devices(parm); break; default:; } } static void seq_sysex_message(unsigned char *event_rec) { unsigned int dev = event_rec[1]; int i, l = 0; unsigned char *buf = &event_rec[2]; if (dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; l = 0; for (i = 0; i < 6 && buf[i] != 0xff; i++) l = i + 1; if (!synth_devs[dev]->send_sysex) return; if (l > 0) synth_devs[dev]->send_sysex(dev, buf, l); } static int play_event(unsigned char *q) { /* * NOTE! This routine returns * 0 = normal event played. * 1 = Timer armed. Suspend playback until timer callback. * 2 = MIDI output buffer full. Restore queue and suspend until timer */ unsigned int *delay; switch (q[0]) { case SEQ_NOTEOFF: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->kill_note(0, q[1], 255, q[3]); break; case SEQ_NOTEON: if (q[4] < 128 || q[4] == 255) if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->start_note(0, q[1], q[2], q[3]); break; case SEQ_WAIT: delay = (unsigned int *) q; /* * Bytes 1 to 3 are containing the * * delay in 'ticks' */ *delay = (*delay >> 8) & 0xffffff; if (*delay > 0) { long time; seq_playing = 1; time = *delay; prev_event_time = time; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); /* * The timer is now active and will reinvoke this function * after the timer expires. Return to the caller now. */ return 1; } break; case SEQ_PGMCHANGE: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->set_instr(0, q[1], q[2]); break; case SEQ_SYNCTIMER: /* * Reset timer */ seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case SEQ_MIDIPUTC: /* * Put a midi character */ if (midi_opened[q[2]]) { int dev; dev = q[2]; if (dev < 0 || dev >= num_midis || midi_devs[dev] == NULL) break; if (!midi_devs[dev]->outputc(dev, q[1])) { /* * Output FIFO is full. Wait one timer cycle and try again. */ seq_playing = 1; request_sound_timer(-1); return 2; } else midi_written[dev] = 1; } break; case SEQ_ECHO: seq_copy_to_input(q, 4); /* * Echo back to the process */ break; case SEQ_PRIVATE: if ((int) q[1] < max_synthdev) synth_devs[q[1]]->hw_control(q[1], q); break; case SEQ_EXTENDED: extended_event(q); break; case EV_CHN_VOICE: seq_chn_voice_event(q); break; case EV_CHN_COMMON: seq_chn_common_event(q); break; case EV_TIMING: if (seq_timing_event(q) == TIMER_ARMED) { return 1; } break; case EV_SEQ_LOCAL: seq_local_event(q); break; case EV_SYSEX: seq_sysex_message(q); break; default:; } return 0; } /* called also as timer in irq context */ static void seq_startplay(void) { int this_one, action; unsigned long flags; while (qlen > 0) { spin_lock_irqsave(&lock,flags); qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE; qlen--; spin_unlock_irqrestore(&lock,flags); seq_playing = 1; if ((action = play_event(&queue[this_one * EV_SZ]))) { /* Suspend playback. Next timer routine invokes this routine again */ if (action == 2) { qlen++; qhead = this_one; } return; } } seq_playing = 0; if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); } static void reset_controllers(int dev, unsigned char *controller, int update_dev) { int i; for (i = 0; i < 128; i++) controller[i] = ctrl_def_values[i]; } static void setup_mode2(void) { int dev; max_synthdev = num_synths; for (dev = 0; dev < num_midis; dev++) { if (midi_devs[dev] && midi_devs[dev]->converter != NULL) { synth_devs[max_synthdev++] = midi_devs[dev]->converter; } } for (dev = 0; dev < max_synthdev; dev++) { int chn; synth_devs[dev]->sysex_ptr = 0; synth_devs[dev]->emulation = 0; for (chn = 0; chn < 16; chn++) { synth_devs[dev]->chn_info[chn].pgm_num = 0; reset_controllers(dev, synth_devs[dev]->chn_info[chn].controllers,0); synth_devs[dev]->chn_info[chn].bender_value = (1 << 7); /* Neutral */ synth_devs[dev]->chn_info[chn].bender_range = 200; } } max_mididev = 0; seq_mode = SEQ_2; } int sequencer_open(int dev, struct file *file) { int retval, mode, i; int level, tmp; if (!sequencer_ok) sequencer_init(); level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1; dev = dev >> 4; mode = translate_mode(file); DEB(printk("sequencer_open(dev=%d)\n", dev)); if (!sequencer_ok) { /* printk("Sound card: sequencer not initialized\n");*/ return -ENXIO; } if (dev) /* Patch manager device (obsolete) */ return -ENXIO; if(synth_devs[dev] == NULL) request_module("synth0"); if (mode == OPEN_READ) { if (!num_midis) { /*printk("Sequencer: No MIDI devices. Input not possible\n");*/ sequencer_busy = 0; return -ENXIO; } } if (sequencer_busy) { return -EBUSY; } sequencer_busy = 1; obsolete_api_used = 0; max_mididev = num_midis; max_synthdev = num_synths; pre_event_timeout = MAX_SCHEDULE_TIMEOUT; seq_mode = SEQ_1; if (pending_timer != -1) { tmr_no = pending_timer; pending_timer = -1; } if (tmr_no == -1) /* Not selected yet */ { int i, best; best = -1; for (i = 0; i < num_sound_timers; i++) if (sound_timer_devs[i] && sound_timer_devs[i]->priority > best) { tmr_no = i; best = sound_timer_devs[i]->priority; } if (tmr_no == -1) /* Should not be */ tmr_no = 0; } tmr = sound_timer_devs[tmr_no]; if (level == 2) { if (tmr == NULL) { /*printk("sequencer: No timer for level 2\n");*/ sequencer_busy = 0; return -ENXIO; } setup_mode2(); } if (!max_synthdev && !max_mididev) { sequencer_busy=0; return -ENXIO; } synth_open_mask = 0; for (i = 0; i < max_mididev; i++) { midi_opened[i] = 0; midi_written[i] = 0; } for (i = 0; i < max_synthdev; i++) { if (synth_devs[i]==NULL) continue; if (!try_module_get(synth_devs[i]->owner)) continue; if ((tmp = synth_devs[i]->open(i, mode)) < 0) { printk(KERN_WARNING "Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp); if (synth_devs[i]->midi_dev) printk(KERN_WARNING "(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev); } else { synth_open_mask |= (1 << i); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 1; } } seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) { /* * Initialize midi input devices */ for (i = 0; i < max_mididev; i++) if (!midi_opened[i] && midi_devs[i]) { if (!try_module_get(midi_devs[i]->owner)) continue; if ((retval = midi_devs[i]->open(i, mode, sequencer_midi_input, sequencer_midi_output)) >= 0) { midi_opened[i] = 1; } } } if (seq_mode == SEQ_2) { if (try_module_get(tmr->owner)) tmr->open(tmr_no, seq_mode); } init_waitqueue_head(&seq_sleeper); init_waitqueue_head(&midi_sleeper); output_threshold = SEQ_MAX_QUEUE / 2; return 0; } static void seq_drain_midi_queues(void) { int i, n; /* * Give the Midi drivers time to drain their output queues */ n = 1; while (!signal_pending(current) && n) { n = 0; for (i = 0; i < max_mididev; i++) if (midi_opened[i] && midi_written[i]) if (midi_devs[i]->buffer_status != NULL) if (midi_devs[i]->buffer_status(i)) n++; /* * Let's have a delay */ if (n) interruptible_sleep_on_timeout(&seq_sleeper, HZ/10); } } void sequencer_release(int dev, struct file *file) { int i; int mode = translate_mode(file); dev = dev >> 4; DEB(printk("sequencer_release(dev=%d)\n", dev)); /* * Wait until the queue is empty (if we don't have nonblock) */ if (mode != OPEN_READ && !(file->f_flags & O_NONBLOCK)) { while (!signal_pending(current) && qlen > 0) { seq_sync(); interruptible_sleep_on_timeout(&seq_sleeper, 3*HZ); /* Extra delay */ } } if (mode != OPEN_READ) seq_drain_midi_queues(); /* * Ensure the output queues are empty */ seq_reset(); if (mode != OPEN_READ) seq_drain_midi_queues(); /* * Flush the all notes off messages */ for (i = 0; i < max_synthdev; i++) { if (synth_open_mask & (1 << i)) /* * Actually opened */ if (synth_devs[i]) { synth_devs[i]->close(i); module_put(synth_devs[i]->owner); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 0; } } for (i = 0; i < max_mididev; i++) { if (midi_opened[i]) { midi_devs[i]->close(i); module_put(midi_devs[i]->owner); } } if (seq_mode == SEQ_2) { tmr->close(tmr_no); module_put(tmr->owner); } if (obsolete_api_used) printk(KERN_WARNING "/dev/music: Obsolete (4 byte) API was used by %s\n", current->comm); sequencer_busy = 0; } static int seq_sync(void) { if (qlen && !seq_playing && !signal_pending(current)) seq_startplay(); if (qlen > 0) interruptible_sleep_on_timeout(&seq_sleeper, HZ); return qlen; } static void midi_outc(int dev, unsigned char data) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int n; unsigned long flags; /* * This routine sends one byte to the Midi channel. * If the output FIFO is full, it waits until there * is space in the queue */ n = 3 * HZ; /* Timeout */ spin_lock_irqsave(&lock,flags); while (n && !midi_devs[dev]->outputc(dev, data)) { interruptible_sleep_on_timeout(&seq_sleeper, HZ/25); n--; } spin_unlock_irqrestore(&lock,flags); } static void seq_reset(void) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int i; int chn; unsigned long flags; sound_stop_timer(); seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; qlen = qhead = qtail = 0; iqlen = iqhead = iqtail = 0; for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) synth_devs[i]->reset(i); if (seq_mode == SEQ_2) { for (chn = 0; chn < 16; chn++) for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) { synth_devs[i]->controller(i, chn, 123, 0); /* All notes off */ synth_devs[i]->controller(i, chn, 121, 0); /* Reset all ctl */ synth_devs[i]->bender(i, chn, 1 << 13); /* Bender off */ } } else /* seq_mode == SEQ_1 */ { for (i = 0; i < max_mididev; i++) if (midi_written[i]) /* * Midi used. Some notes may still be playing */ { /* * Sending just a ACTIVE SENSING message should be enough to stop all * playing notes. Since there are devices not recognizing the * active sensing, we have to send some all notes off messages also. */ midi_outc(i, 0xfe); for (chn = 0; chn < 16; chn++) { midi_outc(i, (unsigned char) (0xb0 + (chn & 0x0f))); /* control change */ midi_outc(i, 0x7b); /* All notes off */ midi_outc(i, 0); /* Dummy parameter */ } midi_devs[i]->close(i); midi_written[i] = 0; midi_opened[i] = 0; } } seq_playing = 0; spin_lock_irqsave(&lock,flags); if (waitqueue_active(&seq_sleeper)) { /* printk( "Sequencer Warning: Unexpected sleeping process - Waking up\n"); */ wake_up(&seq_sleeper); } spin_unlock_irqrestore(&lock,flags); } static void seq_panic(void) { /* * This routine is called by the application in case the user * wants to reset the system to the default state. */ seq_reset(); /* * Since some of the devices don't recognize the active sensing and * all notes off messages, we have to shut all notes manually. * * TO BE IMPLEMENTED LATER */ /* * Also return the controllers to their default states */ } int sequencer_ioctl(int dev, struct file *file, unsigned int cmd, void __user *arg) { int midi_dev, orig_dev, val, err; int mode = translate_mode(file); struct synth_info inf; struct seq_event_rec event_rec; unsigned long flags; int __user *p = arg; orig_dev = dev = dev >> 4; switch (cmd) { case SNDCTL_TMR_TIMEBASE: case SNDCTL_TMR_TEMPO: case SNDCTL_TMR_START: case SNDCTL_TMR_STOP: case SNDCTL_TMR_CONTINUE: case SNDCTL_TMR_METRONOME: case SNDCTL_TMR_SOURCE: if (seq_mode != SEQ_2) return -EINVAL; return tmr->ioctl(tmr_no, cmd, arg); case SNDCTL_TMR_SELECT: if (seq_mode != SEQ_2) return -EINVAL; if (get_user(pending_timer, p)) return -EFAULT; if (pending_timer < 0 || pending_timer >= num_sound_timers || sound_timer_devs[pending_timer] == NULL) { pending_timer = -1; return -EINVAL; } val = pending_timer; break; case SNDCTL_SEQ_PANIC: seq_panic(); return -EINVAL; case SNDCTL_SEQ_SYNC: if (mode == OPEN_READ) return 0; while (qlen > 0 && !signal_pending(current)) seq_sync(); return qlen ? -EINTR : 0; case SNDCTL_SEQ_RESET: seq_reset(); return 0; case SNDCTL_SEQ_TESTMIDI: if (__get_user(midi_dev, p)) return -EFAULT; if (midi_dev < 0 || midi_dev >= max_mididev || !midi_devs[midi_dev]) return -ENXIO; if (!midi_opened[midi_dev] && (err = midi_devs[midi_dev]->open(midi_dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) return err; midi_opened[midi_dev] = 1; return 0; case SNDCTL_SEQ_GETINCOUNT: if (mode == OPEN_WRITE) return 0; val = iqlen; break; case SNDCTL_SEQ_GETOUTCOUNT: if (mode == OPEN_READ) return 0; val = SEQ_MAX_QUEUE - qlen; break; case SNDCTL_SEQ_GETTIME: if (seq_mode == SEQ_2) return tmr->ioctl(tmr_no, cmd, arg); val = jiffies - seq_time; break; case SNDCTL_SEQ_CTRLRATE: /* * If *arg == 0, just return the current rate */ if (seq_mode == SEQ_2) return tmr->ioctl(tmr_no, cmd, arg); if (get_user(val, p)) return -EFAULT; if (val != 0) return -EINVAL; val = HZ; break; case SNDCTL_SEQ_RESETSAMPLES: case SNDCTL_SYNTH_REMOVESAMPLE: case SNDCTL_SYNTH_CONTROL: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; return synth_devs[dev]->ioctl(dev, cmd, arg); case SNDCTL_SEQ_NRSYNTHS: val = max_synthdev; break; case SNDCTL_SEQ_NRMIDIS: val = max_mididev; break; case SNDCTL_SYNTH_MEMAVL: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; val = synth_devs[dev]->ioctl(dev, cmd, arg); break; case SNDCTL_FM_4OP_ENABLE: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; synth_devs[dev]->ioctl(dev, cmd, arg); return 0; case SNDCTL_SYNTH_INFO: if (get_user(dev, &((struct synth_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; return synth_devs[dev]->ioctl(dev, cmd, arg); /* Like SYNTH_INFO but returns ID in the name field */ case SNDCTL_SYNTH_ID: if (get_user(dev, &((struct synth_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; memcpy(&inf, synth_devs[dev]->info, sizeof(inf)); strlcpy(inf.name, synth_devs[dev]->id, sizeof(inf.name)); inf.device = dev; return copy_to_user(arg, &inf, sizeof(inf))?-EFAULT:0; case SNDCTL_SEQ_OUTOFBAND: if (copy_from_user(&event_rec, arg, sizeof(event_rec))) return -EFAULT; spin_lock_irqsave(&lock,flags); play_event(event_rec.arr); spin_unlock_irqrestore(&lock,flags); return 0; case SNDCTL_MIDI_INFO: if (get_user(dev, &((struct midi_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_mididev || !midi_devs[dev]) return -ENXIO; midi_devs[dev]->info.device = dev; return copy_to_user(arg, &midi_devs[dev]->info, sizeof(struct midi_info))?-EFAULT:0; case SNDCTL_SEQ_THRESHOLD: if (get_user(val, p)) return -EFAULT; if (val < 1) val = 1; if (val >= SEQ_MAX_QUEUE) val = SEQ_MAX_QUEUE - 1; output_threshold = val; return 0; case SNDCTL_MIDI_PRETIME: if (get_user(val, p)) return -EFAULT; if (val < 0) val = 0; val = (HZ * val) / 10; pre_event_timeout = val; break; default: if (mode == OPEN_READ) return -EIO; if (!synth_devs[0]) return -ENXIO; if (!(synth_open_mask & (1 << 0))) return -ENXIO; if (!synth_devs[0]->ioctl) return -EINVAL; return synth_devs[0]->ioctl(0, cmd, arg); } return put_user(val, p); } /* No kernel lock - we're using the global irq lock here */ unsigned int sequencer_poll(int dev, struct file *file, poll_table * wait) { unsigned long flags; unsigned int mask = 0; dev = dev >> 4; spin_lock_irqsave(&lock,flags); /* input */ poll_wait(file, &midi_sleeper, wait); if (iqlen) mask |= POLLIN | POLLRDNORM; /* output */ poll_wait(file, &seq_sleeper, wait); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) mask |= POLLOUT | POLLWRNORM; spin_unlock_irqrestore(&lock,flags); return mask; } void sequencer_timer(unsigned long dummy) { seq_startplay(); } EXPORT_SYMBOL(sequencer_timer); int note_to_freq(int note_num) { /* * This routine converts a midi note to a frequency (multiplied by 1000) */ int note, octave, note_freq; static int notes[] = { 261632, 277189, 293671, 311132, 329632, 349232, 369998, 391998, 415306, 440000, 466162, 493880 }; #define BASE_OCTAVE 5 octave = note_num / 12; note = note_num % 12; note_freq = notes[note]; if (octave < BASE_OCTAVE) note_freq >>= (BASE_OCTAVE - octave); else if (octave > BASE_OCTAVE) note_freq <<= (octave - BASE_OCTAVE); /* * note_freq >>= 1; */ return note_freq; } EXPORT_SYMBOL(note_to_freq); unsigned long compute_finetune(unsigned long base_freq, int bend, int range, int vibrato_cents) { unsigned long amount; int negative, semitones, cents, multiplier = 1; if (!bend) return base_freq; if (!range) return base_freq; if (!base_freq) return base_freq; if (range >= 8192) range = 8192; bend = bend * range / 8192; /* Convert to cents */ bend += vibrato_cents; if (!bend) return base_freq; negative = bend < 0 ? 1 : 0; if (bend < 0) bend *= -1; if (bend > range) bend = range; /* if (bend > 2399) bend = 2399; */ while (bend > 2399) { multiplier *= 4; bend -= 2400; } semitones = bend / 100; if (semitones > 99) semitones = 99; cents = bend % 100; amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000; if (negative) return (base_freq * 10000) / amount; /* Bend down */ else return (base_freq * amount) / 10000; /* Bend up */ } EXPORT_SYMBOL(compute_finetune); void sequencer_init(void) { if (sequencer_ok) return; queue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * EV_SZ); if (queue == NULL) { printk(KERN_ERR "sequencer: Can't allocate memory for sequencer output queue\n"); return; } iqueue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * IEV_SZ); if (iqueue == NULL) { printk(KERN_ERR "sequencer: Can't allocate memory for sequencer input queue\n"); vfree(queue); return; } sequencer_ok = 1; } EXPORT_SYMBOL(sequencer_init); void sequencer_unload(void) { vfree(queue); vfree(iqueue); queue = iqueue = NULL; } 6' href='#n796'>796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/***********************************************************

Copyright 1987, 1989, 1998  The Open Group

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.


Copyright 1987, 1989 by Digital Equipment Corporation, Maynard, Massachusetts.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its 
documentation for any purpose and without fee is hereby granted, 
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in 
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.  

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.


******************************************************************/
/* $Xorg: io.c,v 1.6 2001/02/09 02:05:23 xorgcvs Exp $ */
/*****************************************************************
 * i/o functions
 *
 *   WriteToClient, ReadRequestFromClient
 *   InsertFakeRequest, ResetCurrentRequest
 *
 *****************************************************************/
/* $XFree86: xc/programs/Xserver/os/io.c,v 3.34 2002/05/31 18:46:05 dawes Exp $ */

#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif

#if 0
#define DEBUG_COMMUNICATION
#endif
#ifdef WIN32
#include <X11/Xwinsock.h>
#endif
#include <stdio.h>
#include <X11/Xtrans/Xtrans.h>
#include <X11/Xmd.h>
#include <errno.h>
#if !defined(__UNIXOS2__) && !defined(WIN32)
#ifndef Lynx
#include <sys/uio.h>
#else
#include <uio.h>
#endif
#endif
#include <X11/X.h>
#define NEED_REPLIES
#include <X11/Xproto.h>
#include "os.h"
#include "osdep.h"
#include <X11/Xpoll.h>
#include "opaque.h"
#include "dixstruct.h"
#include "misc.h"
#ifdef LBX
#include "colormapst.h"
#include "propertyst.h"
#include "lbxserve.h"
#endif

CallbackListPtr       ReplyCallback;
CallbackListPtr       FlushCallback;

/* check for both EAGAIN and EWOULDBLOCK, because some supposedly POSIX
 * systems are broken and return EWOULDBLOCK when they should return EAGAIN
 */
#ifndef __UNIXOS2__
#ifndef WIN32
#if defined(EAGAIN) && defined(EWOULDBLOCK)
#define ETEST(err) (err == EAGAIN || err == EWOULDBLOCK)
#else
#ifdef EAGAIN
#define ETEST(err) (err == EAGAIN)
#else
#define ETEST(err) (err == EWOULDBLOCK)
#endif
#endif
#else /* WIN32 The socket errorcodes differ from the normal errors*/
#define ETEST(err) (err == EAGAIN || err == WSAEWOULDBLOCK)
#endif
#else /* __UNIXOS2__  Writing to full pipes may return ENOSPC */
#define ETEST(err) (err == EAGAIN || err == EWOULDBLOCK || err == ENOSPC)
#endif

Bool CriticalOutputPending;
int timesThisConnection = 0;
ConnectionInputPtr FreeInputs = (ConnectionInputPtr)NULL;
ConnectionOutputPtr FreeOutputs = (ConnectionOutputPtr)NULL;
OsCommPtr AvailableInput = (OsCommPtr)NULL;

#define get_req_len(req,cli) ((cli)->swapped ? \
			      lswaps((req)->length) : (req)->length)

#ifdef BIGREQS
#include <X11/extensions/bigreqstr.h>

#define get_big_req_len(req,cli) ((cli)->swapped ? \
				  lswapl(((xBigReq *)(req))->length) : \
				  ((xBigReq *)(req))->length)
#endif

#define MAX_TIMES_PER         10

/*
 *   A lot of the code in this file manipulates a ConnectionInputPtr:
 *
 *    -----------------------------------------------
 *   |------- bufcnt ------->|           |           |
 *   |           |- gotnow ->|           |           |
 *   |           |-------- needed ------>|           |
 *   |-----------+--------- size --------+---------->|
 *    -----------------------------------------------
 *   ^           ^
 *   |           |
 *   buffer   bufptr
 *
 *  buffer is a pointer to the start of the buffer.
 *  bufptr points to the start of the current request.
 *  bufcnt counts how many bytes are in the buffer.
 *  size is the size of the buffer in bytes.
 *
 *  In several of the functions, gotnow and needed are local variables
 *  that do the following:
 *
 *  gotnow is the number of bytes of the request that we're
 *  trying to read that are currently in the buffer.
 *  Typically, gotnow = (buffer + bufcnt) - bufptr
 *
 *  needed = the length of the request that we're trying to
 *  read.  Watch out: needed sometimes counts bytes and sometimes
 *  counts CARD32's.
 */


/*****************************************************************
 * ReadRequestFromClient
 *    Returns one request in client->requestBuffer.  The request
 *    length will be in client->req_len.  Return status is:
 *
 *    > 0  if  successful, specifies length in bytes of the request
 *    = 0  if  entire request is not yet available
 *    < 0  if  client should be terminated
 *
 *    The request returned must be contiguous so that it can be
 *    cast in the dispatcher to the correct request type.  Because requests
 *    are variable length, ReadRequestFromClient() must look at the first 4
 *    or 8 bytes of a request to determine the length (the request length is
 *    in the 3rd and 4th bytes of th