summaryrefslogtreecommitdiff
path: root/mi/mipoly.c
blob: 0ed2edb443a51b530137ab17c33f02da4f43562e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/***********************************************************

Copyright 1987, 1998  The Open Group

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.

Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its 
documentation for any purpose and without fee is hereby granted, 
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in 
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.  

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

******************************************************************/
/*
 *  mipoly.c
 *
 *  Written by Brian Kelleher; June 1986
 */
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif

#include <X11/X.h>
#include "windowstr.h"
#include "gcstruct.h"
#include "pixmapstr.h"
#include "mi.h"
#include "miscanfill.h"
#include "mipoly.h"
#include "regionstr.h"

/*
 * Insert the given edge into the edge table.  First we must find the correct
 * bucket in the Edge table, then find the right slot in the bucket.  Finally,
 * we can insert it.
 */
static Bool
miInsertEdgeInET(EdgeTable * ET, EdgeTableEntry * ETE, int scanline,
                 ScanLineListBlock ** SLLBlock, int *iSLLBlock)
{
    EdgeTableEntry *start, *prev;
    ScanLineList *pSLL, *pPrevSLL;
    ScanLineListBlock *tmpSLLBlock;

    /*
     * find the right bucket to put the edge into
     */
    pPrevSLL = &ET->scanlines;
    pSLL = pPrevSLL->next;
    while (pSLL && (pSLL->scanline < scanline)) {
        pPrevSLL = pSLL;
        pSLL = pSLL->next;
    }

    /*
     * reassign pSLL (pointer to ScanLineList) if necessary
     */
    if ((!pSLL) || (pSLL->scanline > scanline)) {
        if (*iSLLBlock > SLLSPERBLOCK - 1) {
            tmpSLLBlock = malloc(sizeof(ScanLineListBlock));
            if (!tmpSLLBlock)
                return FALSE;
            (*SLLBlock)->next = tmpSLLBlock;
            tmpSLLBlock->next = NULL;
            *SLLBlock = tmpSLLBlock;
            *iSLLBlock = 0;
        }
        pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);

        pSLL->next = pPrevSLL->next;
        pSLL->edgelist = NULL;
        pPrevSLL->next = pSLL;
    }
    pSLL->scanline = scanline;

    /*
     * now insert the edge in the right bucket
     */
    prev = NULL;
    start = pSLL->edgelist;
    while (start && (start->bres.minor < ETE->bres.minor)) {
        prev = start;
        start = start->next;
    }
    ETE->next = start;

    if (prev)
        prev->next = ETE;
    else
        pSLL->edgelist = ETE;
    return TRUE;
}

static void
miFreeStorage(ScanLineListBlock * pSLLBlock)
{
    ScanLineListBlock *tmpSLLBlock;

    while (pSLLBlock) {
        tmpSLLBlock = pSLLBlock->next;
        free(pSLLBlock);
        pSLLBlock = tmpSLLBlock;
    }
}

/*
 * CreateEdgeTable
 *
 * This routine creates the edge table for scan converting polygons.
 * The Edge Table (ET) looks like:
 *
 * EdgeTable
 *  --------
 * |  ymax  |        ScanLineLists
 * |scanline|-->------------>-------------->...
 *  --------   |scanline|   |scanline|
 *             |edgelist|   |edgelist|
 *             ---------    ---------
 *                 |             |
 *                 |             |
 *                 V             V
 *           list of ETEs   list of ETEs
 *
 * where ETE is an EdgeTableEntry data structure, and there is one ScanLineList
 * per scanline at which an edge is initially entered.
 */

static Bool
miCreateETandAET(int count, DDXPointPtr pts, EdgeTable * ET,
                 EdgeTableEntry * AET, EdgeTableEntry * pETEs,
                 ScanLineListBlock * pSLLBlock)
{
    DDXPointPtr top, bottom;
    DDXPointPtr PrevPt, CurrPt;
    int iSLLBlock = 0;

    int dy;

    if (count < 2)
        return TRUE;

    /*
     *  initialize the Active Edge Table
     */
    AET->next = NULL;
    AET->back = NULL;
    AET->nextWETE = NULL;
    AET->bres.minor = MININT;

    /*
     *  initialize the Edge Table.
     */
    ET->scanlines.next = NULL;
    ET->ymax = MININT;
    ET->ymin = MAXINT;
    pSLLBlock->next = NULL;

    PrevPt = &pts[count - 1];

    /*
     *  for each vertex in the array of points.
     *  In this loop we are dealing with two vertices at
     *  a time -- these make up one edge of the polygon.
     */
    while (count--) {
        CurrPt = pts++;

        /*
         *  find out which point is above and which is below.
         */
        if (PrevPt->y > CurrPt->y) {
            bottom = PrevPt, top = CurrPt;
            pETEs->ClockWise = 0;
        }
        else {
            bottom = CurrPt, top = PrevPt;
            pETEs->ClockWise = 1;
        }

        /*
         * don't add horizontal edges to the Edge table.
         */
        if (bottom->y != top->y) {
            pETEs->ymax = bottom->y - 1; /* -1 so we don't get last scanline */

            /*
             *  initialize integer edge algorithm
             */
            dy = bottom->y - top->y;
            BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);

            if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock)) {
                miFreeStorage(pSLLBlock->next);
                return FALSE;
            }

            ET->ymax = max(ET->ymax, PrevPt->y);
            ET->ymin = min(ET->ymin, PrevPt->y);
            pETEs++;
        }

        PrevPt = CurrPt;
    }
    return TRUE;
}

/*
 * This routine moves EdgeTableEntries from the EdgeTable into the Active Edge
 * Table, leaving them sorted by smaller x coordinate.
 */

static void
miloadAET(EdgeTableEntry * AET, EdgeTableEntry * ETEs)
{
    EdgeTableEntry *pPrevAET;
    EdgeTableEntry *tmp;

    pPrevAET = AET;
    AET = AET->next;
    while (ETEs) {
        while (AET && (AET->bres.minor < ETEs->bres.minor)) {
            pPrevAET = AET;
            AET = AET->next;
        }
        tmp = ETEs->next;
        ETEs->next = AET;
        if (AET)
            AET->back = ETEs;
        ETEs->back = pPrevAET;
        pPrevAET->next = ETEs;
        pPrevAET = ETEs;

        ETEs = tmp;
    }
}

/*
 * computeWAET
 *
 * This routine links the AET by the nextWETE (winding EdgeTableEntry) link for
 * use by the winding number rule.  The final Active Edge Table (AET) might
 * look something like:
 *
 * AET
 * ----------  ---------   ---------
 * |ymax    |  |ymax    |  |ymax    |
 * | ...    |  |...     |  |...     |
 * |next    |->|next    |->|next    |->...
 * |nextWETE|  |nextWETE|  |nextWETE|
 * ---------   ---------   ^--------
 *     |                   |       |
 *     V------------------->       V---> ...
 *
 */
static void
micomputeWAET(EdgeTableEntry * AET)
{
    EdgeTableEntry *pWETE;
    int inside = 1;
    int isInside = 0;

    AET->nextWETE = NULL;
    pWETE = AET;
    AET = AET->next;
    while (AET) {
        if (AET->ClockWise)
            isInside++;
        else
            isInside--;

        if ((!inside && !isInside) || (inside && isInside)) {
            pWETE->nextWETE = AET;
            pWETE = AET;
            inside = !inside;
        }
        AET = AET->next;
    }
    pWETE->nextWETE = NULL;
}

/*
 * Just a simple insertion sort using pointers and back pointers to sort the
 * Active Edge Table.
 */

static int
miInsertionSort(EdgeTableEntry * AET)
{
    EdgeTableEntry *pETEchase;
    EdgeTableEntry *pETEinsert;
    EdgeTableEntry *pETEchaseBackTMP;
    int changed = 0;

    AET = AET->next;
    while (AET) {
        pETEinsert = AET;
        pETEchase = AET;
        while (pETEchase->back->bres.minor > AET->bres.minor)
            pETEchase = pETEchase->back;

        AET = AET->next;
        if (pETEchase != pETEinsert) {
            pETEchaseBackTMP = pETEchase->back;
            pETEinsert->back->next = AET;
            if (AET)
                AET->back = pETEinsert->back;
            pETEinsert->next = pETEchase;
            pETEchase->back->next = pETEinsert;
            pETEchase->back = pETEinsert;
            pETEinsert->back = pETEchaseBackTMP;
            changed = 1;
        }
    }
    return changed;
}

/* Find the index of the point with the smallest y */
static int
getPolyYBounds(DDXPointPtr pts, int n, int *by, int *ty)
{
    DDXPointPtr ptMin;
    int ymin, ymax;
    DDXPointPtr ptsStart = pts;

    ptMin = pts;
    ymin = ymax = (pts++)->y;

    while (--n > 0) {
        if (pts->y < ymin) {
            ptMin = pts;
            ymin = pts->y;
        }
        if (pts->y > ymax)
            ymax = pts->y;

        pts++;
    }

    *by = ymin;
    *ty = ymax;
    return ptMin - ptsStart;
}

/*
 * Written by Brian Kelleher; Dec. 1985.
 *
 * Fill a convex polygon.  If the given polygon is not convex, then the result
 * is undefined.  The algorithm is to order the edges from smallest y to
 * largest by partitioning the array into a left edge list and a right edge
 * list.  The algorithm used to traverse each edge is an extension of
 * Bresenham's line algorithm with y as the major axis.  For a derivation of
 * the algorithm, see the author of this code.
 */
static Bool
miFillConvexPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
{
    int xl = 0, xr = 0;         /* x vals of left and right edges */
    int dl = 0, dr = 0;         /* decision variables             */
    int ml = 0, m1l = 0;        /* left edge slope and slope+1    */
    int mr = 0, m1r = 0;        /* right edge slope and slope+1   */
    int incr1l = 0, incr2l = 0; /* left edge error increments     */
    int incr1r = 0, incr2r = 0; /* right edge error increments    */
    int dy;                     /* delta y                        */
    int y;                      /* current scanline               */
    int left, right;            /* indices to first endpoints     */
    int i;                      /* loop counter                   */
    int nextleft, nextright;    /* indices to second endpoints    */
    DDXPointPtr ptsOut, FirstPoint;     /* output buffer               */
    int *width, *FirstWidth;    /* output buffer                  */
    int imin;                   /* index of smallest vertex (in y) */
    int ymin;                   /* y-extents of polygon            */
    int ymax;

    /*
     *  find leftx, bottomy, rightx, topy, and the index
     *  of bottomy. Also translate the points.
     */
    imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);

    dy = ymax - ymin + 1;
    if ((count < 3) || (dy < 0))
        return TRUE;
    ptsOut = FirstPoint = malloc(sizeof(DDXPointRec) * dy);
    width = FirstWidth = malloc(sizeof(int) * dy);
    if (!FirstPoint || !FirstWidth) {
        free(FirstWidth);
        free(FirstPoint);
        return FALSE;
    }

    nextleft = nextright = imin;
    y = ptsIn[nextleft].y;

    /*
     *  loop through all edges of the polygon
     */
    do {
        /*
         *  add a left edge if we need to
         */
        if (ptsIn[nextleft].y == y) {
            left = nextleft;

            /*
             *  find the next edge, considering the end
             *  conditions of the array.
             */
            nextleft++;
            if (nextleft >= count)
                nextleft = 0;

            /*
             *  now compute all of the random information
             *  needed to run the iterative algorithm.
             */
            BRESINITPGON(ptsIn[nextleft].y - ptsIn[left].y,
                         ptsIn[left].x, ptsIn[nextleft].x,
                         xl, dl, ml, m1l, incr1l, incr2l);
        }

        /*
         *  add a right edge if we need to
         */
        if (ptsIn[nextright].y == y) {
            right = nextright;

            /*
             *  find the next edge, considering the end
             *  conditions of the array.
             */
            nextright--;
            if (nextright < 0)
                nextright = count - 1;

            /*
             *  now compute all of the random information
             *  needed to run the iterative algorithm.
             */
            BRESINITPGON(ptsIn[nextright].y - ptsIn[right].y,
                         ptsIn[right].x, ptsIn[nextright].x,
                         xr, dr, mr, m1r, incr1r, incr2r);
        }

        /*
         *  generate scans to fill while we still have
         *  a right edge as well as a left edge.
         */
        i = min(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
        /* in case we're called with non-convex polygon */
        if (i < 0) {
            free(FirstWidth);
            free(FirstPoint);
            return TRUE;
        }
        while (i-- > 0) {
            ptsOut->y = y;

            /*
             *  reverse the edges if necessary
             */
            if (xl < xr) {
                *(width++) = xr - xl;
                (ptsOut++)->x = xl;
            }
            else {
                *(width++) = xl - xr;
                (ptsOut++)->x = xr;
            }
            y++;

            /* increment down the edges */
            BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
            BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
        }
    } while (y != ymax);

    /*
     * Finally, fill the <remaining> spans
     */
    (*pgc->ops->FillSpans) (dst, pgc,
                            ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
    free(FirstWidth);
    free(FirstPoint);
    return TRUE;
}

/*
 * Written by Brian Kelleher;  Oct. 1985
 *
 * Routine to fill a polygon.  Two fill rules are supported: frWINDING and
 * frEVENODD.
 */
static Bool
miFillGeneralPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
{
    EdgeTableEntry *pAET;       /* the Active Edge Table   */
    int y;                      /* the current scanline    */
    int nPts = 0;               /* number of pts in buffer */
    EdgeTableEntry *pWETE;      /* Winding Edge Table      */
    ScanLineList *pSLL;         /* Current ScanLineList    */
    DDXPointPtr ptsOut;         /* ptr to output buffers   */
    int *width;
    DDXPointRec FirstPoint[NUMPTSTOBUFFER];     /* the output buffers */
    int FirstWidth[NUMPTSTOBUFFER];
    EdgeTableEntry *pPrevAET;   /* previous AET entry      */
    EdgeTable ET;               /* Edge Table header node  */
    EdgeTableEntry AET;         /* Active ET header node   */
    EdgeTableEntry *pETEs;      /* Edge Table Entries buff */
    ScanLineListBlock SLLBlock; /* header for ScanLineList */
    int fixWAET = 0;

    if (count < 3)
        return TRUE;

    if (!(pETEs = malloc(sizeof(EdgeTableEntry) * count)))
        return FALSE;
    ptsOut = FirstPoint;
    width = FirstWidth;
    if (!miCreateETandAET(count, ptsIn, &ET, &AET, pETEs, &SLLBlock)) {
        free(pETEs);
        return FALSE;
    }
    pSLL = ET.scanlines.next;

    if (pgc->fillRule == EvenOddRule) {
        /*
         *  for each scanline
         */
        for (y = ET.ymin; y < ET.ymax; y++) {
            /*
             *  Add a new edge to the active edge table when we
             *  get to the next edge.
             */
            if (pSLL && y == pSLL->scanline) {
                miloadAET(&AET, pSLL->edgelist);
                pSLL = pSLL->next;
            }
            pPrevAET = &AET;
            pAET = AET.next;

            /*
             *  for each active edge
             */
            while (pAET) {
                ptsOut->x = pAET->bres.minor;
                ptsOut++->y = y;
                *width++ = pAET->next->bres.minor - pAET->bres.minor;
                nPts++;

                /*
                 *  send out the buffer when its full
                 */
                if (nPts == NUMPTSTOBUFFER) {
                    (*pgc->ops->FillSpans) (dst, pgc,
                                            nPts, FirstPoint, FirstWidth, 1);
                    ptsOut = FirstPoint;
                    width = FirstWidth;
                    nPts = 0;
                }
                EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
                EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
            }
            miInsertionSort(&AET);
        }
    }
    else {                      /* default to WindingNumber */

        /*
         *  for each scanline
         */
        for (y = ET.ymin; y < ET.ymax; y++) {
            /*
             *  Add a new edge to the active edge table when we
             *  get to the next edge.
             */
            if (pSLL && y == pSLL->scanline) {
                miloadAET(&AET, pSLL->edgelist);
                micomputeWAET(&AET);
                pSLL = pSLL->next;
            }
            pPrevAET = &AET;
            pAET = AET.next;
            pWETE = pAET;

            /*
             *  for each active edge
             */
            while (pAET) {
                /*
                 *  if the next edge in the active edge table is
                 *  also the next edge in the winding active edge
                 *  table.
                 */
                if (pWETE == pAET) {
                    ptsOut->x = pAET->bres.minor;
                    ptsOut++->y = y;
                    *width++ = pAET->nextWETE->bres.minor - pAET->bres.minor;
                    nPts++;

                    /*
                     *  send out the buffer
                     */
                    if (nPts == NUMPTSTOBUFFER) {
                        (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint,
                                                FirstWidth, 1);
                        ptsOut = FirstPoint;
                        width = FirstWidth;
                        nPts = 0;
                    }

                    pWETE = pWETE->nextWETE;
                    while (pWETE != pAET)
                        EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
                    pWETE = pWETE->nextWETE;
                }
                EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
            }

            /*
             *  reevaluate the Winding active edge table if we
             *  just had to resort it or if we just exited an edge.
             */
            if (miInsertionSort(&AET) || fixWAET) {
                micomputeWAET(&AET);
                fixWAET = 0;
            }
        }
    }

    /*
     *     Get any spans that we missed by buffering
     */
    (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint, FirstWidth, 1);
    free(pETEs);
    miFreeStorage(SLLBlock.next);
    return TRUE;
}

/*
 *  Draw polygons.  This routine translates the point by the origin if
 *  pGC->miTranslate is non-zero, and calls to the appropriate routine to
 *  actually scan convert the polygon.
 */
void
miFillPolygon(DrawablePtr dst, GCPtr pgc,
              int shape, int mode, int count, DDXPointPtr pPts)
{
    int i;
    int xorg, yorg;
    DDXPointPtr ppt;

    if (count == 0)
        return;

    ppt = pPts;
    if (pgc->miTranslate) {
        xorg = dst->x;
        yorg = dst->y;

        if (mode == CoordModeOrigin) {
            for (i = 0; i < count; i++) {
                ppt->x += xorg;
                ppt++->y += yorg;
            }
        }
        else {
            ppt->x += xorg;
            ppt++->y += yorg;
            for (i = 1; i < count; i++) {
                ppt->x += (ppt - 1)->x;
                ppt->y += (ppt - 1)->y;
                ppt++;
            }
        }
    }
    else {
        if (mode == CoordModePrevious) {
            ppt++;
            for (i = 1; i < count; i++) {
                ppt->x += (ppt - 1)->x;
                ppt->y += (ppt - 1)->y;
                ppt++;
            }
        }
    }
    if (shape == Convex)
        miFillConvexPoly(dst, pgc, count, pPts);
    else
        miFillGeneralPoly(dst, pgc, count, pPts);
}