summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode_item.c
blob: 11158fa81a093d0e5981b8839075e9e6fb23d4e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_trace.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_error.h"

#include <linux/iversion.h>

struct kmem_cache	*xfs_ili_cache;		/* inode log item */

static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
	return container_of(lip, struct xfs_inode_log_item, ili_item);
}

/*
 * The logged size of an inode fork is always the current size of the inode
 * fork. This means that when an inode fork is relogged, the size of the logged
 * region is determined by the current state, not the combination of the
 * previously logged state + the current state. This is different relogging
 * behaviour to most other log items which will retain the size of the
 * previously logged changes when smaller regions are relogged.
 *
 * Hence operations that remove data from the inode fork (e.g. shortform
 * dir/attr remove, extent form extent removal, etc), the size of the relogged
 * inode gets -smaller- rather than stays the same size as the previously logged
 * size and this can result in the committing transaction reducing the amount of
 * space being consumed by the CIL.
 */
STATIC void
xfs_inode_item_data_fork_size(
	struct xfs_inode_log_item *iip,
	int			*nvecs,
	int			*nbytes)
{
	struct xfs_inode	*ip = iip->ili_inode;

	switch (ip->i_df.if_format) {
	case XFS_DINODE_FMT_EXTENTS:
		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
		    ip->i_df.if_nextents > 0 &&
		    ip->i_df.if_bytes > 0) {
			/* worst case, doesn't subtract delalloc extents */
			*nbytes += XFS_IFORK_DSIZE(ip);
			*nvecs += 1;
		}
		break;
	case XFS_DINODE_FMT_BTREE:
		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
		    ip->i_df.if_broot_bytes > 0) {
			*nbytes += ip->i_df.if_broot_bytes;
			*nvecs += 1;
		}
		break;
	case XFS_DINODE_FMT_LOCAL:
		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
		    ip->i_df.if_bytes > 0) {
			*nbytes += roundup(ip->i_df.if_bytes, 4);
			*nvecs += 1;
		}
		break;

	case XFS_DINODE_FMT_DEV:
		break;
	default:
		ASSERT(0);
		break;
	}
}

STATIC void
xfs_inode_item_attr_fork_size(
	struct xfs_inode_log_item *iip,
	int			*nvecs,
	int			*nbytes)
{
	struct xfs_inode	*ip = iip->ili_inode;

	switch (ip->i_afp->if_format) {
	case XFS_DINODE_FMT_EXTENTS:
		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
		    ip->i_afp->if_nextents > 0 &&
		    ip->i_afp->if_bytes > 0) {
			/* worst case, doesn't subtract unused space */
			*nbytes += XFS_IFORK_ASIZE(ip);
			*nvecs += 1;
		}
		break;
	case XFS_DINODE_FMT_BTREE:
		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
		    ip->i_afp->if_broot_bytes > 0) {
			*nbytes += ip->i_afp->if_broot_bytes;
			*nvecs += 1;
		}
		break;
	case XFS_DINODE_FMT_LOCAL:
		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
		    ip->i_afp->if_bytes > 0) {
			*nbytes += roundup(ip->i_afp->if_bytes, 4);
			*nvecs += 1;
		}
		break;
	default:
		ASSERT(0);
		break;
	}
}

/*
 * This returns the number of iovecs needed to log the given inode item.
 *
 * We need one iovec for the inode log format structure, one for the
 * inode core, and possibly one for the inode data/extents/b-tree root
 * and one for the inode attribute data/extents/b-tree root.
 */
STATIC void
xfs_inode_item_size(
	struct xfs_log_item	*lip,
	int			*nvecs,
	int			*nbytes)
{
	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
	struct xfs_inode	*ip = iip->ili_inode;

	*nvecs += 2;
	*nbytes += sizeof(struct xfs_inode_log_format) +
		   xfs_log_dinode_size(ip->i_mount);

	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
	if (XFS_IFORK_Q(ip))
		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
}

STATIC void
xfs_inode_item_format_data_fork(
	struct xfs_inode_log_item *iip,
	struct xfs_inode_log_format *ilf,
	struct xfs_log_vec	*lv,
	struct xfs_log_iovec	**vecp)
{
	struct xfs_inode	*ip = iip->ili_inode;
	size_t			data_bytes;

	switch (ip->i_df.if_format) {
	case XFS_DINODE_FMT_EXTENTS:
		iip->ili_fields &=
			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);

		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
		    ip->i_df.if_nextents > 0 &&
		    ip->i_df.if_bytes > 0) {
			struct xfs_bmbt_rec *p;

			ASSERT(xfs_iext_count(&ip->i_df) > 0);

			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
			xlog_finish_iovec(lv, *vecp, data_bytes);

			ASSERT(data_bytes <= ip->i_df.if_bytes);

			ilf->ilf_dsize = data_bytes;
			ilf->ilf_size++;
		} else {
			iip->ili_fields &= ~XFS_ILOG_DEXT;
		}
		break;
	case XFS_DINODE_FMT_BTREE:
		iip->ili_fields &=
			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);

		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
		    ip->i_df.if_broot_bytes > 0) {
			ASSERT(ip->i_df.if_broot != NULL);
			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
					ip->i_df.if_broot,
					ip->i_df.if_broot_bytes);
			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
			ilf->ilf_size++;
		} else {
			ASSERT(!(iip->ili_fields &
				 XFS_ILOG_DBROOT));
			iip->ili_fields &= ~XFS_ILOG_DBROOT;
		}
		break;
	case XFS_DINODE_FMT_LOCAL:
		iip->ili_fields &=
			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
		    ip->i_df.if_bytes > 0) {
			/*
			 * Round i_bytes up to a word boundary.
			 * The underlying memory is guaranteed
			 * to be there by xfs_idata_realloc().
			 */
			data_bytes = roundup(ip->i_df.if_bytes, 4);
			ASSERT(ip->i_df.if_u1.if_data != NULL);
			ASSERT(ip->i_disk_size > 0);
			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
					ip->i_df.if_u1.if_data, data_bytes);
			ilf->ilf_dsize = (unsigned)data_bytes;
			ilf->ilf_size++;
		} else {
			iip->ili_fields &= ~XFS_ILOG_DDATA;
		}
		break;
	case XFS_DINODE_FMT_DEV:
		iip->ili_fields &=
			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
		if (iip->ili_fields & XFS_ILOG_DEV)
			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
		break;
	default:
		ASSERT(0);
		break;
	}
}

STATIC void
xfs_inode_item_format_attr_fork(
	struct xfs_inode_log_item *iip,
	struct xfs_inode_log_format *ilf,
	struct xfs_log_vec	*lv,
	struct xfs_log_iovec	**vecp)
{
	struct xfs_inode	*ip = iip->ili_inode;
	size_t			data_bytes;

	switch (ip->i_afp->if_format) {
	case XFS_DINODE_FMT_EXTENTS:
		iip->ili_fields &=
			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);

		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
		    ip->i_afp->if_nextents > 0 &&
		    ip->i_afp->if_bytes > 0) {
			struct xfs_bmbt_rec *p;

			ASSERT(xfs_iext_count(ip->i_afp) ==
				ip->i_afp->if_nextents);

			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
			xlog_finish_iovec(lv, *vecp, data_bytes);

			ilf->ilf_asize = data_bytes;
			ilf->ilf_size++;
		} else {
			iip->ili_fields &= ~XFS_ILOG_AEXT;
		}
		break;
	case XFS_DINODE_FMT_BTREE:
		iip->ili_fields &=
			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);

		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
		    ip->i_afp->if_broot_bytes > 0) {
			ASSERT(ip->i_afp->if_broot != NULL);

			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
					ip->i_afp->if_broot,
					ip->i_afp->if_broot_bytes);
			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
			ilf->ilf_size++;
		} else {
			iip->ili_fields &= ~XFS_ILOG_ABROOT;
		}
		break;
	case XFS_DINODE_FMT_LOCAL:
		iip->ili_fields &=
			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);

		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
		    ip->i_afp->if_bytes > 0) {
			/*
			 * Round i_bytes up to a word boundary.
			 * The underlying memory is guaranteed
			 * to be there by xfs_idata_realloc().
			 */
			data_bytes = roundup(ip->i_afp->if_bytes, 4);
			ASSERT(ip->i_afp->if_u1.if_data != NULL);
			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
					ip->i_afp->if_u1.if_data,
					data_bytes);
			ilf->ilf_asize = (unsigned)data_bytes;
			ilf->ilf_size++;
		} else {
			iip->ili_fields &= ~XFS_ILOG_ADATA;
		}
		break;
	default:
		ASSERT(0);
		break;
	}
}

/*
 * Convert an incore timestamp to a log timestamp.  Note that the log format
 * specifies host endian format!
 */
static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(
	struct xfs_inode		*ip,
	const struct timespec64		tv)
{
	struct xfs_log_legacy_timestamp	*lits;
	xfs_log_timestamp_t		its;

	if (xfs_inode_has_bigtime(ip))
		return xfs_inode_encode_bigtime(tv);

	lits = (struct xfs_log_legacy_timestamp *)&its;
	lits->t_sec = tv.tv_sec;
	lits->t_nsec = tv.tv_nsec;

	return its;
}

/*
 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 * in memory when logging an inode, so we can just copy it from the on-disk
 * inode to the in-log inode here so that recovery of file system with these
 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 * the fields.
 */
static void
xfs_copy_dm_fields_to_log_dinode(
	struct xfs_inode	*ip,
	struct xfs_log_dinode	*to)
{
	struct xfs_dinode	*dip;

	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
			     ip->i_imap.im_boffset);

	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
	} else {
		to->di_dmevmask = 0;
		to->di_dmstate = 0;
	}
}

static void
xfs_inode_to_log_dinode(
	struct xfs_inode	*ip,
	struct xfs_log_dinode	*to,
	xfs_lsn_t		lsn)
{
	struct inode		*inode = VFS_I(ip);

	to->di_magic = XFS_DINODE_MAGIC;
	to->di_format = xfs_ifork_format(&ip->i_df);
	to->di_uid = i_uid_read(inode);
	to->di_gid = i_gid_read(inode);
	to->di_projid_lo = ip->i_projid & 0xffff;
	to->di_projid_hi = ip->i_projid >> 16;

	memset(to->di_pad, 0, sizeof(to->di_pad));
	memset(to->di_pad3, 0, sizeof(to->di_pad3));
	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
	to->di_nlink = inode->i_nlink;
	to->di_gen = inode->i_generation;
	to->di_mode = inode->i_mode;

	to->di_size = ip->i_disk_size;
	to->di_nblocks = ip->i_nblocks;
	to->di_extsize = ip->i_extsize;
	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
	to->di_forkoff = ip->i_forkoff;
	to->di_aformat = xfs_ifork_format(ip->i_afp);
	to->di_flags = ip->i_diflags;

	xfs_copy_dm_fields_to_log_dinode(ip, to);

	/* log a dummy value to ensure log structure is fully initialised */
	to->di_next_unlinked = NULLAGINO;

	if (xfs_has_v3inodes(ip->i_mount)) {
		to->di_version = 3;
		to->di_changecount = inode_peek_iversion(inode);
		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
		to->di_flags2 = ip->i_diflags2;
		to->di_cowextsize = ip->i_cowextsize;
		to->di_ino = ip->i_ino;
		to->di_lsn = lsn;
		memset(to->di_pad2, 0, sizeof(to->di_pad2));
		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
		to->di_flushiter = 0;
	} else {
		to->di_version = 2;
		to->di_flushiter = ip->i_flushiter;
	}
}

/*
 * Format the inode core. Current timestamp data is only in the VFS inode
 * fields, so we need to grab them from there. Hence rather than just copying
 * the XFS inode core structure, format the fields directly into the iovec.
 */
static void
xfs_inode_item_format_core(
	struct xfs_inode	*ip,
	struct xfs_log_vec	*lv,
	struct xfs_log_iovec	**vecp)
{
	struct xfs_log_dinode	*dic;

	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
}

/*
 * This is called to fill in the vector of log iovecs for the given inode
 * log item.  It fills the first item with an inode log format structure,
 * the second with the on-disk inode structure, and a possible third and/or
 * fourth with the inode data/extents/b-tree root and inode attributes
 * data/extents/b-tree root.
 *
 * Note: Always use the 64 bit inode log format structure so we don't
 * leave an uninitialised hole in the format item on 64 bit systems. Log
 * recovery on 32 bit systems handles this just fine, so there's no reason
 * for not using an initialising the properly padded structure all the time.
 */
STATIC void
xfs_inode_item_format(
	struct xfs_log_item	*lip,
	struct xfs_log_vec	*lv)
{
	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
	struct xfs_inode	*ip = iip->ili_inode;
	struct xfs_log_iovec	*vecp = NULL;
	struct xfs_inode_log_format *ilf;

	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
	ilf->ilf_type = XFS_LI_INODE;
	ilf->ilf_ino = ip->i_ino;
	ilf->ilf_blkno = ip->i_imap.im_blkno;
	ilf->ilf_len = ip->i_imap.im_len;
	ilf->ilf_boffset = ip->i_imap.im_boffset;
	ilf->ilf_fields = XFS_ILOG_CORE;
	ilf->ilf_size = 2; /* format + core */

	/*
	 * make sure we don't leak uninitialised data into the log in the case
	 * when we don't log every field in the inode.
	 */
	ilf->ilf_dsize = 0;
	ilf->ilf_asize = 0;
	ilf->ilf_pad = 0;
	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));

	xlog_finish_iovec(lv, vecp, sizeof(*ilf));

	xfs_inode_item_format_core(ip, lv, &vecp);
	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
	if (XFS_IFORK_Q(ip)) {
		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
	} else {
		iip->ili_fields &=
			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
	}

	/* update the format with the exact fields we actually logged */
	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
}

/*
 * This is called to pin the inode associated with the inode log
 * item in memory so it cannot be written out.
 */
STATIC void
xfs_inode_item_pin(
	struct xfs_log_item	*lip)
{
	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
	ASSERT(lip->li_buf);

	trace_xfs_inode_pin(ip, _RET_IP_);
	atomic_inc(&ip->i_pincount);
}


/*
 * This is called to unpin the inode associated with the inode log
 * item which was previously pinned with a call to xfs_inode_item_pin().
 *
 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 *
 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 * stale. In that case, flush completions are run from the buffer unpin call,
 * which may happen before the inode is unpinned. If we lose the race, there
 * will be no buffer attached to the log item, but the inode will be marked
 * XFS_ISTALE.
 */
STATIC void
xfs_inode_item_unpin(
	struct xfs_log_item	*lip,
	int			remove)
{
	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;

	trace_xfs_inode_unpin(ip, _RET_IP_);
	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
	ASSERT(atomic_read(&ip->i_pincount) > 0);
	if (atomic_dec_and_test(&ip->i_pincount))
		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
}

STATIC uint
xfs_inode_item_push(
	struct xfs_log_item	*lip,
	struct list_head	*buffer_list)
		__releases(&lip->li_ailp->ail_lock)
		__acquires(&lip->li_ailp->ail_lock)
{
	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
	struct xfs_inode	*ip = iip->ili_inode;
	struct xfs_buf		*bp = lip->li_buf;
	uint			rval = XFS_ITEM_SUCCESS;
	int			error;

	ASSERT(iip->ili_item.li_buf);

	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
	    (ip->i_flags & XFS_ISTALE))
		return XFS_ITEM_PINNED;

	if (xfs_iflags_test(ip, XFS_IFLUSHING))
		return XFS_ITEM_FLUSHING;

	if (!xfs_buf_trylock(bp))
		return XFS_ITEM_LOCKED;

	spin_unlock(&lip->li_ailp->ail_lock);

	/*
	 * We need to hold a reference for flushing the cluster buffer as it may
	 * fail the buffer without IO submission. In which case, we better get a
	 * reference for that completion because otherwise we don't get a
	 * reference for IO until we queue the buffer for delwri submission.
	 */
	xfs_buf_hold(bp);
	error = xfs_iflush_cluster(bp);
	if (!error) {
		if (!xfs_buf_delwri_queue(bp, buffer_list))
			rval = XFS_ITEM_FLUSHING;
		xfs_buf_relse(bp);
	} else {
		/*
		 * Release the buffer if we were unable to flush anything. On
		 * any other error, the buffer has already been released.
		 */
		if (error == -EAGAIN)
			xfs_buf_relse(bp);
		rval = XFS_ITEM_LOCKED;
	}

	spin_lock(&lip->li_ailp->ail_lock);
	return rval;
}

/*
 * Unlock the inode associated with the inode log item.
 */
STATIC void
xfs_inode_item_release(
	struct xfs_log_item	*lip)
{
	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
	struct xfs_inode	*ip = iip->ili_inode;
	unsigned short		lock_flags;

	ASSERT(ip->i_itemp != NULL);
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));

	lock_flags = iip->ili_lock_flags;
	iip->ili_lock_flags = 0;
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
}

/*
 * This is called to find out where the oldest active copy of the inode log
 * item in the on disk log resides now that the last log write of it completed
 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 * latest copy in the on disk log is the only one that matters.  Therefore,
 * simply return the given lsn.
 *
 * If the inode has been marked stale because the cluster is being freed, we
 * don't want to (re-)insert this inode into the AIL. There is a race condition
 * where the cluster buffer may be unpinned before the inode is inserted into
 * the AIL during transaction committed processing. If the buffer is unpinned
 * before the inode item has been committed and inserted, then it is possible
 * for the buffer to be written and IO completes before the inode is inserted
 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 * AIL which will never get removed. It will, however, get reclaimed which
 * triggers an assert in xfs_inode_free() complaining about freein an inode
 * still in the AIL.
 *
 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 * transaction committed code knows that it does not need to do any further
 * processing on the item.
 */
STATIC xfs_lsn_t
xfs_inode_item_committed(
	struct xfs_log_item	*lip,
	xfs_lsn_t		lsn)
{
	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
	struct xfs_inode	*ip = iip->ili_inode;

	if (xfs_iflags_test(ip, XFS_ISTALE)) {
		xfs_inode_item_unpin(lip, 0);
		return -1;
	}
	return lsn;
}

STATIC void
xfs_inode_item_committing(
	struct xfs_log_item	*lip,
	xfs_csn_t		seq)
{
	INODE_ITEM(lip)->ili_commit_seq = seq;
	return xfs_inode_item_release(lip);
}

static const struct xfs_item_ops xfs_inode_item_ops = {
	.iop_size	= xfs_inode_item_size,
	.iop_format	= xfs_inode_item_format,
	.iop_pin	= xfs_inode_item_pin,
	.iop_unpin	= xfs_inode_item_unpin,
	.iop_release	= xfs_inode_item_release,
	.iop_committed	= xfs_inode_item_committed,
	.iop_push	= xfs_inode_item_push,
	.iop_committing	= xfs_inode_item_committing,
};


/*
 * Initialize the inode log item for a newly allocated (in-core) inode.
 */
void
xfs_inode_item_init(
	struct xfs_inode	*ip,
	struct xfs_mount	*mp)
{
	struct xfs_inode_log_item *iip;

	ASSERT(ip->i_itemp == NULL);
	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
					      GFP_KERNEL | __GFP_NOFAIL);

	iip->ili_inode = ip;
	spin_lock_init(&iip->ili_lock);
	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
						&xfs_inode_item_ops);
}

/*
 * Free the inode log item and any memory hanging off of it.
 */
void
xfs_inode_item_destroy(
	struct xfs_inode	*ip)
{
	struct xfs_inode_log_item *iip = ip->i_itemp;

	ASSERT(iip->ili_item.li_buf == NULL);

	ip->i_itemp = NULL;
	kmem_free(iip->ili_item.li_lv_shadow);
	kmem_cache_free(xfs_ili_cache, iip);
}


/*
 * We only want to pull the item from the AIL if it is actually there
 * and its location in the log has not changed since we started the
 * flush.  Thus, we only bother if the inode's lsn has not changed.
 */
static void
xfs_iflush_ail_updates(
	struct xfs_ail		*ailp,
	struct list_head	*list)
{
	struct xfs_log_item	*lip;
	xfs_lsn_t		tail_lsn = 0;

	/* this is an opencoded batch version of xfs_trans_ail_delete */
	spin_lock(&ailp->ail_lock);
	list_for_each_entry(lip, list, li_bio_list) {
		xfs_lsn_t	lsn;

		clear_bit(XFS_LI_FAILED, &lip->li_flags);
		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
			continue;

		/*
		 * dgc: Not sure how this happens, but it happens very
		 * occassionaly via generic/388.  xfs_iflush_abort() also
		 * silently handles this same "under writeback but not in AIL at
		 * shutdown" condition via xfs_trans_ail_delete().
		 */
		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
			ASSERT(xlog_is_shutdown(lip->li_log));
			continue;
		}

		lsn = xfs_ail_delete_one(ailp, lip);
		if (!tail_lsn && lsn)
			tail_lsn = lsn;
	}
	xfs_ail_update_finish(ailp, tail_lsn);
}

/*
 * Walk the list of inodes that have completed their IOs. If they are clean
 * remove them from the list and dissociate them from the buffer. Buffers that
 * are still dirty remain linked to the buffer and on the list. Caller must
 * handle them appropriately.
 */
static void
xfs_iflush_finish(
	struct xfs_buf		*bp,
	struct list_head	*list)
{
	struct xfs_log_item	*lip, *n;

	list_for_each_entry_safe(lip, n, list, li_bio_list) {
		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
		bool	drop_buffer = false;

		spin_lock(&iip->ili_lock);

		/*
		 * Remove the reference to the cluster buffer if the inode is
		 * clean in memory and drop the buffer reference once we've
		 * dropped the locks we hold.
		 */
		ASSERT(iip->ili_item.li_buf == bp);
		if (!iip->ili_fields) {
			iip->ili_item.li_buf = NULL;
			list_del_init(&lip->li_bio_list);
			drop_buffer = true;
		}
		iip->ili_last_fields = 0;
		iip->ili_flush_lsn = 0;
		spin_unlock(&iip->ili_lock);
		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
		if (drop_buffer)
			xfs_buf_rele(bp);
	}
}

/*
 * Inode buffer IO completion routine.  It is responsible for removing inodes
 * attached to the buffer from the AIL if they have not been re-logged and
 * completing the inode flush.
 */
void
xfs_buf_inode_iodone(
	struct xfs_buf		*bp)
{
	struct xfs_log_item	*lip, *n;
	LIST_HEAD(flushed_inodes);
	LIST_HEAD(ail_updates);

	/*
	 * Pull the attached inodes from the buffer one at a time and take the
	 * appropriate action on them.
	 */
	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
		struct xfs_inode_log_item *iip = INODE_ITEM(lip);

		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
			xfs_iflush_abort(iip->ili_inode);
			continue;
		}
		if (!iip->ili_last_fields)
			continue;

		/* Do an unlocked check for needing the AIL lock. */
		if (iip->ili_flush_lsn == lip->li_lsn ||
		    test_bit(XFS_LI_FAILED, &lip->li_flags))
			list_move_tail(&lip->li_bio_list, &ail_updates);
		else
			list_move_tail(&lip->li_bio_list, &flushed_inodes);
	}

	if (!list_empty(&ail_updates)) {
		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
		list_splice_tail(&ail_updates, &flushed_inodes);
	}

	xfs_iflush_finish(bp, &flushed_inodes);
	if (!list_empty(&flushed_inodes))
		list_splice_tail(&flushed_inodes, &bp->b_li_list);
}

void
xfs_buf_inode_io_fail(
	struct xfs_buf		*bp)
{
	struct xfs_log_item	*lip;

	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
		set_bit(XFS_LI_FAILED, &lip->li_flags);
}

/*
 * This is the inode flushing abort routine.  It is called when
 * the filesystem is shutting down to clean up the inode state.  It is
 * responsible for removing the inode item from the AIL if it has not been
 * re-logged and clearing the inode's flush state.
 */
void
xfs_iflush_abort(
	struct xfs_inode	*ip)
{
	struct xfs_inode_log_item *iip = ip->i_itemp;
	struct xfs_buf		*bp = NULL;

	if (iip) {
		/*
		 * Clear the failed bit before removing the item from the AIL so
		 * xfs_trans_ail_delete() doesn't try to clear and release the
		 * buffer attached to the log item before we are done with it.
		 */
		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
		xfs_trans_ail_delete(&iip->ili_item, 0);

		/*
		 * Clear the inode logging fields so no more flushes are
		 * attempted.
		 */
		spin_lock(&iip->ili_lock);
		iip->ili_last_fields = 0;
		iip->ili_fields = 0;
		iip->ili_fsync_fields = 0;
		iip->ili_flush_lsn = 0;
		bp = iip->ili_item.li_buf;
		iip->ili_item.li_buf = NULL;
		list_del_init(&iip->ili_item.li_bio_list);
		spin_unlock(&iip->ili_lock);
	}
	xfs_iflags_clear(ip, XFS_IFLUSHING);
	if (bp)
		xfs_buf_rele(bp);
}

/*
 * convert an xfs_inode_log_format struct from the old 32 bit version
 * (which can have different field alignments) to the native 64 bit version
 */
int
xfs_inode_item_format_convert(
	struct xfs_log_iovec		*buf,
	struct xfs_inode_log_format	*in_f)
{
	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;

	if (buf->i_len != sizeof(*in_f32)) {
		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
		return -EFSCORRUPTED;
	}

	in_f->ilf_type = in_f32->ilf_type;
	in_f->ilf_size = in_f32->ilf_size;
	in_f->ilf_fields = in_f32->ilf_fields;
	in_f->ilf_asize = in_f32->ilf_asize;
	in_f->ilf_dsize = in_f32->ilf_dsize;
	in_f->ilf_ino = in_f32->ilf_ino;
	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
	in_f->ilf_blkno = in_f32->ilf_blkno;
	in_f->ilf_len = in_f32->ilf_len;
	in_f->ilf_boffset = in_f32->ilf_boffset;
	return 0;
}