summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVadim Rozenfeld <vrozenfe@redhat.com>2014-04-29 00:32:32 +1000
committerVadim Rozenfeld <vrozenfe@redhat.com>2014-04-29 00:32:32 +1000
commit947a854992328e6ac363ab0a2c5b7b1585ac48cd (patch)
tree758650efca32a6a5101793c0e8846022afcc51be
parent529445dbb99d4c5511644ecc257bfe786045ec78 (diff)
add memory and resources allocation functions
-rwxr-xr-xqxldod/QxlDod.cpp553
-rwxr-xr-xqxldod/QxlDod.h149
-rwxr-xr-xqxldod/mspace.c2437
-rwxr-xr-xqxldod/mspace.h150
-rwxr-xr-xqxldod/qxldod.vcxproj1
5 files changed, 3276 insertions, 14 deletions
diff --git a/qxldod/QxlDod.cpp b/qxldod/QxlDod.cpp
index 3e29478..88a245e 100755
--- a/qxldod/QxlDod.cpp
+++ b/qxldod/QxlDod.cpp
@@ -96,7 +96,7 @@ NTSTATUS QxlDod::CheckHardware()
}
Status = STATUS_GRAPHICS_DRIVER_MISMATCH;
- if (Header.VendorID == 0x1B36 &&
+ if (Header.VendorID == REDHAT_PCI_VENDOR_ID &&
Header.DeviceID == 0x0100 &&
Header.RevisionID == 4)
{
@@ -2896,11 +2896,11 @@ NTSTATUS QxlDevice::GetModeList(DXGK_DISPLAY_INFORMATION* pDispInfo)
{
m_ModeNumbers[SuitableModeCount] = CurrentMode;
SetVideoModeInfo(SuitableModeCount, tmpModeInfo);
-// if (tmpModeInfo->x_res == 1024 &&
-// tmpModeInfo->y_res == 768)
-// {
-// m_CurrentMode = (USHORT)SuitableModeCount;
-// }
+ if (tmpModeInfo->x_res == 1024 &&
+ tmpModeInfo->y_res == 768)
+ {
+ m_CurrentMode = (USHORT)SuitableModeCount;
+ }
SuitableModeCount++;
}
}
@@ -2911,7 +2911,7 @@ NTSTATUS QxlDevice::GetModeList(DXGK_DISPLAY_INFORMATION* pDispInfo)
Status = STATUS_UNSUCCESSFUL;
}
- m_CurrentMode = m_ModeNumbers[0];
+// m_CurrentMode = m_ModeNumbers[0];
m_ModeCount = SuitableModeCount;
DbgPrint(TRACE_LEVEL_ERROR, ("ModeCount filtered %d\n", m_ModeCount));
for (ULONG idx = 0; idx < m_ModeCount; idx++)
@@ -2937,11 +2937,19 @@ NTSTATUS QxlDevice::QueryCurrentMode(PVIDEO_MODE RequestedMode)
NTSTATUS QxlDevice::SetCurrentMode(ULONG Mode)
{
- NTSTATUS Status = STATUS_SUCCESS;
DbgPrint(TRACE_LEVEL_INFORMATION, ("---> %s Mode = %x\n", __FUNCTION__, Mode));
- UNREFERENCED_PARAMETER(Mode);
+// UNREFERENCED_PARAMETER(Mode);
+ for (ULONG idx = 0; idx < m_ModeCount; idx++)
+ {
+ if (Mode == m_ModeNumbers[idx])
+ {
+ DestroyPrimarySurface();
+ CreatePrimarySurface(&m_ModeInfo[idx]);
+ return STATUS_SUCCESS;
+ }
+ }
DbgPrint(TRACE_LEVEL_VERBOSE, ("<--- %s\n", __FUNCTION__));
- return Status;
+ return STATUS_UNSUCCESSFUL;
}
NTSTATUS QxlDevice::GetCurrentMode(ULONG* pMode)
@@ -3161,6 +3169,45 @@ void QxlDevice::DestroyMemSlots(void)
m_MemSlots = NULL;
}
+void QxlDevice::CreatePrimarySurface(PVIDEO_MODE_INFORMATION pModeInfo)
+{
+ QXLSurfaceCreate *primary_surface_create;
+ primary_surface_create = &m_RamHdr->create_surface;
+ primary_surface_create->format = pModeInfo->BitsPerPlane;
+ primary_surface_create->width = pModeInfo->VisScreenWidth;
+ primary_surface_create->height = pModeInfo->VisScreenHeight;
+ primary_surface_create->stride = pModeInfo->ScreenStride;
+
+ primary_surface_create->mem = PA( m_RamStart, 0);
+
+ primary_surface_create->flags = QXL_SURF_FLAG_KEEP_DATA; //0;
+ primary_surface_create->type = QXL_SURF_TYPE_PRIMARY;
+ WRITE_PORT_UCHAR((PUCHAR)(m_IoBase + QXL_IO_CREATE_PRIMARY), 0);
+}
+
+void QxlDevice::DestroyPrimarySurface(void)
+{
+ WRITE_PORT_UCHAR((PUCHAR)(m_IoBase + QXL_IO_DESTROY_PRIMARY), 0);
+}
+
+_inline QXLPHYSICAL QxlDevice::PA(PVOID virt, UINT8 slot_id)
+{
+ MemSlot *pSlot = &m_MemSlots[slot_id];;
+
+ return pSlot->high_bits | ((UINT64)virt - pSlot->start_virt_addr);
+}
+
+_inline UINT64 QxlDevice::VA(QXLPHYSICAL paddr, UINT8 slot_id)
+{
+ UINT64 virt;
+ MemSlot *pSlot = &m_MemSlots[slot_id];;
+
+ virt = paddr & m_VaSlotMask;
+ virt += pSlot->start_virt_addr;;
+
+ return virt;
+}
+
void QxlDevice::SetupHWSlot(UINT8 Idx, MemSlot *pSlot)
{
m_RamHdr->mem_slot.mem_start = pSlot->start_phys_addr;
@@ -3179,6 +3226,8 @@ BOOL QxlDevice::CreateEvents()
KeInitializeEvent(&m_IoCmdEvent,
SynchronizationEvent,
FALSE);
+ KeInitializeSpinLock(&m_MemLock);
+
return TRUE;
}
@@ -3218,6 +3267,19 @@ BOOL QxlDevice::CreateMemSlots(void)
return TRUE;
}
+void QxlDevice::InitDeviceMemoryResources(void)
+{
+ InitMspace(MSPACE_TYPE_DEVRAM, (m_RamStart + m_RomHdr->surface0_area_size), (size_t)((m_VRamPA.QuadPart + m_RomHdr->surface0_area_size) * PAGE_SIZE));
+ InitMspace(MSPACE_TYPE_VRAM, m_VRamStart, m_VRamSize);
+}
+
+void QxlDevice::InitMspace(UINT32 mspace_type, UINT8 *start, size_t capacity)
+{
+ m_MSInfo[mspace_type]._mspace = create_mspace_with_base(start, capacity, 0, this);
+ m_MSInfo[mspace_type].mspace_start = start;
+ m_MSInfo[mspace_type].mspace_end = start + capacity;
+}
+
void QxlDevice::ResetDevice(void)
{
m_RamHdr->int_mask = ~0;
@@ -3239,12 +3301,465 @@ QxlDevice::ExecutePresentDisplayOnly(
_In_ D3DKMDT_VIDPN_PRESENT_PATH_ROTATION Rotation,
_In_ const CURRENT_BDD_MODE* pModeCur)
{
-
PAGED_CODE();
DbgPrint(TRACE_LEVEL_VERBOSE, ("---> %s\n", __FUNCTION__));
NTSTATUS Status = STATUS_SUCCESS;
- return Status;
+
+ SIZE_T sizeMoves = NumMoves*sizeof(D3DKMT_MOVE_RECT);
+ SIZE_T sizeRects = NumDirtyRects*sizeof(RECT);
+ SIZE_T size = sizeof(DoPresentMemory) + sizeMoves + sizeRects;
+
+ DoPresentMemory* ctx = reinterpret_cast<DoPresentMemory*>
+ (new (NonPagedPoolNx) BYTE[size]);
+
+ if (!ctx)
+ {
+ return STATUS_NO_MEMORY;
+ }
+
+ RtlZeroMemory(ctx,size);
+
+// const CURRENT_BDD_MODE* pModeCur = &m_CurrentModes[0];
+ ctx->DstAddr = DstAddr;
+ ctx->DstBitPerPixel = DstBitPerPixel;
+ ctx->DstStride = pModeCur->DispInfo.Pitch;
+ ctx->SrcWidth = pModeCur->SrcModeWidth;
+ ctx->SrcHeight = pModeCur->SrcModeHeight;
+ ctx->SrcAddr = NULL;
+ ctx->SrcPitch = SrcPitch;
+ ctx->Rotation = Rotation;
+ ctx->NumMoves = NumMoves;
+ ctx->Moves = Moves;
+ ctx->NumDirtyRects = NumDirtyRects;
+ ctx->DirtyRect = DirtyRect;
+// ctx->SourceID = m_SourceId;
+// ctx->hAdapter = m_DevExt;
+ ctx->Mdl = NULL;
+ ctx->DisplaySource = this;
+
+ // Alternate between synch and asynch execution, for demonstrating
+ // that a real hardware implementation can do either
+
+ {
+ // Map Source into kernel space, as Blt will be executed by system worker thread
+ UINT sizeToMap = SrcBytesPerPixel * ctx->SrcWidth * ctx->SrcHeight;
+
+ PMDL mdl = IoAllocateMdl((PVOID)SrcAddr, sizeToMap, FALSE, FALSE, NULL);
+ if(!mdl)
+ {
+ return STATUS_INSUFFICIENT_RESOURCES;
+ }
+
+ KPROCESSOR_MODE AccessMode = static_cast<KPROCESSOR_MODE>(( SrcAddr <=
+ (BYTE* const) MM_USER_PROBE_ADDRESS)?UserMode:KernelMode);
+ __try
+ {
+ // Probe and lock the pages of this buffer in physical memory.
+ // We need only IoReadAccess.
+ MmProbeAndLockPages(mdl, AccessMode, IoReadAccess);
+ }
+ #pragma prefast(suppress: __WARNING_EXCEPTIONEXECUTEHANDLER, "try/except is only able to protect against user-mode errors and these are the only errors we try to catch here");
+ __except(EXCEPTION_EXECUTE_HANDLER)
+ {
+ Status = GetExceptionCode();
+ IoFreeMdl(mdl);
+ return Status;
+ }
+
+ // Map the physical pages described by the MDL into system space.
+ // Note: double mapping the buffer this way causes lot of system
+ // overhead for large size buffers.
+ ctx->SrcAddr = reinterpret_cast<BYTE*>
+ (MmGetSystemAddressForMdlSafe(mdl, NormalPagePriority ));
+
+ if(!ctx->SrcAddr) {
+ Status = STATUS_INSUFFICIENT_RESOURCES;
+ MmUnlockPages(mdl);
+ IoFreeMdl(mdl);
+ return Status;
+ }
+
+ // Save Mdl to unmap and unlock the pages in worker thread
+ ctx->Mdl = mdl;
+ }
+
+ BYTE* rects = reinterpret_cast<BYTE*>(ctx+1);
+
+ // copy moves and update pointer
+ if (Moves)
+ {
+ memcpy(rects,Moves,sizeMoves);
+ ctx->Moves = reinterpret_cast<D3DKMT_MOVE_RECT*>(rects);
+ rects += sizeMoves;
+ }
+
+ // copy dirty rects and update pointer
+ if (DirtyRect)
+ {
+ memcpy(rects,DirtyRect,sizeRects);
+ ctx->DirtyRect = reinterpret_cast<RECT*>(rects);
+ }
+
+ // Set up destination blt info
+ BLT_INFO DstBltInfo;
+ DstBltInfo.pBits = ctx->DstAddr;
+ DstBltInfo.Pitch = ctx->DstStride;
+ DstBltInfo.BitsPerPel = ctx->DstBitPerPixel;
+ DstBltInfo.Offset.x = 0;
+ DstBltInfo.Offset.y = 0;
+ DstBltInfo.Rotation = ctx->Rotation;
+ DstBltInfo.Width = ctx->SrcWidth;
+ DstBltInfo.Height = ctx->SrcHeight;
+
+ // Set up source blt info
+ BLT_INFO SrcBltInfo;
+ SrcBltInfo.pBits = ctx->SrcAddr;
+ SrcBltInfo.Pitch = ctx->SrcPitch;
+ SrcBltInfo.BitsPerPel = 32;
+ SrcBltInfo.Offset.x = 0;
+ SrcBltInfo.Offset.y = 0;
+ SrcBltInfo.Rotation = D3DKMDT_VPPR_IDENTITY;
+ if (ctx->Rotation == D3DKMDT_VPPR_ROTATE90 ||
+ ctx->Rotation == D3DKMDT_VPPR_ROTATE270)
+ {
+ SrcBltInfo.Width = DstBltInfo.Height;
+ SrcBltInfo.Height = DstBltInfo.Width;
+ }
+ else
+ {
+ SrcBltInfo.Width = DstBltInfo.Width;
+ SrcBltInfo.Height = DstBltInfo.Height;
+ }
+
+
+ // Copy all the scroll rects from source image to video frame buffer.
+ for (UINT i = 0; i < ctx->NumMoves; i++)
+ {
+ POINT* pSourcePoint = &ctx->Moves[i].SourcePoint;
+ RECT* pDestRect = &ctx->Moves[i].DestRect;
+
+ DbgPrint(TRACE_LEVEL_FATAL, ("--- %d SourcePoint.x = %d, SourcePoint.y = %d, DestRect.bottom = %d, DestRect.left = %d, DestRect.right = %d, DestRect.top = %d\n",
+ i , pSourcePoint->x, pSourcePoint->y, pDestRect->bottom, pDestRect->left, pDestRect->right, pDestRect->top));
+
+ BltBits(&DstBltInfo,
+ &SrcBltInfo,
+ 1, // NumRects
+ &ctx->Moves[i].DestRect);
+ }
+
+ // Copy all the dirty rects from source image to video frame buffer.
+ for (UINT i = 0; i < ctx->NumDirtyRects; i++)
+ {
+ RECT* pDirtyRect = &ctx->DirtyRect[i];
+ DbgPrint(TRACE_LEVEL_FATAL, ("--- %d pDirtyRect->bottom = %d, pDirtyRect->left = %d, pDirtyRect->right = %d, pDirtyRect->top = %d\n",
+ i, pDirtyRect->bottom, pDirtyRect->left, pDirtyRect->right, pDirtyRect->top));
+
+ BltBits(&DstBltInfo,
+ &SrcBltInfo,
+ 1, // NumRects
+ &ctx->DirtyRect[i]);
+ }
+
+ // Unmap unmap and unlock the pages.
+ if (ctx->Mdl)
+ {
+ MmUnlockPages(ctx->Mdl);
+ IoFreeMdl(ctx->Mdl);
+ }
+ delete [] reinterpret_cast<BYTE*>(ctx);
+
+ return STATUS_SUCCESS;
+}
+
+static inline
+KIRQL
+AcquireSpinLock(PVOID pSpinLock)
+{
+ KIRQL IRQL;
+
+ IRQL = KeGetCurrentIrql();
+
+ if (DISPATCH_LEVEL == IRQL)
+ KeAcquireSpinLockAtDpcLevel((KSPIN_LOCK *)pSpinLock);
+ else
+ KeAcquireSpinLock((KSPIN_LOCK *)pSpinLock, &IRQL);
+
+ return IRQL;
+}
+
+static inline
+VOID
+ReleaseSpinLock(PVOID pSpinLock, KIRQL IRQL)
+{
+ if (DISPATCH_LEVEL == IRQL)
+ KeReleaseSpinLockFromDpcLevel((KSPIN_LOCK *)pSpinLock);
+ else
+ KeReleaseSpinLock((KSPIN_LOCK *)pSpinLock, IRQL);
+}
+
+void QxlDevice::WaitForReleaseRing(void)
+{
+ int wait;
+
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s\n", __FUNCTION__));
+
+ for (;;) {
+ LARGE_INTEGER timeout;
+
+ if (SPICE_RING_IS_EMPTY(m_ReleaseRing)) {
+ QXL_SLEEP(10);
+ if (!SPICE_RING_IS_EMPTY(m_ReleaseRing)) {
+ break;
+ }
+ WRITE_PORT_UCHAR((PUCHAR)(m_IoBase + QXL_IO_NOTIFY_OOM), 0);
+ }
+ SPICE_RING_CONS_WAIT(m_ReleaseRing, wait);
+
+ if (!wait) {
+ break;
+ }
+
+ timeout.QuadPart = -30 * 1000 * 10; //30ms
+ WAIT_FOR_EVENT(m_DisplayEvent, &timeout);
+
+ if (SPICE_RING_IS_EMPTY(m_ReleaseRing)) {
+ WRITE_PORT_UCHAR((PUCHAR)(m_IoBase + QXL_IO_NOTIFY_OOM), 0);
+ }
+ }
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s: done\n", __FUNCTION__));
+}
+
+
+void QxlDevice::FlushReleaseRing()
+{
+ UINT64 output;
+ int notify;
+ int num_to_release = 50;
+
+ output = free_outputs;
+
+ while (1) {
+ while (output != 0) {
+ output = ReleaseOutput(output);
+ if (--num_to_release == 0) {
+ break;
+ }
+ }
+
+ if (output != 0 ||
+ SPICE_RING_IS_EMPTY(m_ReleaseRing)) {
+ break;
+ }
+
+ output = *SPICE_RING_CONS_ITEM(m_ReleaseRing);
+ SPICE_RING_POP(m_ReleaseRing, notify);
+ }
+
+ free_outputs = output;
+}
+
+UINT64 QxlDevice::ReleaseOutput(UINT64 output_id)
+{
+ QXLOutput *output = (QXLOutput *)output_id;
+ Resource **now;
+ Resource **end;
+ UINT64 next;
+
+ ASSERT(output_id);
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s 0x%x\n", __FUNCTION__, output));
+// DebugShowOutput(pdev, output);
+
+ for (now = output->resources, end = now + output->num_res; now < end; now++) {
+ RELEASE_RES(*now);
+ }
+ next = *(UINT64*)output->data;
+ FreeMem(MSPACE_TYPE_DEVRAM, output);
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s done\n", __FUNCTION__));
+ return next;
+}
+
+void *QxlDevice::AllocMem(UINT32 mspace_type, size_t size, BOOL force)
+{
+ PVOID ptr;
+ KIRQL old_irql;
+
+ ASSERT(m_MSInfo[mspace_type]._mspace);
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s: %p(%d) size %u\n", __FUNCTION__,
+ m_MSInfo[mspace_type]._mspace,
+ mspace_footprint(m_MSInfo[mspace_type]._mspace),
+ size));
+#ifdef DBG
+ mspace_malloc_stats(m_MSInfo[mspace_type]._mspace);
+#endif
+
+ while (1) {
+ /* Release lots of queued resources, before allocating, as we
+ want to release early to minimize fragmentation risks. */
+ FlushReleaseRing();
+
+ old_irql = AcquireSpinLock(&m_MemLock);
+ ptr = mspace_malloc(m_MSInfo[mspace_type]._mspace, size);
+ ReleaseSpinLock(&m_MemLock, old_irql);
+ if (ptr) {
+ break;
+ }
+
+ if (free_outputs != 0 ||
+ !SPICE_RING_IS_EMPTY(m_ReleaseRing)) {
+ /* We have more things to free, try that */
+ continue;
+ }
+
+ if (force) {
+ /* Ask spice to free some stuff */
+ WaitForReleaseRing();
+ } else {
+ /* Fail */
+ break;
+ }
+ }
+
+ ASSERT((!ptr && !force) || (ptr >= m_MSInfo[mspace_type].mspace_start &&
+ ptr < m_MSInfo[mspace_type].mspace_end));
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s: done 0x%x\n", __FUNCTION__, ptr));
+ return ptr;
+}
+
+void QxlDevice::FreeMem(UINT32 mspace_type, void *ptr)
+{
+ KIRQL old_irql;
+ ASSERT(m_MSInfo[mspace_type]._mspace);
+#ifdef DBG
+ if (!((UINT8 *)ptr >= m_MSInfo[mspace_type].mspace_start &&
+ (UINT8 *)ptr < m_MSInfo[mspace_type].mspace_end)) {
+ DbgPrint(TRACE_LEVEL_ERROR, ("ASSERT failed @ %s, %p not in [%p, %p) (%d)\n", __FUNCTION__,
+ ptr, m_MSInfo[mspace_type].mspace_start,
+ m_MSInfo[mspace_type].mspace_end, mspace_type));
+ }
+#endif
+ old_irql = AcquireSpinLock(&m_MemLock);
+ mspace_free(m_MSInfo[mspace_type]._mspace, ptr);
+ ReleaseSpinLock(&m_MemLock, old_irql);
+}
+
+
+QXLDrawable *QxlDevice::GetDrawable()
+{
+ QXLOutput *output;
+
+ output = (QXLOutput *)AllocMem(MSPACE_TYPE_DEVRAM, sizeof(QXLOutput) + sizeof(QXLDrawable), TRUE);
+ output->num_res = 0;
+ RESOURCE_TYPE(output, RESOURCE_TYPE_DRAWABLE);
+ ((QXLDrawable *)output->data)->release_info.id = (UINT64)output;
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s 0x%x\n", __FUNCTION__, output));
+ return(QXLDrawable *)output->data;
+}
+
+BOOL QxlDevice::SetClip(const RECT *clip, QXLDrawable *drawable)
+{
+ Resource *rects_res;
+
+ if (clip == NULL) {
+ drawable->clip.type = SPICE_CLIP_TYPE_NONE;
+ DbgPrint(TRACE_LEVEL_ERROR, ("%s QXL_CLIP_TYPE_NONE\n", __FUNCTION__));
+ return TRUE;
+ }
+
+ QXLClipRects *rects;
+ rects_res = (Resource *)AllocMem(MSPACE_TYPE_DEVRAM, sizeof(Resource) + sizeof(QXLClipRects) +
+ sizeof(QXLRect), TRUE);
+ rects_res->refs = 1;
+//FIXME
+ rects_res->free = FreeClipRectsEx;
+ rects_res->ptr = this;
+ rects = (QXLClipRects *)rects_res->res;
+ rects->num_rects = 1;
+ rects->chunk.data_size = sizeof(QXLRect);
+ rects->chunk.prev_chunk = 0;
+ rects->chunk.next_chunk = 0;
+ CopyRect((QXLRect *)rects->chunk.data, clip);
+
+ DrawableAddRes(drawable, rects_res);
+ drawable->clip.type = SPICE_CLIP_TYPE_RECTS;
+ drawable->clip.data = PA(rects_res->res, m_MainMemSlot);
+ return TRUE;
+}
+
+void QxlDevice::AddRes(QXLOutput *output, Resource *res)
+{
+ res->refs++;
+ output->resources[output->num_res++] = res;
+}
+
+void QxlDevice::DrawableAddRes(QXLDrawable *drawable, Resource *res)
+{
+ QXLOutput *output;
+
+ output = (QXLOutput *)((UINT8 *)drawable - sizeof(QXLOutput));
+ AddRes(output, res);
+}
+
+void QxlDevice::FreeClipRectsEx(Resource *res)
+{
+ QxlDevice* pqxl = (QxlDevice*)res->ptr;
+ pqxl->FreeClipRects(res);
+}
+void QxlDevice::FreeClipRects(Resource *res)
+{
+ QXLPHYSICAL chunk_phys;
+
+ chunk_phys = ((QXLClipRects *)res->res)->chunk.next_chunk;
+ while (chunk_phys) {
+ QXLDataChunk *chunk = (QXLDataChunk *)VA(chunk_phys, m_MainMemSlot);
+ chunk_phys = chunk->next_chunk;
+ FreeMem(MSPACE_TYPE_DEVRAM, chunk);
+ }
+ FreeMem(MSPACE_TYPE_DEVRAM, res);
+}
+
+QXLDrawable *QxlDevice::Drawable(UINT8 type, CONST RECT *area, CONST RECT *clip, UINT32 surface_id)
+{
+ QXLDrawable *drawable;
+
+ ASSERT(area);
+
+ drawable = GetDrawable();
+ drawable->surface_id = surface_id;
+ drawable->type = type;
+ drawable->effect = QXL_EFFECT_BLEND;
+ drawable->self_bitmap = 0;
+ drawable->mm_time = m_RomHdr->mm_clock;
+ drawable->surfaces_dest[0] = -1;
+ drawable->surfaces_dest[1] = - 1;
+ drawable->surfaces_dest[2] = -1;
+ CopyRect(&drawable->bbox, area);
+
+ if (!SetClip(clip, drawable)) {
+ DbgPrint(TRACE_LEVEL_VERBOSE, ("%s: set clip failed\n", __FUNCTION__));
+ ReleaseOutput(drawable->release_info.id);
+ drawable = NULL;
+ }
+ return drawable;
+}
+
+
+VOID QxlDevice::BltBits (
+ BLT_INFO* pDst,
+ CONST BLT_INFO* pSrc,
+ UINT NumRects,
+ _In_reads_(NumRects) CONST RECT *pRects)
+{
+ QXLDrawable *drawable;
+
+ if (!(drawable = Drawable(QXL_DRAW_COPY, pRects, NULL, 0))) {
+ DbgPrint(TRACE_LEVEL_ERROR, ("Cannot get Drawable.\n"));
+ }
+
+ for (UINT iRect = 0; iRect < NumRects; iRect++)
+ {
+ CONST RECT* pRect = &pRects[iRect];
+ }
}
VOID QxlDevice::BlackOutScreen(CURRENT_BDD_MODE* pCurrentBddMod)
@@ -3293,3 +3808,17 @@ D3DDDIFORMAT PixelFormatFromBPP(UINT BPP)
default: QXL_LOG_ASSERTION1("A bit per pixel of 0x%I64x is not supported.", BPP); return D3DDDIFMT_UNKNOWN;
}
}
+
+UINT SpiceFromPixelFormat(D3DDDIFORMAT Format)
+{
+ switch (Format)
+ {
+ case D3DDDIFMT_UNKNOWN:
+ case D3DDDIFMT_P8: QXL_LOG_ASSERTION1("Bad format type 0x%I64x", Format); return 0;
+ case D3DDDIFMT_R5G6B5: return SPICE_SURFACE_FMT_16_555;
+ case D3DDDIFMT_R8G8B8:
+ case D3DDDIFMT_X8R8G8B8:
+ case D3DDDIFMT_A8R8G8B8: return SPICE_SURFACE_FMT_32_xRGB;
+ default: QXL_LOG_ASSERTION1("Unknown D3DDDIFORMAT 0x%I64x", Format); return 0;
+ }
+}
diff --git a/qxldod/QxlDod.h b/qxldod/QxlDod.h
index ee24f9e..05a84f7 100755
--- a/qxldod/QxlDod.h
+++ b/qxldod/QxlDod.h
@@ -1,6 +1,7 @@
#pragma once
#include "baseobject.h"
#include "qxl_dev.h"
+#include "mspace.h"
#define MAX_CHILDREN 1
#define MAX_VIEWS 1
@@ -306,6 +307,85 @@ typedef struct _MemSlot {
QXLPHYSICAL high_bits;
} MemSlot;
+typedef struct MspaceInfo {
+ mspace _mspace;
+ UINT8 *mspace_start;
+ UINT8 *mspace_end;
+} MspaceInfo;
+
+enum {
+ MSPACE_TYPE_DEVRAM,
+ MSPACE_TYPE_VRAM,
+
+ NUM_MSPACES,
+};
+
+#define RELEASE_RES(res) if (!--(res)->refs) (res)->free(res);
+#define GET_RES(res) (++(res)->refs)
+
+/* Debug helpers - tag each resource with this enum */
+enum {
+ RESOURCE_TYPE_DRAWABLE = 1,
+ RESOURCE_TYPE_SURFACE,
+ RESOURCE_TYPE_PATH,
+ RESOURCE_TYPE_CLIP_RECTS,
+ RESOURCE_TYPE_QUIC_IMAGE,
+ RESOURCE_TYPE_BITMAP_IMAGE,
+ RESOURCE_TYPE_SURFACE_IMAGE,
+ RESOURCE_TYPE_SRING,
+ RESOURCE_TYPE_CURSOR,
+ RESOURCE_TYPE_BUF,
+ RESOURCE_TYPE_UPDATE,
+};
+
+#ifdef DBG
+#define RESOURCE_TYPE(res, val) do { res->type = val; } while (0)
+#else
+#define RESOURCE_TYPE(res, val)
+#endif
+
+typedef struct Resource Resource;
+struct Resource {
+ UINT32 refs;
+ void* ptr;
+#ifdef DBG
+ UINT32 type;
+#endif
+ void (*free)(Resource *res);
+ UINT8 res[0];
+};
+
+#define TIMEOUT_TO_MS ((LONGLONG) 1 * 10 * 1000)
+
+#define WAIT_FOR_EVENT(event, timeout) do { \
+ NTSTATUS status; \
+ status = KeWaitForSingleObject ( \
+ &event, \
+ Executive, \
+ KernelMode, \
+ FALSE, \
+ timeout); \
+ ASSERT(NT_SUCCESS(status)); \
+} while (0);
+
+#define QXL_SLEEP(msec) do { \
+ LARGE_INTEGER timeout; \
+ timeout.QuadPart = -msec * TIMEOUT_TO_MS; \
+ KeDelayExecutionThread (KernelMode, FALSE, &timeout);\
+} while (0);
+
+
+#define MAX_OUTPUT_RES 6
+
+typedef struct QXLOutput {
+ UINT32 num_res;
+#ifdef DBG
+ UINT32 type;
+#endif
+ Resource *resources[MAX_OUTPUT_RES];
+ UINT8 data[0];
+} QXLOutput;
+
class QxlDevice :
public HwDeviceIntrface
{
@@ -332,17 +412,44 @@ public:
VOID BlackOutScreen(CURRENT_BDD_MODE* pCurrentBddMod);
protected:
NTSTATUS GetModeList(DXGK_DISPLAY_INFORMATION* pDispInfo);
+ VOID BltBits (
+ BLT_INFO* pDst,
+ CONST BLT_INFO* pSrc,
+ UINT NumRects,
+ _In_reads_(NumRects) CONST RECT *pRects);
+ QXLDrawable *Drawable(
+ UINT8 type,
+ CONST RECT *area,
+ CONST RECT *clip,
+ UINT32 surface_id);
+ QXLDrawable *GetDrawable();
+ void *AllocMem(UINT32 mspace_type, size_t size, BOOL force);
private:
void UnmapMemory(void);
BOOL SetVideoModeInfo(UINT Idx, QXLMode* pModeInfo);
BOOL InitMemSlots(void);
BOOL CreateMemSlots(void);
void DestroyMemSlots(void);
+ void CreatePrimarySurface(PVIDEO_MODE_INFORMATION pModeInfo);
+ void DestroyPrimarySurface(void);
void ResetDevice(void);
void SetupHWSlot(UINT8 Idx, MemSlot *pSlot);
UINT8 SetupMemSlot(UINT8 Idx, QXLPHYSICAL start, QXLPHYSICAL end);
- BOOL CreateEvents();
- BOOL CreateRings();
+ BOOL CreateEvents(void);
+ BOOL CreateRings(void);
+ UINT64 VA(QXLPHYSICAL paddr, UINT8 slot_id);
+ QXLPHYSICAL PA(PVOID virt, UINT8 slot_id);
+ void InitDeviceMemoryResources(void);
+ void InitMspace(UINT32 mspace_type, UINT8 *start, size_t capacity);
+ void FlushReleaseRing();
+ void FreeMem(UINT32 mspace_type, void *ptr);
+ UINT64 ReleaseOutput(UINT64 output_id);
+ void WaitForReleaseRing(void);
+ BOOL SetClip(const RECT *clip, QXLDrawable *drawable);
+ void AddRes(QXLOutput *output, Resource *res);
+ void DrawableAddRes(QXLDrawable *drawable, Resource *res);
+ void FreeClipRects(Resource *res);
+ void static FreeClipRectsEx(Resource *res);
private:
PUCHAR m_IoBase;
BOOLEAN m_IoMapped;
@@ -378,6 +485,12 @@ private:
PUCHAR m_LogPort;
PUCHAR m_LogBuf;
+
+ KSPIN_LOCK m_MemLock;
+ MspaceInfo m_MSInfo[NUM_MSPACES];
+
+ UINT64 free_outputs;
+
};
class QxlDod :
@@ -517,6 +630,37 @@ private:
NTSTATUS RegisterHWInfo();
+/*
+ NTSTATUS ExecutePresentDisplayOnly(_In_ BYTE* DstAddr,
+ _In_ UINT DstBitPerPixel,
+ _In_ BYTE* SrcAddr,
+ _In_ UINT SrcBytesPerPixel,
+ _In_ LONG SrcPitch,
+ _In_ ULONG NumMoves,
+ _In_ D3DKMT_MOVE_RECT* pMoves,
+ _In_ ULONG NumDirtyRects,
+ _In_ RECT* pDirtyRect,
+ _In_ D3DKMDT_VIDPN_PRESENT_PATH_ROTATION Rotation);
+ BYTE* GetRowStart(_In_ CONST BLT_INFO* pBltInfo, CONST RECT* pRect);
+ VOID GetPitches(_In_ CONST BLT_INFO* pBltInfo, _Out_ LONG* pPixelPitch, _Out_ LONG* pRowPitch);
+ VOID CopyBitsGeneric(
+ BLT_INFO* pDst,
+ CONST BLT_INFO* pSrc,
+ UINT NumRects,
+ _In_reads_(NumRects) CONST RECT *pRects);
+
+ VOID CopyBits32_32(
+ BLT_INFO* pDst,
+ CONST BLT_INFO* pSrc,
+ UINT NumRects,
+ _In_reads_(NumRects) CONST RECT *pRects);
+ VOID BltBits (
+ BLT_INFO* pDst,
+ CONST BLT_INFO* pSrc,
+ UINT NumRects,
+ _In_reads_(NumRects) CONST RECT *pRects);
+ VOID BlackOutScreen(D3DDDI_VIDEO_PRESENT_SOURCE_ID SourceId);
+*/
};
NTSTATUS
@@ -532,6 +676,7 @@ UnmapFrameBuffer(
UINT BPPFromPixelFormat(D3DDDIFORMAT Format);
D3DDDIFORMAT PixelFormatFromBPP(UINT BPP);
+UINT SpiceFromPixelFormat(D3DDDIFORMAT Format);
VOID CopyBitsGeneric(
BLT_INFO* pDst,
diff --git a/qxldod/mspace.c b/qxldod/mspace.c
new file mode 100755
index 0000000..d0ba123
--- /dev/null
+++ b/qxldod/mspace.c
@@ -0,0 +1,2437 @@
+// based on dlmalloc from Doug Lea
+
+
+// quote from the Doug Lea original file
+ /*
+ This is a version (aka dlmalloc) of malloc/free/realloc written by
+ Doug Lea and released to the public domain, as explained at
+ http://creativecommons.org/licenses/publicdomain. Send questions,
+ comments, complaints, performance data, etc to dl@cs.oswego.edu
+
+ * Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
+
+ Note: There may be an updated version of this malloc obtainable at
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+ Check before installing!
+ */
+
+
+#include <ntddk.h>
+
+#include "mspace.h"
+
+#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
+
+#define MALLOC_ALIGNMENT ((size_t)8U)
+#define USE_LOCKS 0
+#define malloc_getpagesize ((size_t)4096U)
+#define DEFAULT_GRANULARITY malloc_getpagesize
+#define MAX_SIZE_T (~(size_t)0)
+#define MALLOC_FAILURE_ACTION
+#define MALLINFO_FIELD_TYPE size_t
+#define FOOTERS 0
+#define INSECURE 0
+#define PROCEED_ON_ERROR 0
+#define DEBUG 0
+#define ABORT_ON_ASSERT_FAILURE 1
+#define ABORT(user_data) abort_func(user_data)
+#define USE_BUILTIN_FFS 0
+#define USE_DEV_RANDOM 0
+#define PRINT(params) print_func params
+
+
+#define MEMCPY(dest, src, n) RtlCopyMemory(dest, src, n)
+#define MEMCLEAR(dest, n) RtlZeroMemory(dest, n)
+
+
+#define M_GRANULARITY (-1)
+
+void default_abort_func(void *user_data)
+{
+ for (;;);
+}
+
+void default_print_func(void *user_data, char *format, ...)
+{
+}
+
+static mspace_abort_t abort_func = default_abort_func;
+static mspace_print_t print_func = default_print_func;
+
+void mspace_set_abort_func(mspace_abort_t f)
+{
+ abort_func = f;
+}
+
+void mspace_set_print_func(mspace_print_t f)
+{
+ print_func = f;
+}
+
+/* ------------------------ Mallinfo declarations ------------------------ */
+
+#if !NO_MALLINFO
+/*
+ This version of malloc supports the standard SVID/XPG mallinfo
+ routine that returns a struct containing usage properties and
+ statistics. It should work on any system that has a
+ /usr/include/malloc.h defining struct mallinfo. The main
+ declaration needed is the mallinfo struct that is returned (by-copy)
+ by mallinfo(). The malloinfo struct contains a bunch of fields that
+ are not even meaningful in this version of malloc. These fields are
+ are instead filled by mallinfo() with other numbers that might be of
+ interest.
+
+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+ /usr/include/malloc.h file that includes a declaration of struct
+ mallinfo. If so, it is included; else a compliant version is
+ declared below. These must be precisely the same for mallinfo() to
+ work. The original SVID version of this struct, defined on most
+ systems with mallinfo, declares all fields as ints. But some others
+ define as unsigned long. If your system defines the fields using a
+ type of different width than listed here, you MUST #include your
+ system version and #define HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+
+struct mallinfo {
+ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
+ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
+ MALLINFO_FIELD_TYPE smblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
+ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
+ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
+ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
+ MALLINFO_FIELD_TYPE fordblks; /* total free space */
+ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
+};
+
+#endif /* NO_MALLINFO */
+
+
+
+#ifdef DEBUG
+#if ABORT_ON_ASSERT_FAILURE
+#define assert(user_data, x) if(!(x)) ABORT(user_data)
+#else /* ABORT_ON_ASSERT_FAILURE */
+#include <assert.h>
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#else /* DEBUG */
+#define assert(user_data, x)
+#endif /* DEBUG */
+
+/* ------------------- size_t and alignment properties -------------------- */
+
+/* The byte and bit size of a size_t */
+#define SIZE_T_SIZE (sizeof(size_t))
+#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
+
+/* Some constants coerced to size_t */
+/* Annoying but necessary to avoid errors on some plaftorms */
+#define SIZE_T_ZERO ((size_t)0)
+#define SIZE_T_ONE ((size_t)1)
+#define SIZE_T_TWO ((size_t)2)
+#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
+#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
+#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
+#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
+
+/* The bit mask value corresponding to MALLOC_ALIGNMENT */
+#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
+
+/* True if address a has acceptable alignment */
+#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
+
+/* the number of bytes to offset an address to align it */
+#define align_offset(A)\
+ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
+ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
+
+/* --------------------------- Lock preliminaries ------------------------ */
+
+#if USE_LOCKS
+
+/*
+ When locks are defined, there are up to two global locks:
+
+ * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
+ MORECORE. In many cases sys_alloc requires two calls, that should
+ not be interleaved with calls by other threads. This does not
+ protect against direct calls to MORECORE by other threads not
+ using this lock, so there is still code to cope the best we can on
+ interference.
+
+ * magic_init_mutex ensures that mparams.magic and other
+ unique mparams values are initialized only once.
+*/
+
+
+#define USE_LOCK_BIT (2U)
+#else /* USE_LOCKS */
+#define USE_LOCK_BIT (0U)
+#define INITIAL_LOCK(l)
+#endif /* USE_LOCKS */
+
+#if USE_LOCKS
+#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
+#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
+#else /* USE_LOCKS */
+#define ACQUIRE_MAGIC_INIT_LOCK()
+#define RELEASE_MAGIC_INIT_LOCK()
+#endif /* USE_LOCKS */
+
+
+
+/* ----------------------- Chunk representations ------------------------ */
+
+/*
+ (The following includes lightly edited explanations by Colin Plumb.)
+
+ The malloc_chunk declaration below is misleading (but accurate and
+ necessary). It declares a "view" into memory allowing access to
+ necessary fields at known offsets from a given base.
+
+ Chunks of memory are maintained using a `boundary tag' method as
+ originally described by Knuth. (See the paper by Paul Wilson
+ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
+ techniques.) Sizes of free chunks are stored both in the front of
+ each chunk and at the end. This makes consolidating fragmented
+ chunks into bigger chunks fast. The head fields also hold bits
+ representing whether chunks are free or in use.
+
+ Here are some pictures to make it clearer. They are "exploded" to
+ show that the state of a chunk can be thought of as extending from
+ the high 31 bits of the head field of its header through the
+ prev_foot and PINUSE_BIT bit of the following chunk header.
+
+ A chunk that's in use looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk (if P = 1) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 1| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | |
+ +- -+
+ | |
+ +- -+
+ | :
+ +- size - sizeof(size_t) available payload bytes -+
+ : |
+ chunk-> +- -+
+ | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
+ | Size of next chunk (may or may not be in use) | +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ And if it's free, it looks like this:
+
+ chunk-> +- -+
+ | User payload (must be in use, or we would have merged!) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 0| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Next pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Prev pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- size - sizeof(struct chunk) unused bytes -+
+ : |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
+ | Size of next chunk (must be in use, or we would have merged)| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- User payload -+
+ : |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ |0|
+ +-+
+ Note that since we always merge adjacent free chunks, the chunks
+ adjacent to a free chunk must be in use.
+
+ Given a pointer to a chunk (which can be derived trivially from the
+ payload pointer) we can, in O(1) time, find out whether the adjacent
+ chunks are free, and if so, unlink them from the lists that they
+ are on and merge them with the current chunk.
+
+ Chunks always begin on even word boundaries, so the mem portion
+ (which is returned to the user) is also on an even word boundary, and
+ thus at least double-word aligned.
+
+ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
+ chunk size (which is always a multiple of two words), is an in-use
+ bit for the *previous* chunk. If that bit is *clear*, then the
+ word before the current chunk size contains the previous chunk
+ size, and can be used to find the front of the previous chunk.
+ The very first chunk allocated always has this bit set, preventing
+ access to non-existent (or non-owned) memory. If pinuse is set for
+ any given chunk, then you CANNOT determine the size of the
+ previous chunk, and might even get a memory addressing fault when
+ trying to do so.
+
+ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
+ the chunk size redundantly records whether the current chunk is
+ inuse. This redundancy enables usage checks within free and realloc,
+ and reduces indirection when freeing and consolidating chunks.
+
+ Each freshly allocated chunk must have both cinuse and pinuse set.
+ That is, each allocated chunk borders either a previously allocated
+ and still in-use chunk, or the base of its memory arena. This is
+ ensured by making all allocations from the the `lowest' part of any
+ found chunk. Further, no free chunk physically borders another one,
+ so each free chunk is known to be preceded and followed by either
+ inuse chunks or the ends of memory.
+
+ Note that the `foot' of the current chunk is actually represented
+ as the prev_foot of the NEXT chunk. This makes it easier to
+ deal with alignments etc but can be very confusing when trying
+ to extend or adapt this code.
+
+ The exceptions to all this are
+
+ 1. The special chunk `top' is the top-most available chunk (i.e.,
+ the one bordering the end of available memory). It is treated
+ specially. Top is never included in any bin, is used only if
+ no other chunk is available, and is released back to the
+ system if it is very large (see M_TRIM_THRESHOLD). In effect,
+ the top chunk is treated as larger (and thus less well
+ fitting) than any other available chunk. The top chunk
+ doesn't update its trailing size field since there is no next
+ contiguous chunk that would have to index off it. However,
+ space is still allocated for it (TOP_FOOT_SIZE) to enable
+ separation or merging when space is extended.
+
+ 3. Chunks allocated via mmap, which have the lowest-order bit
+ (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
+ PINUSE_BIT in their head fields. Because they are allocated
+ one-by-one, each must carry its own prev_foot field, which is
+ also used to hold the offset this chunk has within its mmapped
+ region, which is needed to preserve alignment. Each mmapped
+ chunk is trailed by the first two fields of a fake next-chunk
+ for sake of usage checks.
+
+*/
+
+struct malloc_chunk {
+ size_t prev_foot; /* Size of previous chunk (if free). */
+ size_t head; /* Size and inuse bits. */
+ struct malloc_chunk* fd; /* double links -- used only if free. */
+ struct malloc_chunk* bk;
+};
+
+typedef struct malloc_chunk mchunk;
+typedef struct malloc_chunk* mchunkptr;
+typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
+typedef unsigned int bindex_t; /* Described below */
+typedef unsigned int binmap_t; /* Described below */
+typedef unsigned int flag_t; /* The type of various bit flag sets */
+
+
+/* ------------------- Chunks sizes and alignments ----------------------- */
+
+#define MCHUNK_SIZE (sizeof(mchunk))
+
+#if FOOTERS
+#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+#else /* FOOTERS */
+#define CHUNK_OVERHEAD (SIZE_T_SIZE)
+#endif /* FOOTERS */
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+#define MIN_CHUNK_SIZE\
+ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* conversion from malloc headers to user pointers, and back */
+#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
+/* chunk associated with aligned address A */
+#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
+
+/* Bounds on request (not chunk) sizes. */
+#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
+#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
+
+/* pad request bytes into a usable size */
+#define pad_request(req) \
+ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* pad request, checking for minimum (but not maximum) */
+#define request2size(req) \
+ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
+
+/* ------------------ Operations on head and foot fields ----------------- */
+
+/*
+ The head field of a chunk is or'ed with PINUSE_BIT when previous
+ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
+ use. If the chunk was obtained with mmap, the prev_foot field has
+ IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
+ mmapped region to the base of the chunk.
+*/
+
+#define PINUSE_BIT (SIZE_T_ONE)
+#define CINUSE_BIT (SIZE_T_TWO)
+#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
+
+/* Head value for fenceposts */
+#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
+
+/* extraction of fields from head words */
+#define cinuse(p) ((p)->head & CINUSE_BIT)
+#define pinuse(p) ((p)->head & PINUSE_BIT)
+#define chunksize(p) ((p)->head & ~(INUSE_BITS))
+
+#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
+#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
+
+/* Treat space at ptr +/- offset as a chunk */
+#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
+#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
+
+/* Ptr to next or previous physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
+
+/* extract next chunk's pinuse bit */
+#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
+
+/* Get/set size at footer */
+#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
+#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
+
+/* Set size, pinuse bit, and foot */
+#define set_size_and_pinuse_of_free_chunk(p, s)\
+ ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
+
+/* Set size, pinuse bit, foot, and clear next pinuse */
+#define set_free_with_pinuse(p, s, n)\
+ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
+
+/* Get the internal overhead associated with chunk p */
+#define overhead_for(p) CHUNK_OVERHEAD
+
+/* Return true if malloced space is not necessarily cleared */
+#define calloc_must_clear(p) (1)
+
+
+/* ---------------------- Overlaid data structures ----------------------- */
+
+/*
+ When chunks are not in use, they are treated as nodes of either
+ lists or trees.
+
+ "Small" chunks are stored in circular doubly-linked lists, and look
+ like this:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space (may be 0 bytes long) .
+ . .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Larger chunks are kept in a form of bitwise digital trees (aka
+ tries) keyed on chunksizes. Because malloc_tree_chunks are only for
+ free chunks greater than 256 bytes, their size doesn't impose any
+ constraints on user chunk sizes. Each node looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to left child (child[0]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to right child (child[1]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to parent |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | bin index of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks
+ of the same size are arranged in a circularly-linked list, with only
+ the oldest chunk (the next to be used, in our FIFO ordering)
+ actually in the tree. (Tree members are distinguished by a non-null
+ parent pointer.) If a chunk with the same size an an existing node
+ is inserted, it is linked off the existing node using pointers that
+ work in the same way as fd/bk pointers of small chunks.
+
+ Each tree contains a power of 2 sized range of chunk sizes (the
+ smallest is 0x100 <= x < 0x180), which is is divided in half at each
+ tree level, with the chunks in the smaller half of the range (0x100
+ <= x < 0x140 for the top nose) in the left subtree and the larger
+ half (0x140 <= x < 0x180) in the right subtree. This is, of course,
+ done by inspecting individual bits.
+
+ Using these rules, each node's left subtree contains all smaller
+ sizes than its right subtree. However, the node at the root of each
+ subtree has no particular ordering relationship to either. (The
+ dividing line between the subtree sizes is based on trie relation.)
+ If we remove the last chunk of a given size from the interior of the
+ tree, we need to replace it with a leaf node. The tree ordering
+ rules permit a node to be replaced by any leaf below it.
+
+ The smallest chunk in a tree (a common operation in a best-fit
+ allocator) can be found by walking a path to the leftmost leaf in
+ the tree. Unlike a usual binary tree, where we follow left child
+ pointers until we reach a null, here we follow the right child
+ pointer any time the left one is null, until we reach a leaf with
+ both child pointers null. The smallest chunk in the tree will be
+ somewhere along that path.
+
+ The worst case number of steps to add, find, or remove a node is
+ bounded by the number of bits differentiating chunks within
+ bins. Under current bin calculations, this ranges from 6 up to 21
+ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
+ is of course much better.
+*/
+
+struct malloc_tree_chunk {
+ /* The first four fields must be compatible with malloc_chunk */
+ size_t prev_foot;
+ size_t head;
+ struct malloc_tree_chunk* fd;
+ struct malloc_tree_chunk* bk;
+
+ struct malloc_tree_chunk* child[2];
+ struct malloc_tree_chunk* parent;
+ bindex_t index;
+};
+
+typedef struct malloc_tree_chunk tchunk;
+typedef struct malloc_tree_chunk* tchunkptr;
+typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
+
+/* A little helper macro for trees */
+#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
+
+/* ----------------------------- Segments -------------------------------- */
+
+/*
+ Each malloc space may include non-contiguous segments, held in a
+ list headed by an embedded malloc_segment record representing the
+ top-most space. Segments also include flags holding properties of
+ the space. Large chunks that are directly allocated by mmap are not
+ included in this list. They are instead independently created and
+ destroyed without otherwise keeping track of them.
+
+ Segment management mainly comes into play for spaces allocated by
+ MMAP. Any call to MMAP might or might not return memory that is
+ adjacent to an existing segment. MORECORE normally contiguously
+ extends the current space, so this space is almost always adjacent,
+ which is simpler and faster to deal with. (This is why MORECORE is
+ used preferentially to MMAP when both are available -- see
+ sys_alloc.) When allocating using MMAP, we don't use any of the
+ hinting mechanisms (inconsistently) supported in various
+ implementations of unix mmap, or distinguish reserving from
+ committing memory. Instead, we just ask for space, and exploit
+ contiguity when we get it. It is probably possible to do
+ better than this on some systems, but no general scheme seems
+ to be significantly better.
+
+ Management entails a simpler variant of the consolidation scheme
+ used for chunks to reduce fragmentation -- new adjacent memory is
+ normally prepended or appended to an existing segment. However,
+ there are limitations compared to chunk consolidation that mostly
+ reflect the fact that segment processing is relatively infrequent
+ (occurring only when getting memory from system) and that we
+ don't expect to have huge numbers of segments:
+
+ * Segments are not indexed, so traversal requires linear scans. (It
+ would be possible to index these, but is not worth the extra
+ overhead and complexity for most programs on most platforms.)
+ * New segments are only appended to old ones when holding top-most
+ memory; if they cannot be prepended to others, they are held in
+ different segments.
+
+ Except for the top-most segment of an mstate, each segment record
+ is kept at the tail of its segment. Segments are added by pushing
+ segment records onto the list headed by &mstate.seg for the
+ containing mstate.
+
+ Segment flags control allocation/merge/deallocation policies:
+ * If EXTERN_BIT set, then we did not allocate this segment,
+ and so should not try to deallocate or merge with others.
+ (This currently holds only for the initial segment passed
+ into create_mspace_with_base.)
+ * If IS_MMAPPED_BIT set, the segment may be merged with
+ other surrounding mmapped segments and trimmed/de-allocated
+ using munmap.
+ * If neither bit is set, then the segment was obtained using
+ MORECORE so can be merged with surrounding MORECORE'd segments
+ and deallocated/trimmed using MORECORE with negative arguments.
+*/
+
+struct malloc_segment {
+ char* base; /* base address */
+ size_t size; /* allocated size */
+ struct malloc_segment* next; /* ptr to next segment */
+};
+
+typedef struct malloc_segment msegment;
+typedef struct malloc_segment* msegmentptr;
+
+/* ---------------------------- malloc_state ----------------------------- */
+
+/*
+ A malloc_state holds all of the bookkeeping for a space.
+ The main fields are:
+
+ Top
+ The topmost chunk of the currently active segment. Its size is
+ cached in topsize. The actual size of topmost space is
+ topsize+TOP_FOOT_SIZE, which includes space reserved for adding
+ fenceposts and segment records if necessary when getting more
+ space from the system. The size at which to autotrim top is
+ cached from mparams in trim_check, except that it is disabled if
+ an autotrim fails.
+
+ Designated victim (dv)
+ This is the preferred chunk for servicing small requests that
+ don't have exact fits. It is normally the chunk split off most
+ recently to service another small request. Its size is cached in
+ dvsize. The link fields of this chunk are not maintained since it
+ is not kept in a bin.
+
+ SmallBins
+ An array of bin headers for free chunks. These bins hold chunks
+ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
+ chunks of all the same size, spaced 8 bytes apart. To simplify
+ use in double-linked lists, each bin header acts as a malloc_chunk
+ pointing to the real first node, if it exists (else pointing to
+ itself). This avoids special-casing for headers. But to avoid
+ waste, we allocate only the fd/bk pointers of bins, and then use
+ repositioning tricks to treat these as the fields of a chunk.
+
+ TreeBins
+ Treebins are pointers to the roots of trees holding a range of
+ sizes. There are 2 equally spaced treebins for each power of two
+ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
+ larger.
+
+ Bin maps
+ There is one bit map for small bins ("smallmap") and one for
+ treebins ("treemap). Each bin sets its bit when non-empty, and
+ clears the bit when empty. Bit operations are then used to avoid
+ bin-by-bin searching -- nearly all "search" is done without ever
+ looking at bins that won't be selected. The bit maps
+ conservatively use 32 bits per map word, even if on 64bit system.
+ For a good description of some of the bit-based techniques used
+ here, see Henry S. Warren Jr's book "Hacker's Delight" (and
+ supplement at http://hackersdelight.org/). Many of these are
+ intended to reduce the branchiness of paths through malloc etc, as
+ well as to reduce the number of memory locations read or written.
+
+ Segments
+ A list of segments headed by an embedded malloc_segment record
+ representing the initial space.
+
+ Address check support
+ The least_addr field is the least address ever obtained from
+ MORECORE or MMAP. Attempted frees and reallocs of any address less
+ than this are trapped (unless INSECURE is defined).
+
+ Magic tag
+ A cross-check field that should always hold same value as mparams.magic.
+
+ Flags
+ Bits recording whether to use MMAP, locks, or contiguous MORECORE
+
+ Statistics
+ Each space keeps track of current and maximum system memory
+ obtained via MORECORE or MMAP.
+
+ Locking
+ If USE_LOCKS is defined, the "mutex" lock is acquired and released
+ around every public call using this mspace.
+*/
+
+/* Bin types, widths and sizes */
+#define NSMALLBINS (32U)
+#define NTREEBINS (32U)
+#define SMALLBIN_SHIFT (3U)
+#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
+#define TREEBIN_SHIFT (8U)
+#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
+#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
+#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
+
+struct malloc_state {
+ binmap_t smallmap;
+ binmap_t treemap;
+ size_t dvsize;
+ size_t topsize;
+ char* least_addr;
+ mchunkptr dv;
+ mchunkptr top;
+ size_t magic;
+ mchunkptr smallbins[(NSMALLBINS+1)*2];
+ tbinptr treebins[NTREEBINS];
+ size_t footprint;
+ size_t max_footprint;
+ flag_t mflags;
+ void *user_data;
+#if USE_LOCKS
+ MLOCK_T mutex; /* locate lock among fields that rarely change */
+#endif /* USE_LOCKS */
+ msegment seg;
+};
+
+typedef struct malloc_state* mstate;
+
+/* ------------- Global malloc_state and malloc_params ------------------- */
+
+/*
+ malloc_params holds global properties, including those that can be
+ dynamically set using mallopt. There is a single instance, mparams,
+ initialized in init_mparams.
+*/
+
+struct malloc_params {
+ size_t magic;
+ size_t page_size;
+ size_t granularity;
+ flag_t default_mflags;
+};
+
+static struct malloc_params mparams;
+
+/* The global malloc_state used for all non-"mspace" calls */
+//static struct malloc_state _gm_;
+//#define gm (&_gm_)
+//#define is_global(M) ((M) == &_gm_)
+#define is_initialized(M) ((M)->top != 0)
+
+/* -------------------------- system alloc setup ------------------------- */
+
+/* Operations on mflags */
+
+#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
+#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
+#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
+
+#define set_lock(M,L)\
+ ((M)->mflags = (L)?\
+ ((M)->mflags | USE_LOCK_BIT) :\
+ ((M)->mflags & ~USE_LOCK_BIT))
+
+/* page-align a size */
+#define page_align(S)\
+ (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
+
+/* granularity-align a size */
+#define granularity_align(S)\
+ (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
+
+#define is_page_aligned(S)\
+ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
+#define is_granularity_aligned(S)\
+ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
+
+/* True if segment S holds address A */
+#define segment_holds(S, A)\
+ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
+
+/* Return segment holding given address */
+static msegmentptr segment_holding(mstate m, char* addr) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if (addr >= sp->base && addr < sp->base + sp->size)
+ return sp;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+/* Return true if segment contains a segment link */
+static int has_segment_link(mstate m, msegmentptr ss) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
+ return 1;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+
+
+/*
+ TOP_FOOT_SIZE is padding at the end of a segment, including space
+ that may be needed to place segment records and fenceposts when new
+ noncontiguous segments are added.
+*/
+#define TOP_FOOT_SIZE\
+ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
+
+
+/* ------------------------------- Hooks -------------------------------- */
+
+/*
+ PREACTION should be defined to return 0 on success, and nonzero on
+ failure. If you are not using locking, you can redefine these to do
+ anything you like.
+*/
+
+#if USE_LOCKS
+
+/* Ensure locks are initialized */
+#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
+
+#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
+#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
+#else /* USE_LOCKS */
+
+#ifndef PREACTION
+#define PREACTION(M) (0)
+#endif /* PREACTION */
+
+#ifndef POSTACTION
+#define POSTACTION(M)
+#endif /* POSTACTION */
+
+#endif /* USE_LOCKS */
+
+/*
+ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
+ USAGE_ERROR_ACTION is triggered on detected bad frees and
+ reallocs. The argument p is an address that might have triggered the
+ fault. It is ignored by the two predefined actions, but might be
+ useful in custom actions that try to help diagnose errors.
+*/
+
+#if PROCEED_ON_ERROR
+
+/* A count of the number of corruption errors causing resets */
+int malloc_corruption_error_count;
+
+/* default corruption action */
+static void reset_on_error(mstate m);
+
+#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
+#define USAGE_ERROR_ACTION(m, p)
+
+#else /* PROCEED_ON_ERROR */
+
+#ifndef CORRUPTION_ERROR_ACTION
+#define CORRUPTION_ERROR_ACTION(m) ABORT(m->user_data)
+#endif /* CORRUPTION_ERROR_ACTION */
+
+#ifndef USAGE_ERROR_ACTION
+#define USAGE_ERROR_ACTION(m,p) ABORT(m->user_data)
+#endif /* USAGE_ERROR_ACTION */
+
+#endif /* PROCEED_ON_ERROR */
+
+/* -------------------------- Debugging setup ---------------------------- */
+
+#if ! DEBUG
+
+#define check_free_chunk(M,P)
+#define check_inuse_chunk(M,P)
+#define check_malloced_chunk(M,P,N)
+#define check_malloc_state(M)
+#define check_top_chunk(M,P)
+
+#else /* DEBUG */
+#define check_free_chunk(M,P) do_check_free_chunk(M,P)
+#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
+#define check_top_chunk(M,P) do_check_top_chunk(M,P)
+#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
+#define check_malloc_state(M) do_check_malloc_state(M)
+
+static void do_check_any_chunk(mstate m, mchunkptr p);
+static void do_check_top_chunk(mstate m, mchunkptr p);
+static void do_check_inuse_chunk(mstate m, mchunkptr p);
+static void do_check_free_chunk(mstate m, mchunkptr p);
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
+static void do_check_tree(mstate m, tchunkptr t);
+static void do_check_treebin(mstate m, bindex_t i);
+static void do_check_smallbin(mstate m, bindex_t i);
+static void do_check_malloc_state(mstate m);
+static int bin_find(mstate m, mchunkptr x);
+static size_t traverse_and_check(mstate m);
+#endif /* DEBUG */
+
+/* ---------------------------- Indexing Bins ---------------------------- */
+
+#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
+#define small_index(s) ((s) >> SMALLBIN_SHIFT)
+#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
+#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
+
+/* addressing by index. See above about smallbin repositioning */
+#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
+#define treebin_at(M,i) (&((M)->treebins[i]))
+
+/* assign tree index for size S to variable I */
+#if defined(__GNUC__) && defined(i386)
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K;\
+ __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+#else /* GNUC */
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int Y = (unsigned int)X;\
+ unsigned int N = ((Y - 0x100) >> 16) & 8;\
+ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
+ N += K;\
+ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
+ K = 14 - N + ((Y <<= K) >> 15);\
+ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
+ }\
+}
+#endif /* GNUC */
+
+/* Bit representing maximum resolved size in a treebin at i */
+#define bit_for_tree_index(i) \
+ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
+
+/* Shift placing maximum resolved bit in a treebin at i as sign bit */
+#define leftshift_for_tree_index(i) \
+ ((i == NTREEBINS-1)? 0 : \
+ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
+
+/* The size of the smallest chunk held in bin with index i */
+#define minsize_for_tree_index(i) \
+ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
+ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
+
+/* ------------------------ Operations on bin maps ----------------------- */
+
+/* bit corresponding to given index */
+#define idx2bit(i) ((binmap_t)(1) << (i))
+
+/* Mark/Clear bits with given index */
+#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
+#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
+#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
+
+#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
+#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
+#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
+
+/* index corresponding to given bit */
+
+#if defined(__GNUC__) && defined(i386)
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
+ I = (bindex_t)J;\
+}
+
+#else /* GNUC */
+#if USE_BUILTIN_FFS
+#define compute_bit2idx(X, I) I = ffs(X)-1
+
+#else /* USE_BUILTIN_FFS */
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int Y = X - 1;\
+ unsigned int K = Y >> (16-4) & 16;\
+ unsigned int N = K; Y >>= K;\
+ N += K = Y >> (8-3) & 8; Y >>= K;\
+ N += K = Y >> (4-2) & 4; Y >>= K;\
+ N += K = Y >> (2-1) & 2; Y >>= K;\
+ N += K = Y >> (1-0) & 1; Y >>= K;\
+ I = (bindex_t)(N + Y);\
+}
+#endif /* USE_BUILTIN_FFS */
+#endif /* GNUC */
+
+/* isolate the least set bit of a bitmap */
+#define least_bit(x) ((x) & -(x))
+
+/* mask with all bits to left of least bit of x on */
+#define left_bits(x) ((x<<1) | -(x<<1))
+
+/* mask with all bits to left of or equal to least bit of x on */
+#define same_or_left_bits(x) ((x) | -(x))
+
+
+/* ----------------------- Runtime Check Support ------------------------- */
+
+/*
+ For security, the main invariant is that malloc/free/etc never
+ writes to a static address other than malloc_state, unless static
+ malloc_state itself has been corrupted, which cannot occur via
+ malloc (because of these checks). In essence this means that we
+ believe all pointers, sizes, maps etc held in malloc_state, but
+ check all of those linked or offsetted from other embedded data
+ structures. These checks are interspersed with main code in a way
+ that tends to minimize their run-time cost.
+
+ When FOOTERS is defined, in addition to range checking, we also
+ verify footer fields of inuse chunks, which can be used guarantee
+ that the mstate controlling malloc/free is intact. This is a
+ streamlined version of the approach described by William Robertson
+ et al in "Run-time Detection of Heap-based Overflows" LISA'03
+ http://www.usenix.org/events/lisa03/tech/robertson.html The footer
+ of an inuse chunk holds the xor of its mstate and a random seed,
+ that is checked upon calls to free() and realloc(). This is
+ (probablistically) unguessable from outside the program, but can be
+ computed by any code successfully malloc'ing any chunk, so does not
+ itself provide protection against code that has already broken
+ security through some other means. Unlike Robertson et al, we
+ always dynamically check addresses of all offset chunks (previous,
+ next, etc). This turns out to be cheaper than relying on hashes.
+*/
+
+#if !INSECURE
+/* Check if address a is at least as high as any from MORECORE or MMAP */
+#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
+/* Check if address of next chunk n is higher than base chunk p */
+#define ok_next(p, n) ((char*)(p) < (char*)(n))
+/* Check if p has its cinuse bit on */
+#define ok_cinuse(p) cinuse(p)
+/* Check if p has its pinuse bit on */
+#define ok_pinuse(p) pinuse(p)
+
+#else /* !INSECURE */
+#define ok_address(M, a) (1)
+#define ok_next(b, n) (1)
+#define ok_cinuse(p) (1)
+#define ok_pinuse(p) (1)
+#endif /* !INSECURE */
+
+#if (FOOTERS && !INSECURE)
+/* Check if (alleged) mstate m has expected magic field */
+#define ok_magic(M) ((M)->magic == mparams.magic)
+#else /* (FOOTERS && !INSECURE) */
+#define ok_magic(M) (1)
+#endif /* (FOOTERS && !INSECURE) */
+
+
+/* In gcc, use __builtin_expect to minimize impact of checks */
+#if !INSECURE
+#if defined(__GNUC__) && __GNUC__ >= 3
+#define RTCHECK(e) __builtin_expect(e, 1)
+#else /* GNUC */
+#define RTCHECK(e) (e)
+#endif /* GNUC */
+#else /* !INSECURE */
+#define RTCHECK(e) (1)
+#endif /* !INSECURE */
+
+/* macros to set up inuse chunks with or without footers */
+
+#if !FOOTERS
+
+#define mark_inuse_foot(M,p,s)
+
+/* Set cinuse bit and pinuse bit of next chunk */
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set size, cinuse and pinuse bit of this chunk */
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
+
+#else /* FOOTERS */
+
+/* Set foot of inuse chunk to be xor of mstate and seed */
+#define mark_inuse_foot(M,p,s)\
+ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
+
+#define get_mstate_for(p)\
+ ((mstate)(((mchunkptr)((char*)(p) +\
+ (chunksize(p))))->prev_foot ^ mparams.magic))
+
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
+ mark_inuse_foot(M,p,s))
+
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
+ mark_inuse_foot(M,p,s))
+
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ mark_inuse_foot(M, p, s))
+
+#endif /* !FOOTERS */
+
+/* ---------------------------- setting mparams -------------------------- */
+
+/* Initialize mparams */
+static int init_mparams(void) {
+ if (mparams.page_size == 0) {
+ size_t s;
+
+ mparams.default_mflags = USE_LOCK_BIT;
+
+#if (FOOTERS && !INSECURE)
+ {
+#if USE_DEV_RANDOM
+ int fd;
+ unsigned char buf[sizeof(size_t)];
+ /* Try to use /dev/urandom, else fall back on using time */
+ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
+ read(fd, buf, sizeof(buf)) == sizeof(buf)) {
+ s = *((size_t *) buf);
+ close(fd);
+ }
+ else
+#endif /* USE_DEV_RANDOM */
+ s = (size_t)(time(0) ^ (size_t)0x55555555U);
+
+ s |= (size_t)8U; /* ensure nonzero */
+ s &= ~(size_t)7U; /* improve chances of fault for bad values */
+
+ }
+#else /* (FOOTERS && !INSECURE) */
+ s = (size_t)0x58585858U;
+#endif /* (FOOTERS && !INSECURE) */
+ ACQUIRE_MAGIC_INIT_LOCK();
+ if (mparams.magic == 0) {
+ mparams.magic = s;
+ /* Set up lock for main malloc area */
+ //INITIAL_LOCK(&gm->mutex);
+ //gm->mflags = mparams.default_mflags;
+ }
+ RELEASE_MAGIC_INIT_LOCK();
+
+
+ mparams.page_size = malloc_getpagesize;
+ mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
+ DEFAULT_GRANULARITY : mparams.page_size);
+
+ /* Sanity-check configuration:
+ size_t must be unsigned and as wide as pointer type.
+ ints must be at least 4 bytes.
+ alignment must be at least 8.
+ Alignment, min chunk size, and page size must all be powers of 2.
+ */
+ if ((sizeof(size_t) != sizeof(char*)) ||
+ (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
+ (sizeof(int) < 4) ||
+ (MALLOC_ALIGNMENT < (size_t)8U) ||
+ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
+ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
+ ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
+ ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
+ ABORT(NULL);
+ }
+ return 0;
+}
+
+/* support for mallopt */
+static int change_mparam(int param_number, int value) {
+ size_t val = (size_t)value;
+ init_mparams();
+ switch(param_number) {
+ case M_GRANULARITY:
+ if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
+ mparams.granularity = val;
+ return 1;
+ }
+ else
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+#if DEBUG
+/* ------------------------- Debugging Support --------------------------- */
+
+/* Check properties of any chunk, whether free, inuse, mmapped etc */
+static void do_check_any_chunk(mstate m, mchunkptr p) {
+ assert(m->user_data, (is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(m->user_data, ok_address(m, p));
+}
+
+/* Check properties of top chunk */
+static void do_check_top_chunk(mstate m, mchunkptr p) {
+ msegmentptr sp = segment_holding(m, (char*)p);
+ size_t sz = chunksize(p);
+ assert(m->user_data, sp != 0);
+ assert(m->user_data, (is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(m->user_data, ok_address(m, p));
+ assert(m->user_data, sz == m->topsize);
+ assert(m->user_data, sz > 0);
+ assert(m->user_data, sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
+ assert(m->user_data, pinuse(p));
+ assert(m->user_data, !next_pinuse(p));
+}
+
+/* Check properties of inuse chunks */
+static void do_check_inuse_chunk(mstate m, mchunkptr p) {
+ do_check_any_chunk(m, p);
+ assert(m->user_data, cinuse(p));
+ assert(m->user_data, next_pinuse(p));
+ /* If not pinuse, previous chunk has OK offset */
+ assert(m->user_data, pinuse(p) || next_chunk(prev_chunk(p)) == p);
+}
+
+/* Check properties of free chunks */
+static void do_check_free_chunk(mstate m, mchunkptr p) {
+ size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
+ mchunkptr next = chunk_plus_offset(p, sz);
+ do_check_any_chunk(m, p);
+ assert(m->user_data, !cinuse(p));
+ assert(m->user_data, !next_pinuse(p));
+ if (p != m->dv && p != m->top) {
+ if (sz >= MIN_CHUNK_SIZE) {
+ assert(m->user_data, (sz & CHUNK_ALIGN_MASK) == 0);
+ assert(m->user_data, is_aligned(chunk2mem(p)));
+ assert(m->user_data, next->prev_foot == sz);
+ assert(m->user_data, pinuse(p));
+ assert(m->user_data, next == m->top || cinuse(next));
+ assert(m->user_data, p->fd->bk == p);
+ assert(m->user_data, p->bk->fd == p);
+ }
+ else /* markers are always of size SIZE_T_SIZE */
+ assert(m->user_data, sz == SIZE_T_SIZE);
+ }
+}
+
+/* Check properties of malloced chunks at the point they are malloced */
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
+ do_check_inuse_chunk(m, p);
+ assert(m->user_data, (sz & CHUNK_ALIGN_MASK) == 0);
+ assert(m->user_data, sz >= MIN_CHUNK_SIZE);
+ assert(m->user_data, sz >= s);
+ /* size is less than MIN_CHUNK_SIZE more than request */
+ assert(m->user_data, sz < (s + MIN_CHUNK_SIZE));
+ }
+}
+
+/* Check a tree and its subtrees. */
+static void do_check_tree(mstate m, tchunkptr t) {
+ tchunkptr head = 0;
+ tchunkptr u = t;
+ bindex_t tindex = t->index;
+ size_t tsize = chunksize(t);
+ bindex_t idx;
+ compute_tree_index(tsize, idx);
+ assert(m->user_data, tindex == idx);
+ assert(m->user_data, tsize >= MIN_LARGE_SIZE);
+ assert(m->user_data, tsize >= minsize_for_tree_index(idx));
+ assert(m->user_data, (idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
+
+ do { /* traverse through chain of same-sized nodes */
+ do_check_any_chunk(m, ((mchunkptr)u));
+ assert(m->user_data, u->index == tindex);
+ assert(m->user_data, chunksize(u) == tsize);
+ assert(m->user_data, !cinuse(u));
+ assert(m->user_data, !next_pinuse(u));
+ assert(m->user_data, u->fd->bk == u);
+ assert(m->user_data, u->bk->fd == u);
+ if (u->parent == 0) {
+ assert(m->user_data, u->child[0] == 0);
+ assert(m->user_data, u->child[1] == 0);
+ }
+ else {
+ assert(m->user_data, head == 0); /* only one node on chain has parent */
+ head = u;
+ assert(m->user_data, u->parent != u);
+ assert(m->user_data, u->parent->child[0] == u ||
+ u->parent->child[1] == u ||
+ *((tbinptr*)(u->parent)) == u);
+ if (u->child[0] != 0) {
+ assert(m->user_data, u->child[0]->parent == u);
+ assert(m->user_data, u->child[0] != u);
+ do_check_tree(m, u->child[0]);
+ }
+ if (u->child[1] != 0) {
+ assert(m->user_data, u->child[1]->parent == u);
+ assert(m->user_data, u->child[1] != u);
+ do_check_tree(m, u->child[1]);
+ }
+ if (u->child[0] != 0 && u->child[1] != 0) {
+ assert(m->user_data, chunksize(u->child[0]) < chunksize(u->child[1]));
+ }
+ }
+ u = u->fd;
+ } while (u != t);
+ assert(m->user_data, head != 0);
+}
+
+/* Check all the chunks in a treebin. */
+static void do_check_treebin(mstate m, bindex_t i) {
+ tbinptr* tb = treebin_at(m, i);
+ tchunkptr t = *tb;
+ int empty = (m->treemap & (1U << i)) == 0;
+ if (t == 0)
+ assert(m->user_data, empty);
+ if (!empty)
+ do_check_tree(m, t);
+}
+
+/* Check all the chunks in a smallbin. */
+static void do_check_smallbin(mstate m, bindex_t i) {
+ sbinptr b = smallbin_at(m, i);
+ mchunkptr p = b->bk;
+ unsigned int empty = (m->smallmap & (1U << i)) == 0;
+ if (p == b)
+ assert(m->user_data, empty);
+ if (!empty) {
+ for (; p != b; p = p->bk) {
+ size_t size = chunksize(p);
+ mchunkptr q;
+ /* each chunk claims to be free */
+ do_check_free_chunk(m, p);
+ /* chunk belongs in bin */
+ assert(m->user_data, small_index(size) == i);
+ assert(m->user_data, p->bk == b || chunksize(p->bk) == chunksize(p));
+ /* chunk is followed by an inuse chunk */
+ q = next_chunk(p);
+ if (q->head != FENCEPOST_HEAD)
+ do_check_inuse_chunk(m, q);
+ }
+ }
+}
+
+/* Find x in a bin. Used in other check functions. */
+static int bin_find(mstate m, mchunkptr x) {
+ size_t size = chunksize(x);
+ if (is_small(size)) {
+ bindex_t sidx = small_index(size);
+ sbinptr b = smallbin_at(m, sidx);
+ if (smallmap_is_marked(m, sidx)) {
+ mchunkptr p = b;
+ do {
+ if (p == x)
+ return 1;
+ } while ((p = p->fd) != b);
+ }
+ }
+ else {
+ bindex_t tidx;
+ compute_tree_index(size, tidx);
+ if (treemap_is_marked(m, tidx)) {
+ tchunkptr t = *treebin_at(m, tidx);
+ size_t sizebits = size << leftshift_for_tree_index(tidx);
+ while (t != 0 && chunksize(t) != size) {
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ sizebits <<= 1;
+ }
+ if (t != 0) {
+ tchunkptr u = t;
+ do {
+ if (u == (tchunkptr)x)
+ return 1;
+ } while ((u = u->fd) != t);
+ }
+ }
+ }
+ return 0;
+}
+
+/* Traverse each chunk and check it; return total */
+static size_t traverse_and_check(mstate m) {
+ size_t sum = 0;
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ sum += m->topsize + TOP_FOOT_SIZE;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ mchunkptr lastq = 0;
+ assert(m->user_data, pinuse(q));
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ sum += chunksize(q);
+ if (cinuse(q)) {
+ assert(m->user_data, !bin_find(m, q));
+ do_check_inuse_chunk(m, q);
+ }
+ else {
+ assert(m->user_data, q == m->dv || bin_find(m, q));
+ assert(m->user_data, lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
+ do_check_free_chunk(m, q);
+ }
+ lastq = q;
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+ return sum;
+}
+
+/* Check all properties of malloc_state. */
+static void do_check_malloc_state(mstate m) {
+ bindex_t i;
+ size_t total;
+ /* check bins */
+ for (i = 0; i < NSMALLBINS; ++i)
+ do_check_smallbin(m, i);
+ for (i = 0; i < NTREEBINS; ++i)
+ do_check_treebin(m, i);
+
+ if (m->dvsize != 0) { /* check dv chunk */
+ do_check_any_chunk(m, m->dv);
+ assert(m->user_data, m->dvsize == chunksize(m->dv));
+ assert(m->user_data, m->dvsize >= MIN_CHUNK_SIZE);
+ assert(m->user_data, bin_find(m, m->dv) == 0);
+ }
+
+ if (m->top != 0) { /* check top chunk */
+ do_check_top_chunk(m, m->top);
+ assert(m->user_data, m->topsize == chunksize(m->top));
+ assert(m->user_data, m->topsize > 0);
+ assert(m->user_data, bin_find(m, m->top) == 0);
+ }
+
+ total = traverse_and_check(m);
+ assert(m->user_data, total <= m->footprint);
+ assert(m->user_data, m->footprint <= m->max_footprint);
+}
+#endif /* DEBUG */
+
+/* ----------------------------- statistics ------------------------------ */
+
+#if !NO_MALLINFO
+static struct mallinfo internal_mallinfo(mstate m) {
+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ if (!PREACTION(m)) {
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ size_t nfree = SIZE_T_ONE; /* top always free */
+ size_t mfree = m->topsize + TOP_FOOT_SIZE;
+ size_t sum = mfree;
+ msegmentptr s = &m->seg;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ size_t sz = chunksize(q);
+ sum += sz;
+ if (!cinuse(q)) {
+ mfree += sz;
+ ++nfree;
+ }
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+
+ nm.arena = sum;
+ nm.ordblks = nfree;
+ nm.hblkhd = m->footprint - sum;
+ nm.usmblks = m->max_footprint;
+ nm.uordblks = m->footprint - mfree;
+ nm.fordblks = mfree;
+ nm.keepcost = m->topsize;
+ }
+
+ POSTACTION(m);
+ }
+ return nm;
+}
+#endif /* !NO_MALLINFO */
+
+static void internal_malloc_stats(mstate m) {
+ if (!PREACTION(m)) {
+ size_t maxfp = 0;
+ size_t fp = 0;
+ size_t used = 0;
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ maxfp = m->max_footprint;
+ fp = m->footprint;
+ used = fp - (m->topsize + TOP_FOOT_SIZE);
+
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ if (!cinuse(q))
+ used -= chunksize(q);
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+
+ PRINT((m->user_data, "max system bytes = %10lu\n", (unsigned long)(maxfp)));
+ PRINT((m->user_data, "system bytes = %10lu\n", (unsigned long)(fp)));
+ PRINT((m->user_data, "in use bytes = %10lu\n", (unsigned long)(used)));
+
+ POSTACTION(m);
+ }
+}
+
+/* ----------------------- Operations on smallbins ----------------------- */
+
+/*
+ Various forms of linking and unlinking are defined as macros. Even
+ the ones for trees, which are very long but have very short typical
+ paths. This is ugly but reduces reliance on inlining support of
+ compilers.
+*/
+
+/* Link a free chunk into a smallbin */
+#define insert_small_chunk(M, P, S) {\
+ bindex_t I = small_index(S);\
+ mchunkptr B = smallbin_at(M, I);\
+ mchunkptr F = B;\
+ assert((M)->user_data, S >= MIN_CHUNK_SIZE);\
+ if (!smallmap_is_marked(M, I))\
+ mark_smallmap(M, I);\
+ else if (RTCHECK(ok_address(M, B->fd)))\
+ F = B->fd;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ B->fd = P;\
+ F->bk = P;\
+ P->fd = F;\
+ P->bk = B;\
+}
+
+/* Unlink a chunk from a smallbin */
+#define unlink_small_chunk(M, P, S) {\
+ mchunkptr F = P->fd;\
+ mchunkptr B = P->bk;\
+ bindex_t I = small_index(S);\
+ assert((M)->user_data, P != B);\
+ assert((M)->user_data, P != F);\
+ assert((M)->user_data, chunksize(P) == small_index2size(I));\
+ if (F == B)\
+ clear_smallmap(M, I);\
+ else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
+ (B == smallbin_at(M,I) || ok_address(M, B)))) {\
+ F->bk = B;\
+ B->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+/* Unlink the first chunk from a smallbin */
+#define unlink_first_small_chunk(M, B, P, I) {\
+ mchunkptr F = P->fd;\
+ assert((M)->user_data, P != B);\
+ assert((M)->user_data, P != F);\
+ assert((M)->user_data, chunksize(P) == small_index2size(I));\
+ if (B == F)\
+ clear_smallmap(M, I);\
+ else if (RTCHECK(ok_address(M, F))) {\
+ B->fd = F;\
+ F->bk = B;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+/* Replace dv node, binning the old one */
+/* Used only when dvsize known to be small */
+#define replace_dv(M, P, S) {\
+ size_t DVS = M->dvsize;\
+ if (DVS != 0) {\
+ mchunkptr DV = M->dv;\
+ assert((M)->user_data, is_small(DVS));\
+ insert_small_chunk(M, DV, DVS);\
+ }\
+ M->dvsize = S;\
+ M->dv = P;\
+}
+
+
+/* ------------------------- Operations on trees ------------------------- */
+
+/* Insert chunk into tree */
+#define insert_large_chunk(M, X, S) {\
+ tbinptr* H;\
+ bindex_t I;\
+ compute_tree_index(S, I);\
+ H = treebin_at(M, I);\
+ X->index = I;\
+ X->child[0] = X->child[1] = 0;\
+ if (!treemap_is_marked(M, I)) {\
+ mark_treemap(M, I);\
+ *H = X;\
+ X->parent = (tchunkptr)H;\
+ X->fd = X->bk = X;\
+ }\
+ else {\
+ tchunkptr T = *H;\
+ size_t K = S << leftshift_for_tree_index(I);\
+ for (;;) {\
+ if (chunksize(T) != S) {\
+ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
+ K <<= 1;\
+ if (*C != 0)\
+ T = *C;\
+ else if (RTCHECK(ok_address(M, C))) {\
+ *C = X;\
+ X->parent = T;\
+ X->fd = X->bk = X;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ else {\
+ tchunkptr F = T->fd;\
+ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
+ T->fd = F->bk = X;\
+ X->fd = F;\
+ X->bk = T;\
+ X->parent = 0;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ }\
+ }\
+}
+
+/*
+ Unlink steps:
+
+ 1. If x is a chained node, unlink it from its same-sized fd/bk links
+ and choose its bk node as its replacement.
+ 2. If x was the last node of its size, but not a leaf node, it must
+ be replaced with a leaf node (not merely one with an open left or
+ right), to make sure that lefts and rights of descendents
+ correspond properly to bit masks. We use the rightmost descendent
+ of x. We could use any other leaf, but this is easy to locate and
+ tends to counteract removal of leftmosts elsewhere, and so keeps
+ paths shorter than minimally guaranteed. This doesn't loop much
+ because on average a node in a tree is near the bottom.
+ 3. If x is the base of a chain (i.e., has parent links) relink
+ x's parent and children to x's replacement (or null if none).
+*/
+
+#define unlink_large_chunk(M, X) {\
+ tchunkptr XP = X->parent;\
+ tchunkptr R;\
+ if (X->bk != X) {\
+ tchunkptr F = X->fd;\
+ R = X->bk;\
+ if (RTCHECK(ok_address(M, F))) {\
+ F->bk = R;\
+ R->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else {\
+ tchunkptr* RP;\
+ if (((R = *(RP = &(X->child[1]))) != 0) ||\
+ ((R = *(RP = &(X->child[0]))) != 0)) {\
+ tchunkptr* CP;\
+ while ((*(CP = &(R->child[1])) != 0) ||\
+ (*(CP = &(R->child[0])) != 0)) {\
+ R = *(RP = CP);\
+ }\
+ if (RTCHECK(ok_address(M, RP)))\
+ *RP = 0;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ }\
+ if (XP != 0) {\
+ tbinptr* H = treebin_at(M, X->index);\
+ if (X == *H) {\
+ if ((*H = R) == 0) \
+ clear_treemap(M, X->index);\
+ }\
+ else if (RTCHECK(ok_address(M, XP))) {\
+ if (XP->child[0] == X) \
+ XP->child[0] = R;\
+ else \
+ XP->child[1] = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ if (R != 0) {\
+ if (RTCHECK(ok_address(M, R))) {\
+ tchunkptr C0, C1;\
+ R->parent = XP;\
+ if ((C0 = X->child[0]) != 0) {\
+ if (RTCHECK(ok_address(M, C0))) {\
+ R->child[0] = C0;\
+ C0->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ if ((C1 = X->child[1]) != 0) {\
+ if (RTCHECK(ok_address(M, C1))) {\
+ R->child[1] = C1;\
+ C1->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+}
+
+/* Relays to large vs small bin operations */
+
+#define insert_chunk(M, P, S)\
+ if (is_small(S)) insert_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
+
+#define unlink_chunk(M, P, S)\
+ if (is_small(S)) unlink_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
+
+
+/* Relays to internal calls to malloc/free from realloc, memalign etc */
+
+#define internal_malloc(m, b) mspace_malloc(m, b)
+#define internal_free(m, mem) mspace_free(m,mem);
+
+
+/* -------------------------- mspace management -------------------------- */
+
+/* Initialize top chunk and its size */
+static void init_top(mstate m, mchunkptr p, size_t psize) {
+ /* Ensure alignment */
+ size_t offset = align_offset(chunk2mem(p));
+ p = (mchunkptr)((char*)p + offset);
+ psize -= offset;
+
+ m->top = p;
+ m->topsize = psize;
+ p->head = psize | PINUSE_BIT;
+ /* set size of fake trailing chunk holding overhead space only once */
+ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
+}
+
+/* Initialize bins for a new mstate that is otherwise zeroed out */
+static void init_bins(mstate m) {
+ /* Establish circular links for smallbins */
+ bindex_t i;
+ for (i = 0; i < NSMALLBINS; ++i) {
+ sbinptr bin = smallbin_at(m,i);
+ bin->fd = bin->bk = bin;
+ }
+}
+
+#if PROCEED_ON_ERROR
+
+/* default corruption action */
+static void reset_on_error(mstate m) {
+ int i;
+ ++malloc_corruption_error_count;
+ /* Reinitialize fields to forget about all memory */
+ m->smallbins = m->treebins = 0;
+ m->dvsize = m->topsize = 0;
+ m->seg.base = 0;
+ m->seg.size = 0;
+ m->seg.next = 0;
+ m->top = m->dv = 0;
+ for (i = 0; i < NTREEBINS; ++i)
+ *treebin_at(m, i) = 0;
+ init_bins(m);
+}
+#endif /* PROCEED_ON_ERROR */
+
+/* Allocate chunk and prepend remainder with chunk in successor base. */
+static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
+ size_t nb) {
+ mchunkptr p = align_as_chunk(newbase);
+ mchunkptr oldfirst = align_as_chunk(oldbase);
+ size_t psize = (char*)oldfirst - (char*)p;
+ mchunkptr q = chunk_plus_offset(p, nb);
+ size_t qsize = psize - nb;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+
+ assert(m->user_data, (char*)oldfirst > (char*)q);
+ assert(m->user_data, pinuse(oldfirst));
+ assert(m->user_data, qsize >= MIN_CHUNK_SIZE);
+
+ /* consolidate remainder with first chunk of old base */
+ if (oldfirst == m->top) {
+ size_t tsize = m->topsize += qsize;
+ m->top = q;
+ q->head = tsize | PINUSE_BIT;
+ check_top_chunk(m, q);
+ }
+ else if (oldfirst == m->dv) {
+ size_t dsize = m->dvsize += qsize;
+ m->dv = q;
+ set_size_and_pinuse_of_free_chunk(q, dsize);
+ }
+ else {
+ if (!cinuse(oldfirst)) {
+ size_t nsize = chunksize(oldfirst);
+ unlink_chunk(m, oldfirst, nsize);
+ oldfirst = chunk_plus_offset(oldfirst, nsize);
+ qsize += nsize;
+ }
+ set_free_with_pinuse(q, qsize, oldfirst);
+ insert_chunk(m, q, qsize);
+ check_free_chunk(m, q);
+ }
+
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+}
+
+/* -------------------------- System allocation -------------------------- */
+
+/* Get memory from system using MORECORE or MMAP */
+static void* sys_alloc(mstate m, size_t nb) {
+ MALLOC_FAILURE_ACTION;
+ return 0;
+}
+
+/* ---------------------------- malloc support --------------------------- */
+
+/* allocate a large request from the best fitting chunk in a treebin */
+static void* tmalloc_large(mstate m, size_t nb) {
+ tchunkptr v = 0;
+ size_t rsize = -nb; /* Unsigned negation */
+ tchunkptr t;
+ bindex_t idx;
+ compute_tree_index(nb, idx);
+
+ if ((t = *treebin_at(m, idx)) != 0) {
+ /* Traverse tree for this bin looking for node with size == nb */
+ size_t sizebits = nb << leftshift_for_tree_index(idx);
+ tchunkptr rst = 0; /* The deepest untaken right subtree */
+ for (;;) {
+ tchunkptr rt;
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ v = t;
+ if ((rsize = trem) == 0)
+ break;
+ }
+ rt = t->child[1];
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ if (rt != 0 && rt != t)
+ rst = rt;
+ if (t == 0) {
+ t = rst; /* set t to least subtree holding sizes > nb */
+ break;
+ }
+ sizebits <<= 1;
+ }
+ }
+
+ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
+ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
+ if (leftbits != 0) {
+ bindex_t i;
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ t = *treebin_at(m, i);
+ }
+ }
+
+ while (t != 0) { /* find smallest of tree or subtree */
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ t = leftmost_child(t);
+ }
+
+ /* If dv is a better fit, return 0 so malloc will use it */
+ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
+ if (RTCHECK(ok_address(m, v))) { /* split */
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(m->user_data, chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ insert_chunk(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+ CORRUPTION_ERROR_ACTION(m);
+ }
+ return 0;
+}
+
+/* allocate a small request from the best fitting chunk in a treebin */
+static void* tmalloc_small(mstate m, size_t nb) {
+ tchunkptr t, v;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leastbit = least_bit(m->treemap);
+ compute_bit2idx(leastbit, i);
+
+ v = t = *treebin_at(m, i);
+ rsize = chunksize(t) - nb;
+
+ while ((t = leftmost_child(t)) != 0) {
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ }
+
+ if (RTCHECK(ok_address(m, v))) {
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(m->user_data, chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+
+ CORRUPTION_ERROR_ACTION(m);
+ return 0;
+}
+
+/* --------------------------- realloc support --------------------------- */
+
+static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
+ if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ return 0;
+ }
+ if (!PREACTION(m)) {
+ mchunkptr oldp = mem2chunk(oldmem);
+ size_t oldsize = chunksize(oldp);
+ mchunkptr next = chunk_plus_offset(oldp, oldsize);
+ mchunkptr newp = 0;
+ void* extra = 0;
+
+ /* Try to either shrink or extend into top. Else malloc-copy-free */
+
+ if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
+ ok_next(oldp, next) && ok_pinuse(next))) {
+ size_t nb = request2size(bytes);
+ if (oldsize >= nb) { /* already big enough */
+ size_t rsize = oldsize - nb;
+ newp = oldp;
+ if (rsize >= MIN_CHUNK_SIZE) {
+ mchunkptr remainder = chunk_plus_offset(newp, nb);
+ set_inuse(m, newp, nb);
+ set_inuse(m, remainder, rsize);
+ extra = chunk2mem(remainder);
+ }
+ }
+ else if (next == m->top && oldsize + m->topsize > nb) {
+ /* Expand into top */
+ size_t newsize = oldsize + m->topsize;
+ size_t newtopsize = newsize - nb;
+ mchunkptr newtop = chunk_plus_offset(oldp, nb);
+ set_inuse(m, oldp, nb);
+ newtop->head = newtopsize |PINUSE_BIT;
+ m->top = newtop;
+ m->topsize = newtopsize;
+ newp = oldp;
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, oldmem);
+ POSTACTION(m);
+ return 0;
+ }
+
+ POSTACTION(m);
+
+ if (newp != 0) {
+ if (extra != 0) {
+ internal_free(m, extra);
+ }
+ check_inuse_chunk(m, newp);
+ return chunk2mem(newp);
+ }
+ else {
+ void* newmem = internal_malloc(m, bytes);
+ if (newmem != 0) {
+ size_t oc = oldsize - overhead_for(oldp);
+ MEMCPY(newmem, oldmem, (oc < bytes)? oc : bytes);
+ internal_free(m, oldmem);
+ }
+ return newmem;
+ }
+ }
+ return 0;
+}
+
+/* --------------------------- memalign support -------------------------- */
+
+static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
+ if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
+ return internal_malloc(m, bytes);
+ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
+ alignment = MIN_CHUNK_SIZE;
+ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
+ size_t a = MALLOC_ALIGNMENT << 1;
+ while (a < alignment) a <<= 1;
+ alignment = a;
+ }
+
+ if (bytes >= MAX_REQUEST - alignment) {
+ if (m != 0) { /* Test isn't needed but avoids compiler warning */
+ MALLOC_FAILURE_ACTION;
+ }
+ }
+ else {
+ size_t nb = request2size(bytes);
+ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
+ char* mem = (char*)internal_malloc(m, req);
+ if (mem != 0) {
+ void* leader = 0;
+ void* trailer = 0;
+ mchunkptr p = mem2chunk(mem);
+
+ if (PREACTION(m)) return 0;
+ if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
+ /*
+ Find an aligned spot inside chunk. Since we need to give
+ back leading space in a chunk of at least MIN_CHUNK_SIZE, if
+ the first calculation places us at a spot with less than
+ MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
+ We've allocated enough total room so that this is always
+ possible.
+ */
+ char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
+ alignment -
+ SIZE_T_ONE)) &
+ -alignment));
+ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
+ br : br+alignment;
+ mchunkptr newp = (mchunkptr)pos;
+ size_t leadsize = pos - (char*)(p);
+ size_t newsize = chunksize(p) - leadsize;
+
+ /* Otherwise, give back leader, use the rest */
+ set_inuse(m, newp, newsize);
+ set_inuse(m, p, leadsize);
+ leader = chunk2mem(p);
+
+ p = newp;
+ }
+
+ assert(m->user_data, chunksize(p) >= nb);
+ assert(m->user_data, (((size_t)(chunk2mem(p))) % alignment) == 0);
+ check_inuse_chunk(m, p);
+ POSTACTION(m);
+ if (leader != 0) {
+ internal_free(m, leader);
+ }
+ if (trailer != 0) {
+ internal_free(m, trailer);
+ }
+ return chunk2mem(p);
+ }
+ }
+ return 0;
+}
+
+/* ----------------------------- user mspaces ---------------------------- */
+
+static mstate init_user_mstate(char* tbase, size_t tsize, void *user_data) {
+ size_t msize = pad_request(sizeof(struct malloc_state));
+ mchunkptr mn;
+ mchunkptr msp = align_as_chunk(tbase);
+ mstate m = (mstate)(chunk2mem(msp));
+ MEMCLEAR(m, msize);
+ INITIAL_LOCK(&m->mutex);
+ msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
+ m->seg.base = m->least_addr = tbase;
+ m->seg.size = m->footprint = m->max_footprint = tsize;
+ m->magic = mparams.magic;
+ m->mflags = mparams.default_mflags;
+ m->user_data = user_data;
+ init_bins(m);
+ mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
+ check_top_chunk(m, m->top);
+ return m;
+}
+
+mspace create_mspace_with_base(void* base, size_t capacity, int locked, void *user_data) {
+ mstate m = 0;
+ size_t msize = pad_request(sizeof(struct malloc_state));
+ init_mparams(); /* Ensure pagesize etc initialized */
+
+ if (capacity > msize + TOP_FOOT_SIZE &&
+ capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
+ m = init_user_mstate((char*)base, capacity, user_data);
+ set_lock(m, locked);
+ }
+ return (mspace)m;
+}
+
+/*
+ mspace versions of routines are near-clones of the global
+ versions. This is not so nice but better than the alternatives.
+*/
+
+
+void* mspace_malloc(mspace msp, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (!PREACTION(ms)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = ms->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(ms, idx);
+ p = b->fd;
+ assert(ms->user_data, chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(ms, b, p, idx);
+ set_inuse_and_pinuse(ms, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > ms->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(ms, i);
+ p = b->fd;
+ assert(ms->user_data, chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(ms, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(ms, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(ms, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= ms->dvsize) {
+ size_t rsize = ms->dvsize - nb;
+ mchunkptr p = ms->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
+ ms->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = ms->dvsize;
+ ms->dvsize = 0;
+ ms->dv = 0;
+ set_inuse_and_pinuse(ms, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < ms->topsize) { /* Split top */
+ size_t rsize = ms->topsize -= nb;
+ mchunkptr p = ms->top;
+ mchunkptr r = ms->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(ms, ms->top);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(ms, nb);
+
+ postaction:
+ POSTACTION(ms);
+ return mem;
+ }
+
+ return 0;
+}
+
+void mspace_free(mspace msp, void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+#else /* FOOTERS */
+ mstate fm = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+ if (!PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+ insert_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ POSTACTION(fm);
+ }
+ }
+}
+
+void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
+ void* mem;
+ size_t req = 0;
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (n_elements != 0) {
+ req = n_elements * elem_size;
+ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
+ (req / n_elements != elem_size))
+ req = MAX_SIZE_T; /* force downstream failure on overflow */
+ }
+ mem = internal_malloc(ms, req);
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
+ MEMCLEAR(mem, req);
+ return mem;
+}
+
+void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
+ if (oldmem == 0)
+ return mspace_malloc(msp, bytes);
+#ifdef REALLOC_ZERO_BYTES_FREES
+ if (bytes == 0) {
+ mspace_free(msp, oldmem);
+ return 0;
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+#if FOOTERS
+ mchunkptr p = mem2chunk(oldmem);
+ mstate ms = get_mstate_for(p);
+#else /* FOOTERS */
+ mstate ms = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return internal_realloc(ms, oldmem, bytes);
+ }
+}
+
+void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return internal_memalign(ms, alignment, bytes);
+}
+
+void mspace_malloc_stats(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ internal_malloc_stats(ms);
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+}
+
+size_t mspace_footprint(mspace msp) {
+ size_t result;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->footprint;
+ } else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+
+size_t mspace_max_footprint(mspace msp) {
+ size_t result;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->max_footprint;
+ } else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+
+#if !NO_MALLINFO
+struct mallinfo mspace_mallinfo(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return internal_mallinfo(ms);
+}
+#endif /* NO_MALLINFO */
+
+int mspace_mallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
diff --git a/qxldod/mspace.h b/qxldod/mspace.h
new file mode 100755
index 0000000..16e20bf
--- /dev/null
+++ b/qxldod/mspace.h
@@ -0,0 +1,150 @@
+#ifndef _H_MSPACE
+#define _H_MSPACE
+
+#define NO_MALLINFO 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+//typedef unsigned long size_t;
+typedef void (*mspace_abort_t)(void *user_data);
+typedef void (*mspace_print_t)(void *user_data, char *format, ...);
+
+void mspace_set_abort_func(mspace_abort_t f);
+void mspace_set_print_func(mspace_print_t f);
+
+/*
+ mspace is an opaque type representing an independent
+ region of space that supports mspace_malloc, etc.
+*/
+typedef void* mspace;
+
+/*
+ create_mspace creates and returns a new independent space with the
+ given initial capacity, or, if 0, the default granularity size. It
+ returns null if there is no system memory available to create the
+ space. If argument locked is non-zero, the space uses a separate
+ lock to control access. The capacity of the space will grow
+ dynamically as needed to service mspace_malloc requests. You can
+ control the sizes of incremental increases of this space by
+ compiling with a different DEFAULT_GRANULARITY or dynamically
+ setting with mallopt(M_GRANULARITY, value).
+*/
+//mspace create_mspace(size_t capacity, int locked);
+
+/*
+ destroy_mspace destroys the given space, and attempts to return all
+ of its memory back to the system, returning the total number of
+ bytes freed. After destruction, the results of access to all memory
+ used by the space become undefined.
+*/
+//size_t destroy_mspace(mspace msp);
+
+/*
+ create_mspace_with_base uses the memory supplied as the initial base
+ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
+ space is used for bookkeeping, so the capacity must be at least this
+ large. (Otherwise 0 is returned.) When this initial space is
+ exhausted, additional memory will be obtained from the system.
+ Destroying this space will deallocate all additionally allocated
+ space (if possible) but not the initial base.
+*/
+mspace create_mspace_with_base(void* base, size_t capacity, int locked, void *user_data);
+
+/*
+ mspace_malloc behaves as malloc, but operates within
+ the given space.
+*/
+void* mspace_malloc(mspace msp, size_t bytes);
+
+/*
+ mspace_free behaves as free, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_free is not actually needed.
+ free may be called instead of mspace_free because freed chunks from
+ any space are handled by their originating spaces.
+*/
+void mspace_free(mspace msp, void* mem);
+
+/*
+ mspace_realloc behaves as realloc, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_realloc is not actually
+ needed. realloc may be called instead of mspace_realloc because
+ realloced chunks from any space are handled by their originating
+ spaces.
+*/
+void* mspace_realloc(mspace msp, void* mem, size_t newsize);
+
+/*
+ mspace_calloc behaves as calloc, but operates within
+ the given space.
+*/
+void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
+
+/*
+ mspace_memalign behaves as memalign, but operates within
+ the given space.
+*/
+void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
+
+/*
+ mspace_independent_calloc behaves as independent_calloc, but
+ operates within the given space.
+*/
+//void** mspace_independent_calloc(mspace msp, size_t n_elements,
+// size_t elem_size, void* chunks[]);
+
+/*
+ mspace_independent_comalloc behaves as independent_comalloc, but
+ operates within the given space.
+*/
+//void** mspace_independent_comalloc(mspace msp, size_t n_elements,
+// size_t sizes[], void* chunks[]);
+
+/*
+ mspace_footprint() returns the number of bytes obtained from the
+ system for this space.
+*/
+size_t mspace_footprint(mspace msp);
+
+/*
+ mspace_max_footprint() returns the peak number of bytes obtained from the
+ system for this space.
+*/
+size_t mspace_max_footprint(mspace msp);
+
+
+#if !NO_MALLINFO
+/*
+ mspace_mallinfo behaves as mallinfo, but reports properties of
+ the given space.
+*/
+struct mallinfo mspace_mallinfo(mspace msp);
+#endif /* NO_MALLINFO */
+
+/*
+ mspace_malloc_stats behaves as malloc_stats, but reports
+ properties of the given space.
+*/
+void mspace_malloc_stats(mspace msp);
+
+/*
+ mspace_trim behaves as malloc_trim, but
+ operates within the given space.
+*/
+//int mspace_trim(mspace msp, size_t pad);
+
+/*
+ An alias for mallopt.
+*/
+int mspace_mallopt(int, int);
+
+#ifdef __cplusplus
+}; /* end of extern "C" */
+#endif /* __cplusplus */
+
+#endif
diff --git a/qxldod/qxldod.vcxproj b/qxldod/qxldod.vcxproj
index 12e6938..76b510f 100755
--- a/qxldod/qxldod.vcxproj
+++ b/qxldod/qxldod.vcxproj
@@ -156,6 +156,7 @@
<ItemGroup>
<ClCompile Include="BaseObject.cpp" />
<ClCompile Include="driver.cpp" />
+ <ClCompile Include="mspace.c" />
<ClCompile Include="QxlDod.cpp" />
</ItemGroup>
<ItemGroup>