/* * Copyright © 2011 Daniel Vetter * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Daniel Vetter * * Partially based upon gem_tiled_fence_blits.c */ /** @file gem_stress.c * * This is a general gem coherency test. It's designed to eventually replicate * any possible sequence of access patterns. It works by copying a set of tiles * between two sets of backing buffer objects, randomly permutating the assinged * position on each copy operations. * * The copy operation are done in tiny portions (to reduce any race windows * for corruptions, hence increasing the chances for observing one) and are * constantly switched between all means to copy stuff (fenced blitter, unfenced * render, mmap, pwrite/read). * * After every complete move of a set tiling parameters of a buffer are randomly * changed to simulate the effects of libdrm caching. * * Buffers are 1mb big to nicely fit into fences on gen2/3. A few are further * split up to test relaxed fencing. Using this to push the average working set * size over the available gtt space forces objects to be mapped as unfenceable * (and as a side-effect tests gtt map/unmap coherency). * * In short: designed for maximum evilness. */ #include "gem_stress.h" #define CMD_POLY_STIPPLE_OFFSET 0x7906 /** TODO: * - beat on relaxed fencing (i.e. mappable/fenceable tracking in the kernel) * - render copy (to check fence tracking and cache coherency management by the * kernel) * - multi-threading: probably just a wrapper script to launch multiple * instances + an option to accordingly reduce the working set * - gen6 inter-ring coherency (needs render copy, first) * - variable buffer size * - add an option to fork a second process that randomly sends signals to the * first one (to check consistency of the kernel recovery paths) */ static uint64_t gem_aperture_size(int fd) { struct drm_i915_gem_get_aperture aperture; aperture.aper_size = 256*1024*1024; (void)drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); return aperture.aper_size; } drm_intel_bufmgr *bufmgr; struct intel_batchbuffer *batch; int drm_fd; int devid; int num_fences; drm_intel_bo *busy_bo; struct option_struct options; static struct scratch_buf buffers[2][MAX_BUFS]; /* tile i is at logical position tile_permutation[i] */ static unsigned *tile_permutation; static unsigned num_buffers = 0; static unsigned current_set = 0; static unsigned target_set = 0; static unsigned num_total_tiles = 0; int fence_storm = 0; static int gpu_busy_load = 10; struct { unsigned num_failed; unsigned max_failed_reads; } stats; static void tile2xy(struct scratch_buf *buf, unsigned tile, unsigned *x, unsigned *y) { assert(tile < buf->num_tiles); *x = (tile*options.tile_size) % (buf->stride/sizeof(uint32_t)); *y = ((tile*options.tile_size) / (buf->stride/sizeof(uint32_t))) * options.tile_size; } static void emit_blt(drm_intel_bo *src_bo, uint32_t src_tiling, unsigned src_pitch, unsigned src_x, unsigned src_y, unsigned w, unsigned h, drm_intel_bo *dst_bo, uint32_t dst_tiling, unsigned dst_pitch, unsigned dst_x, unsigned dst_y) { uint32_t cmd_bits = 0; if (IS_965(devid) && src_tiling) { src_pitch /= 4; cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED; } if (IS_965(devid) && dst_tiling) { dst_pitch /= 4; cmd_bits |= XY_SRC_COPY_BLT_DST_TILED; } /* copy lower half to upper half */ BEGIN_BATCH(8); OUT_BATCH(XY_SRC_COPY_BLT_CMD | XY_SRC_COPY_BLT_WRITE_ALPHA | XY_SRC_COPY_BLT_WRITE_RGB | cmd_bits); OUT_BATCH((3 << 24) | /* 32 bits */ (0xcc << 16) | /* copy ROP */ dst_pitch); OUT_BATCH(dst_y << 16 | dst_x); OUT_BATCH((dst_y+h) << 16 | (dst_x+w)); OUT_RELOC_FENCED(dst_bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0); OUT_BATCH(src_y << 16 | src_x); OUT_BATCH(src_pitch); OUT_RELOC_FENCED(src_bo, I915_GEM_DOMAIN_RENDER, 0, 0); ADVANCE_BATCH(); if (IS_GEN6(devid) || IS_GEN7(devid)) { BEGIN_BATCH(3); OUT_BATCH(XY_SETUP_CLIP_BLT_CMD); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } } /* All this gem trashing wastes too much cpu time, so give the gpu something to * do to increase changes for races. */ void keep_gpu_busy(void) { int tmp; tmp = 1 << gpu_busy_load; assert(tmp <= 1024); emit_blt(busy_bo, 0, 4096, 0, 0, tmp, 128, busy_bo, 0, 4096, 0, 128); } static void set_to_cpu_domain(struct scratch_buf *buf, int writing) { gem_set_domain(drm_fd, buf->bo->handle, I915_GEM_DOMAIN_CPU, writing ? I915_GEM_DOMAIN_CPU : 0); } static unsigned int copyfunc_seq = 0; static void (*copyfunc)(struct scratch_buf *src, unsigned src_x, unsigned src_y, struct scratch_buf *dst, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no); /* stride, x, y in units of uint32_t! */ static void cpucpy2d(uint32_t *src, unsigned src_stride, unsigned src_x, unsigned src_y, uint32_t *dst, unsigned dst_stride, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no) { int i, j; int failed = 0; for (i = 0; i < options.tile_size; i++) { for (j = 0; j < options.tile_size; j++) { unsigned dst_ofs = dst_x + j + dst_stride * (dst_y + i); unsigned src_ofs = src_x + j + src_stride * (src_y + i); unsigned expect = logical_tile_no*options.tile_size*options.tile_size + i*options.tile_size + j; uint32_t tmp = src[src_ofs]; if (tmp != expect) { printf("mismatch at tile %i pos %i, read %i, expected %i, diff %i\n", logical_tile_no, i*options.tile_size + j, tmp, expect, (int) tmp - expect); if (options.trace_tile >= 0 && options.fail) exit(1); failed++; } /* when not aborting, correct any errors */ dst[dst_ofs] = expect; } } if (failed && options.fail) exit(1); if (failed > stats.max_failed_reads) stats.max_failed_reads = failed; if (failed) stats.num_failed++; } static void cpu_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y, struct scratch_buf *dst, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no) { assert(batch->ptr == batch->buffer); if (options.ducttape) drm_intel_bo_wait_rendering(dst->bo); if (options.use_cpu_maps) { set_to_cpu_domain(src, 0); set_to_cpu_domain(dst, 1); } cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y, dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y, logical_tile_no); } static void prw_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y, struct scratch_buf *dst, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no) { uint32_t tmp_tile[options.tile_size*options.tile_size]; int i; assert(batch->ptr == batch->buffer); if (options.ducttape) drm_intel_bo_wait_rendering(dst->bo); if (src->tiling == I915_TILING_NONE) { for (i = 0; i < options.tile_size; i++) { unsigned ofs = src_x*sizeof(uint32_t) + src->stride*(src_y + i); drm_intel_bo_get_subdata(src->bo, ofs, options.tile_size*sizeof(uint32_t), tmp_tile + options.tile_size*i); } } else { if (options.use_cpu_maps) set_to_cpu_domain(src, 0); cpucpy2d(src->data, src->stride/sizeof(uint32_t), src_x, src_y, tmp_tile, options.tile_size, 0, 0, logical_tile_no); } if (dst->tiling == I915_TILING_NONE) { for (i = 0; i < options.tile_size; i++) { unsigned ofs = dst_x*sizeof(uint32_t) + dst->stride*(dst_y + i); drm_intel_bo_subdata(dst->bo, ofs, options.tile_size*sizeof(uint32_t), tmp_tile + options.tile_size*i); } } else { if (options.use_cpu_maps) set_to_cpu_domain(dst, 1); cpucpy2d(tmp_tile, options.tile_size, 0, 0, dst->data, dst->stride/sizeof(uint32_t), dst_x, dst_y, logical_tile_no); } } static void blitter_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y, struct scratch_buf *dst, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no) { static unsigned keep_gpu_busy_counter = 0; /* check both edges of the fence usage */ if (keep_gpu_busy_counter & 1 && !fence_storm) keep_gpu_busy(); emit_blt(src->bo, src->tiling, src->stride, src_x, src_y, options.tile_size, options.tile_size, dst->bo, dst->tiling, dst->stride, dst_x, dst_y); if (!(keep_gpu_busy_counter & 1) && !fence_storm) keep_gpu_busy(); keep_gpu_busy_counter++; if (src->tiling) fence_storm--; if (dst->tiling) fence_storm--; if (fence_storm <= 1) { fence_storm = 0; intel_batchbuffer_flush(batch); } } static void render_copyfunc(struct scratch_buf *src, unsigned src_x, unsigned src_y, struct scratch_buf *dst, unsigned dst_x, unsigned dst_y, unsigned logical_tile_no) { if (IS_GEN2(devid)) gen2_render_copyfunc(src, src_x, src_y, dst, dst_x, dst_y, logical_tile_no); else if (IS_GEN3(devid)) gen3_render_copyfunc(src, src_x, src_y, dst, dst_x, dst_y, logical_tile_no); else if (IS_GEN6(devid)) gen6_render_copyfunc(src, src_x, src_y, dst, dst_x, dst_y, logical_tile_no); else blitter_copyfunc(src, src_x, src_y, dst, dst_x, dst_y, logical_tile_no); } static void next_copyfunc(int tile) { if (fence_storm) { if (tile == options.trace_tile) printf(" using fence storm\n"); return; } if (copyfunc_seq % 61 == 0 && options.forced_tiling != I915_TILING_NONE) { if (tile == options.trace_tile) printf(" using fence storm\n"); fence_storm = num_fences; copyfunc = blitter_copyfunc; } else if (copyfunc_seq % 17 == 0) { if (tile == options.trace_tile) printf(" using cpu\n"); copyfunc = cpu_copyfunc; } else if (copyfunc_seq % 19 == 0) { if (tile == options.trace_tile) printf(" using prw\n"); copyfunc = prw_copyfunc; } else if (copyfunc_seq % 3 == 0 && options.use_render) { if (tile == options.trace_tile) printf(" using render\n"); copyfunc = render_copyfunc; } else if (options.use_blt){ if (tile == options.trace_tile) printf(" using blitter\n"); copyfunc = blitter_copyfunc; } else if (options.use_render){ if (tile == options.trace_tile) printf(" using render\n"); copyfunc = render_copyfunc; } else { copyfunc = cpu_copyfunc; } copyfunc_seq++; } static void fan_out(void) { uint32_t tmp_tile[options.tile_size*options.tile_size]; uint32_t seq = 0; int i, k; unsigned tile, buf_idx, x, y; for (i = 0; i < num_total_tiles; i++) { tile = i; buf_idx = tile / options.tiles_per_buf; tile %= options.tiles_per_buf; tile2xy(&buffers[current_set][buf_idx], tile, &x, &y); for (k = 0; k < options.tile_size*options.tile_size; k++) tmp_tile[k] = seq++; if (options.use_cpu_maps) set_to_cpu_domain(&buffers[current_set][buf_idx], 1); cpucpy2d(tmp_tile, options.tile_size, 0, 0, buffers[current_set][buf_idx].data, buffers[current_set][buf_idx].stride / sizeof(uint32_t), x, y, i); } for (i = 0; i < num_total_tiles; i++) tile_permutation[i] = i; } static void fan_in_and_check(void) { uint32_t tmp_tile[options.tile_size*options.tile_size]; unsigned tile, buf_idx, x, y; int i; for (i = 0; i < num_total_tiles; i++) { tile = tile_permutation[i]; buf_idx = tile / options.tiles_per_buf; tile %= options.tiles_per_buf; tile2xy(&buffers[current_set][buf_idx], tile, &x, &y); if (options.use_cpu_maps) set_to_cpu_domain(&buffers[current_set][buf_idx], 0); cpucpy2d(buffers[current_set][buf_idx].data, buffers[current_set][buf_idx].stride / sizeof(uint32_t), x, y, tmp_tile, options.tile_size, 0, 0, i); } } static void sanitize_stride(struct scratch_buf *buf) { if (buf_height(buf) > options.max_dimension) buf->stride = options.scratch_buf_size / options.max_dimension; if (buf_height(buf) < options.tile_size) buf->stride = options.scratch_buf_size / options.tile_size; if (buf_width(buf) < options.tile_size) buf->stride = options.tile_size * sizeof(uint32_t); assert(buf->stride <= 8192); assert(buf_width(buf) <= options.max_dimension); assert(buf_height(buf) <= options.max_dimension); assert(buf_width(buf) >= options.tile_size); assert(buf_height(buf) >= options.tile_size); } static void init_buffer(struct scratch_buf *buf, unsigned size) { buf->bo = drm_intel_bo_alloc(bufmgr, "tiled bo", size, 4096); assert(buf->bo); buf->tiling = I915_TILING_NONE; buf->stride = 4096; sanitize_stride(buf); if (options.no_hw) buf->data = malloc(size); else { if (options.use_cpu_maps) drm_intel_bo_map(buf->bo, 1); else drm_intel_gem_bo_map_gtt(buf->bo); buf->data = buf->bo->virtual; } buf->num_tiles = options.tiles_per_buf; } static void permute_array(void *array, unsigned size, void (*exchange_func)(void *array, unsigned i, unsigned j)) { int i; for (i = size - 1; i > 1; i--) { /* yes, not perfectly uniform, who cares */ long l = random() % (i +1); if (i != l) exchange_func(array, i, l); } } static void exchange_buf(void *array, unsigned i, unsigned j) { struct scratch_buf *buf_arr, tmp; buf_arr = array; memcpy(&tmp, &buf_arr[i], sizeof(struct scratch_buf)); memcpy(&buf_arr[i], &buf_arr[j], sizeof(struct scratch_buf)); memcpy(&buf_arr[j], &tmp, sizeof(struct scratch_buf)); } static void init_set(unsigned set) { long int r; int i; permute_array(buffers[set], num_buffers, exchange_buf); if (current_set == 1 && options.gpu_busy_load == 0) { gpu_busy_load++; if (gpu_busy_load > 10) gpu_busy_load = 6; } for (i = 0; i < num_buffers; i++) { r = random(); if ((r & 3) != 0) continue; r >>= 2; if ((r & 3) != 0) buffers[set][i].tiling = I915_TILING_X; else buffers[set][i].tiling = I915_TILING_NONE; r >>= 2; if (options.forced_tiling >= 0) buffers[set][i].tiling = options.forced_tiling; if (buffers[set][i].tiling == I915_TILING_NONE) { /* min 64 byte stride */ r %= 8; buffers[set][i].stride = 64 * (1 << r); } else if (IS_GEN2(devid)) { /* min 128 byte stride */ r %= 7; buffers[set][i].stride = 128 * (1 << r); } else { /* min 512 byte stride */ r %= 5; buffers[set][i].stride = 512 * (1 << r); } sanitize_stride(&buffers[set][i]); gem_set_tiling(drm_fd, buffers[set][i].bo->handle, buffers[set][i].tiling, buffers[set][i].stride); if (options.trace_tile != -1 && i == options.trace_tile/options.tiles_per_buf) printf("changing buffer %i containing tile %i: tiling %i, stride %i\n", i, options.trace_tile, buffers[set][i].tiling, buffers[set][i].stride); } } static void exchange_uint(void *array, unsigned i, unsigned j) { unsigned *i_arr = array; unsigned i_tmp; i_tmp = i_arr[i]; i_arr[i] = i_arr[j]; i_arr[j] = i_tmp; } static void copy_tiles(unsigned *permutation) { unsigned src_tile, src_buf_idx, src_x, src_y; unsigned dst_tile, dst_buf_idx, dst_x, dst_y; struct scratch_buf *src_buf, *dst_buf; int i, idx; for (i = 0; i < num_total_tiles; i++) { /* tile_permutation is independent of current_permutation, so * abuse it to randomize the order of the src bos */ idx = tile_permutation[i]; src_buf_idx = idx / options.tiles_per_buf; src_tile = idx % options.tiles_per_buf; src_buf = &buffers[current_set][src_buf_idx]; tile2xy(src_buf, src_tile, &src_x, &src_y); dst_buf_idx = permutation[idx] / options.tiles_per_buf; dst_tile = permutation[idx] % options.tiles_per_buf; dst_buf = &buffers[target_set][dst_buf_idx]; tile2xy(dst_buf, dst_tile, &dst_x, &dst_y); if (options.trace_tile == i) printf("copying tile %i from %i (%i, %i) to %i (%i, %i)", i, tile_permutation[i], src_buf_idx, src_tile, permutation[idx], dst_buf_idx, dst_tile); if (options.no_hw) { cpucpy2d(src_buf->data, src_buf->stride / sizeof(uint32_t), src_x, src_y, dst_buf->data, dst_buf->stride / sizeof(uint32_t), dst_x, dst_y, i); } else { next_copyfunc(i); copyfunc(src_buf, src_x, src_y, dst_buf, dst_x, dst_y, i); } } intel_batchbuffer_flush(batch); } static int get_num_fences(void) { drm_i915_getparam_t gp; int ret, val; gp.param = I915_PARAM_NUM_FENCES_AVAIL; gp.value = &val; ret = drmIoctl(drm_fd, DRM_IOCTL_I915_GETPARAM, &gp); assert (ret == 0); printf ("total %d fences\n", val); assert(val > 4); return val - 2; } static void sanitize_tiles_per_buf(void) { if (options.tiles_per_buf > options.scratch_buf_size / TILE_BYTES(options.tile_size)) options.tiles_per_buf = options.scratch_buf_size / TILE_BYTES(options.tile_size); } static void parse_options(int argc, char **argv) { int c, tmp; int option_index = 0; static struct option long_options[] = { {"no-hw", 0, 0, 'd'}, {"buf-size", 1, 0, 's'}, {"gpu-busy-load", 1, 0, 'g'}, {"no-signals", 0, 0, 'S'}, {"buffer-count", 1, 0, 'c'}, {"trace-tile", 1, 0, 't'}, {"disable-blt", 0, 0, 'b'}, {"disable-render", 0, 0, 'r'}, {"untiled", 0, 0, 'u'}, {"x-tiled", 0, 0, 'x'}, {"use-cpu-maps", 0, 0, 'm'}, {"rounds", 1, 0, 'o'}, {"no-fail", 0, 0, 'f'}, {"tiles-per-buf", 0, 0, 'p'}, #define DUCTAPE 0xdead0001 {"remove-duct-tape", 0, 0, DUCTAPE}, #define TILESZ 0xdead0002 {"tile-size", 1, 0, TILESZ}, #define CHCK_RENDER 0xdead0003 {"check-render-cpyfn", 0, 0, CHCK_RENDER}, }; options.scratch_buf_size = 256*4096; options.no_hw = 0; options.use_signal_helper = 1; options.gpu_busy_load = 0; options.num_buffers = 0; options.trace_tile = -1; options.use_render = 1; options.use_blt = 1; options.forced_tiling = -1; options.use_cpu_maps = 0; options.total_rounds = 512; options.fail = 1; options.ducttape = 1; options.tile_size = 16; options.tiles_per_buf = options.scratch_buf_size / TILE_BYTES(options.tile_size); options.check_render_cpyfn = 0; while((c = getopt_long(argc, argv, "ds:g:c:t:rbuxmo:fp:", long_options, &option_index)) != -1) { switch(c) { case 'd': options.no_hw = 1; printf("no-hw debug mode\n"); break; case 'S': options.use_signal_helper = 0; printf("disabling that pesky nuisance who keeps interrupting us\n"); break; case 's': tmp = atoi(optarg); if (tmp < options.tile_size*8192) printf("scratch buffer size needs to be at least %i\n", options.tile_size*8192); else if (tmp & (tmp - 1)) { printf("scratch buffer size needs to be a power-of-two\n"); } else { printf("fixed scratch buffer size to %u\n", tmp); options.scratch_buf_size = tmp; sanitize_tiles_per_buf(); } break; case 'g': tmp = atoi(optarg); if (tmp < 0 || tmp > 10) printf("gpu busy load needs to be bigger than 0 and smaller than 10\n"); else { printf("gpu busy load factor set to %i\n", tmp); gpu_busy_load = options.gpu_busy_load = tmp; } break; case 'c': options.num_buffers = atoi(optarg); printf("buffer count set to %i\n", options.num_buffers); break; case 't': options.trace_tile = atoi(optarg); printf("tracing tile %i\n", options.trace_tile); break; case 'r': options.use_render = 0; printf("disabling render copy\n"); break; case 'b': options.use_blt = 0; printf("disabling blt copy\n"); break; case 'u': options.forced_tiling = I915_TILING_NONE; printf("disabling tiling\n"); break; case 'x': if (options.use_cpu_maps) { printf("tiling not possible with cpu maps\n"); } else { options.forced_tiling = I915_TILING_X; printf("using only X-tiling\n"); } break; case 'm': options.use_cpu_maps = 1; options.forced_tiling = I915_TILING_NONE; printf("disabling tiling\n"); break; case 'o': options.total_rounds = atoi(optarg); printf("total rounds %i\n", options.total_rounds); break; case 'f': options.fail = 0; printf("not failing when detecting errors\n"); break; case 'p': options.tiles_per_buf = atoi(optarg); printf("tiles per buffer %i\n", options.tiles_per_buf); break; case DUCTAPE: options.ducttape = 0; printf("applying duct-tape\n"); break; case TILESZ: options.tile_size = atoi(optarg); sanitize_tiles_per_buf(); printf("til size %i\n", options.tile_size); break; case CHCK_RENDER: options.check_render_cpyfn = 1; printf("checking render copy function\n"); break; default: printf("unkown command options\n"); break; } } if (optind < argc) printf("unkown command options\n"); /* actually 32767, according to docs, but that kills our nice pot calculations. */ options.max_dimension = 16*1024; if (options.use_render) { if (IS_GEN2(devid) || IS_GEN3(devid)) options.max_dimension = 2048; else options.max_dimension = 8192; } printf("Limiting buffer to %dx%d\n", options.max_dimension, options.max_dimension); } static void init(void) { int i; unsigned tmp; if (options.num_buffers == 0) { tmp = gem_aperture_size(drm_fd); tmp = tmp > 256*(1024*1024) ? 256*(1024*1024) : tmp; num_buffers = 2 * tmp / options.scratch_buf_size / 3; num_buffers /= 2; printf("using %u buffers\n", num_buffers); } else num_buffers = options.num_buffers; bufmgr = drm_intel_bufmgr_gem_init(drm_fd, 4096); drm_intel_bufmgr_gem_enable_reuse(bufmgr); drm_intel_bufmgr_gem_enable_fenced_relocs(bufmgr); num_fences = get_num_fences(); batch = intel_batchbuffer_alloc(bufmgr, devid); busy_bo = drm_intel_bo_alloc(bufmgr, "tiled bo", BUSY_BUF_SIZE, 4096); if (options.forced_tiling >= 0) gem_set_tiling(drm_fd, busy_bo->handle, options.forced_tiling, 4096); for (i = 0; i < num_buffers; i++) { init_buffer(&buffers[0][i], options.scratch_buf_size); init_buffer(&buffers[1][i], options.scratch_buf_size); num_total_tiles += buffers[0][i].num_tiles; } current_set = 0; /* just in case it helps reproducability */ srandom(0xdeadbeef); } static void check_render_copyfunc(void) { struct scratch_buf src, dst; uint32_t *ptr; int i, j, pass; if (!options.check_render_cpyfn) return; init_buffer(&src, options.scratch_buf_size); init_buffer(&dst, options.scratch_buf_size); for (pass = 0; pass < 16; pass++) { int sx = random() % (buf_width(&src)-options.tile_size); int sy = random() % (buf_height(&src)-options.tile_size); int dx = random() % (buf_width(&dst)-options.tile_size); int dy = random() % (buf_height(&dst)-options.tile_size); if (options.use_cpu_maps) set_to_cpu_domain(&src, 1); memset(src.data, 0xff, options.scratch_buf_size); for (j = 0; j < options.tile_size; j++) { ptr = (uint32_t*)((char *)src.data + sx*4 + (sy+j) * src.stride); for (i = 0; i < options.tile_size; i++) ptr[i] = j * options.tile_size + i; } render_copyfunc(&src, sx, sy, &dst, dx, dy, 0); if (options.use_cpu_maps) set_to_cpu_domain(&dst, 0); for (j = 0; j < options.tile_size; j++) { ptr = (uint32_t*)((char *)dst.data + dx*4 + (dy+j) * dst.stride); for (i = 0; i < options.tile_size; i++) if (ptr[i] != j * options.tile_size + i) { printf("render copyfunc mismatch at (%d, %d): found %d, expected %d\n", i, j, ptr[i], j*options.tile_size + i); } } } } int main(int argc, char **argv) { int i, j; unsigned *current_permutation, *tmp_permutation; drm_fd = drm_open_any(); devid = intel_get_drm_devid(drm_fd); parse_options(argc, argv); /* start our little helper early before too may allocations occur */ if (options.use_signal_helper) drmtest_fork_signal_helper(); init(); check_render_copyfunc(); tile_permutation = malloc(num_total_tiles*sizeof(uint32_t)); current_permutation = malloc(num_total_tiles*sizeof(uint32_t)); tmp_permutation = malloc(num_total_tiles*sizeof(uint32_t)); assert(tile_permutation); assert(current_permutation); assert(tmp_permutation); fan_out(); for (i = 0; i < options.total_rounds; i++) { printf("round %i\n", i); if (i % 64 == 63) { fan_in_and_check(); printf("everything correct after %i rounds\n", i + 1); } target_set = (current_set + 1) & 1; init_set(target_set); for (j = 0; j < num_total_tiles; j++) current_permutation[j] = j; permute_array(current_permutation, num_total_tiles, exchange_uint); copy_tiles(current_permutation); memcpy(tmp_permutation, tile_permutation, sizeof(unsigned)*num_total_tiles); /* accumulate the permutations */ for (j = 0; j < num_total_tiles; j++) tile_permutation[j] = current_permutation[tmp_permutation[j]]; current_set = target_set; } fan_in_and_check(); fprintf(stderr, "num failed tiles %u, max incoherent bytes %zd\n", stats.num_failed, stats.max_failed_reads*sizeof(uint32_t)); intel_batchbuffer_free(batch); drm_intel_bufmgr_destroy(bufmgr); close(drm_fd); drmtest_stop_signal_helper(); return 0; }